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Ranking

» Aims to order a set of objects or instances reflecting their
underlying utility, quality or relevance to queries.

» Has gained increasing attention in machine learning,
collaborative filtering and information retrieval for website
search and recommender systems.
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Data for Ranking

object; positive

object, negative

object, negative

How to order objects so that positive cases are ranked higher
than negative cases?



Main Questions

How to rank?
What evaluation (or loss) criteria to use for ranking?
What is the best ranking function given a criterion?

How is it related to the underlying probability distribution for
data?

How to learn a ranking function from data?

v
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v
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Notation

v

X € X: an instance to rank

v

Y € Y ={1,--- ,k}: an ordinal response in multipartite
ranking (bipartite ranking when k = 2)

v

f: X — R: areal-valued ranking function whose scores
induce ordering over the input space

v

Training data: n pairs of (X,Y) from X x )



Pairwise Ranking Loss

For a pair of “positive” x and “negative” x’, define a loss of
ranking function f as

bo(f;x,x") = 1(f(x) — f(x") < 0) + %I(f(x) —f(x')=0)




Bipartite Ranking

» Note the invariance of the pairwise loss under
order-preserving transformations.

» Find f minimizing the empirical ranking risk

ny n_—

Rn, n_(f) = o ZZeof Xi, X

i=1j=1

» Minimizing ranking error is equivalent to maximizing AUC
(area under ROC curve).



Likelihood Ratio Minimizes Ranking Risk

Clémencon et al. (2008), Uematsu and Lee (2011), and Gao
and Zhou (2012)

Theorem

Define f;(x) = g4 (x)/9-(x), and let Ro(f) = E(¢o(f; X, X"))
denote the ranking risk of f under the bipartite ranking loss.
Then for any ranking function f,

Ro(fy) < Ro(f).

Remark
Connection to classification:

T494(X) _ fc}k(x)
10+ (X) +m-g-(x)  f5(x)+ (77— /74)

P(Y =1X =x) =



Convex Surrogate Loss for Bipartite Ranking

» Exponential loss
in RankBoost (Freund et al. 2003):

£(f; x,x") = exp(—(f(x) — f(x)))

» Hinge loss
in RankSVM (Joachims 2002) and AUCSVM
(Rakotomamonjy 2004, Brefeld and Scheffer 2005):

C(F; %, x) = (1= (F(x) = (X))«

» Logistic loss (cross entropy)
in RankNet (Burges et al. 2005):

£(f; x,x") = log(1 + exp(—(f(x) — f(x")))



Optimal Ranking Function Under Convex Loss

Theorem

Suppose that ¢ is differentiable, ¢'(s) < 0 for all s € R, and
V'(—s)/l'(s) = exp(s/«) for some positive constant .

Let f* be the best ranking function f minimizing

R(f) = E[¢(f; X, X")]. Then

f*(x) = alog(g+(x)/g-(x)) up to a constant.

Remark
» For RankBoost, /(s) = e~S, and ¢/(—s)//'(s) = e%.
£*(x) = 3109(9+(x)/9-(x))-
» For RankNet, /(s) = log(1 + e~®), and ¢'(—s)/¢'(s) = €.
f*(x) = log(g+(x)/g-(x)).



Ranking-Calibrated Loss

Theorem
Suppose that ¢ is convex, non-increasing, differentiable and
¢'(0) < 0. Then for almost every (X, z),

9:0 > 942} implies f*(x) > f*(2).

Remark

For RankSVM, /(s) = (1 — s)4 with singularity at s = 1 could
yield ties in ranking (leading to inconsistency) while

¢(s) = (1 —s)3 is ranking-calibrated.



RankSVM Can Produce Ties

Theorem
Let f* =argmins E(1 — (f(X) — f(X’)))+. Suppose that f* is
unique up to an additive constant.

(i) For discrete X, a version of f* is integer-valued.

(i) For continuous X, there exists an integer-valued function
whose risk is arbitrarily close to the minimum risk.

Remark

» Scores from RankSVM exhibit granularity.
» Ranking with the hinge loss is not consistent!



Extension to Multipartite Ranking

» In general (k > 2), for a pair of (x,y) and (x’,y’) with
y >Yy’, define a loss of ranking function f as

folf:%,X,y.¥") = ey I(1(x) < F(x') + Sy 1(F(6) = F(x")

where cyy is the cost of misranking a pair of y and y’.
(Waegeman et al. 2008)

» Again, /g is invariant under order-preserving
transformations.



Optimal Ranking Function for Multipartite Ranking

Theorem
(i) Whenk = 3, let f5(x) =

Then for any ranking functlon f

C12P( 2’X)+C13P(Y —3‘X)
SP(Y = 1x) 1 coaP(Y = 2[x)

Ro(fg;c) < Ro(f;c).

(i) When k > 3 and let f(x) = S cuP(Y = X))
SIS ek P(Y =jlx)

If c1iCji = C1iCj — CyjCik forall 1 < j < i <k, then for any

ranking function f,

Ro(fg; C) < Ro(f;C).

Remark

Let cj = (si — sj)wiw;l(i > j) for some increasing scale {s; }}‘:1

and non-negative weight {Wj}:(zl- e.g. cj = (i —I(i > )



Ordinal Regression

» Ordinal regression is commonly used to analyze data with
ordinal response in practice.

» A typical form of loss in ordinal regression for f with
thresholds {6, }}‘:_11

0t {6 }] _y %, Y) = L(f(x) —by_1) + £(0y —f(x)),

where g = —oco and 6 =



Convex Loss in Ordinal Regression

» ORBoost (Lin and Li 2006):
£(s) = exp(—s)
» Proportional Odds model (McCullagh 1980, Rennie 2006):
{(s) = log(1 + exp(-s))
» Support Vector Ordinal Regression (Herbrich et al. 2000):

((s) =(1—s);



Ordinal Regression Boosting (ORBoost)

» The optimal ranking function f* under ¢(s) = exp(—s) is

ooy 1 YL P(Y =ilx) exp(6; )
M0 =319 Sy Simew(-6)

where Hj* are constants depending only on Py v.

» Whenk = 3,

fo(x) = L1og P(Y = 21X) + exp(6; — 0)P(Y = 3|x)
2% exp(65 — 0;)P(Y =1|x) + P(Y =2[x)

up to a constant. Hence, f* preserves the ordering of f;
with ¢1p = Cp3 = 1 and ¢35 = e’2%1,



Proportional Odds Model

» Cumulative logits (McCullagh 1980)

P(Y <jx) _ |
SRR

where —oco =0y < 01 < ... < b_1 < B = o0.

log

> Given {§; }}:11, maximizing the log likelihood amounts to
ordinal regression with ¢(s) = log(1 + exp(—s)).
» When k = 3, given 6, and 6,, the minimizer of the deviance
risk f* satisfies
r(x) —1+/(r(x) —1)2 +4exp(fy — 62)r(x)

exp(f*(x)) = 2exp(—07) ’
where r(x) = ig :i;x i gg i ;,z; = fg (X) with

Ci2 = Cp3 = C13 = 1.

» When 6, > 60;, f*(x) preserves the ordering of r(x).



Support Vector Ordinal Regression

» SVOR with Implicit constraints in Chu and Keerthi (2007)

E(f,{ej}jk;f;x,y):Z( )++Z —(0,—F(x)))+

» When k = 3, f*(x) is a step function of
r(x) = P2X) = Ps(x)

pl(X) n pz(X) (I.e. fO with ¢15 = C13 = 023).

(3:1) (1,2) (2,00)

f*(X) ‘ 01— 1 min(91 +1,60, — 1) max(Hl +1,60, — 1) 0, +1



Numerical lllustration

v

Simulation setting:
XY =1~ N(-2,1),X]Y =2~ N(0,1) and
XY =3~N(2,1)

v

When cip = Cy3 = C13 =1,

F5(x) = P(Y =2|X =x)+P(Y =3|X =x) _ e2x 4 @2
CVTP(Y =X =x)+P(Y =2X =x) e X fe?

v

Generate 500 observations in each category.

Apply pairwise ranking risk minimization with exponential
loss, proportional odds model, ORBoost and SVOR.

v



Pairwise Ranking ORBoost
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Figure: Theoretical ranking function (dotted line) and estimated ranking function (solid line) for pairwise ranking
risk minimization with exponential loss, ORBoost, proportional odds model and SVOR with implicit constraints.



Application to Movie-Lens Data

» The data set consists of 100,000 ratings (on a scale of 1 to
5) for 1,682 movies by 943 users (GroupLens-Research).

» Contains content information about the movies (release
date and genres) and demographic information about the
users (age, gender and occupation).

» Transform five categories into three categories:
“Low” (1-3), “Middle” (4) and “High” (5)
and check the analytical results in k = 3.
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theoretical relation between ranking scores.



Concluding Remarks

» Provide a statistical view of ranking by identifying the
optimal ranking function given loss criteria

» For pairwise multipartite ranking, the optimal ranking
depends on the ratio of conditional probability weighted by
misranking costs.

» lllustrate the connection between ranking and
classification/ordinal regression in the framework of convex
risk minimization.

» Our study bridges traditional methods such as proportional
odds model in statistics with ranking algorithms in machine
learning.



Special Thanks to Grace

Behold the sower in the field,
With her arm she scatters the seeds.
Some seeds are trodden in the pathway;
Some seeds fall on stony ground.

But some seeds fall on fallow ground
They grow and multiply a thousand fold.

— From Pete Seeger’s “Sower Of Seeds”
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