A Statistical View of Ranking:
Midway between Classification and
Regression

Yoonkyung Lee*
Department of Statistics
The Ohio State University
*joint work with Kazuki Uematsu

December 3, 2015
Department of Computer Science and Engineering
The Ohio State University



Ranking

» Aims to order a set of objects or instances reflecting their
underlying utility, quality or relevance to queries
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Data for Ranking

object; positive

object, negative

object, negative

How to order objects so that positive cases are generally
ranked higher than negative cases?



Main Questions

v

How to formulate ranking problems?

v

What evaluation (or loss) criteria to use for ranking?

v

What is the best ranking function given a criterion?

v

How is it related to the underlying probability distribution for
data?

v

How to learn a ranking (or scoring) function from data?



Notation

» X € X: an instance to rank

v

Y € Y ={1,---  k}: an ordinal response in multipartite
ranking (bipartite ranking if k = 2, often with ) = {+1})

v

g+(x): pdfs of X given Y = +1

v

Training data: n pairs of (X,Y) from & x )
e.g. {(xi, +1)}=, U {(x/, ~1)}; for bipartite ranking

» f: X — R: areal-valued ranking function whose scores
induce ordering over the input space

f(x) > f(x') <= x = x’



Pairwise Ranking Loss

For a pair of “positive” x and “negative” x’, define a loss of
ranking function f as

bo(f; x,x") =T(f(x) — f(x") < 0) + %H(f(x) —f(x’)=0)

f(x) —f(x’)




Bipartite Ranking

» Note the invariance of the pairwise loss under
order-preserving transformations.

» Find f minimizing the empirical ranking error

1 ny n-—
Ro.n(f) = — > o(fixi X))
=1
» Minimizing ranking ©

TPR

error is equivalent to
maximizing AUC (area
under ROC curve) of f.
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Likelihood Ratio Minimizes Ranking Risk
Clémencon et al. (2008), Uematsu and Lee (2011), and Gao
and Zhou (2012)

Theorem

Define f;(x) = g (x)/0(x), and let Ro(f) = E(¢o(f; X, X"))
denote the ranking risk of f under the bipartite ranking loss.
Then for any ranking function f,

Ro(fy) < Ro(f).
Remark
Connection to posterior probability in classification:

719+ (X) fo (x)

P =X =)= 2000 - 00~ B0 + (n /)



Classification, Ranking and Regression

Regression: p, (x) = P(Y = 1|X = x) orlog pE(X)

1-p+(x)

Ranking: order-preserving transformation of p(x) or
likelihood ratio g (x)/9-(x)

Classification: sgn(p. (x) — %)



Convex Surrogate Loss for Bipartite Ranking

» Exponential loss
in RankBoost (Freund et al. 2003):

£(f; %, x') = exp(—(f(x) - f(x)))

» Hinge loss
in RankSVM (Joachims 2002) and AUCSVM
(Rakotomamonjy 2004, Brefeld and Scheffer 2005):

C(F; %, x) = (1 (F0) — ()¢

» Logistic loss (cross entropy)
in RankNet (Burges et al. 2005):

£(f; x,x") = log(1 + exp(—(f(x) — f(x")))



Exponential
Hinge
Logistic
0-1

Loss
2
!

f(x) - f(x)

Bartlett et al. (2006), Convexity, Classification, and Risk Bounds

Is classification-calibration sufficient for ranking consistency?



Optimal Ranking Function Under Convex Loss

Theorem

Suppose that / is differentiable, ¢/(s) < 0 for all s € R, and
'(—s)/¢'(s) = exp(s/«a) for some positive constant «.

Let f* be the best ranking function f minimizing

Re(f) = E[¢(f; X, X")]. Then

(x) = alog(g.(x)/g-(x)) upto aconstant.

Remark
» For RankBoost, /(s) = e, and ¢/(—s)//(s) = e%.
£*(x) = 3109(9+(x)/g-(x))-
» For RankNet, ¢(s) =log(1+e~%), and ¢/(—s)/¢'(s) = e®.
f*(x) = log(g+(x)/g9-(x)).



Ranking-Calibrated Loss

Theorem
Suppose that ¢ is convex, non-increasing, differentiable and
?'(0) < 0. Then for almost every (x, z),

903 > 42 implies £+(x) > f(2).

Remark

For RankSVM, /(s) = (1 — s) with singularity at s = 1 could
yield ties in ranking (leading to inconsistency) while

(s) = (1 —s)3 is ranking-calibrated.



Toy Example: RankSVM

> X = {X1,%p,X3} and g+§xl)) < g*g“% < g+&3

» To identify f* minimizing E(1 — (f(X) — f(X')))+, let
sy =f(x2) — f(x1) and s, = f(x3) — f(X2), and take the risk
as a function of s; and s;.

g+ (X1) g+(x2) g+(x2)
9+(x3) g+(x2) | 9+(x1)
D= 305 — (305 + £6).

For f*, the optimal increments s} and s; are:
(I) if Ay, > 0and Ayz > 0, (Sl,Sz) (l l)

(ii) if Az < 0and g.(xz) > g-(x2), (s7,s5) = (1
(iii) if Az < 0and g1 (Xz) < g-(X2), (s1.85) = (0.



RankSVM Can Produce Ties

Theorem
Let f* = argmin; E(1 — (f(X) — f(X")))+. Suppose that f* is
unique up to an additive constant.

() For discrete X, a version of f* is integer-valued.

(i) For continuous X, there exists an integer-valued function
whose risk is arbitrarily close to the minimum risk.

Remark

» Scores from RankSVM exhibit granularity.
» Ranking with the hinge loss is not consistent!



Numerical lllustration

» Simulation setting:
X ~N(1,1)and X" ~ N(—-1,1)
log(0.(x)/0-(x)) = 2x with ‘Bayes’ ranking error of
P(X < X’) = ¢(—+/2) ~ 0.07865

» Generate {(x, +1)}L; U{(x/,—1)}L,
where n: sample size for each category

» Apply AUC maximizing SVM (Brefeld and Scheffer 2005)
with a Gaussian kernel K

min cz( JORUCH) IR

feHk



n=30, C=0.005 n=30, C=0.15
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Figure: The solid lines are the estimated ranking functions, and the
dotted lines are step functions with minimal risk.



Extension to Multipartite Ranking

» In general (k > 2), for a pair of (x,y) and (x’,y’) with
y >y’, define a loss of ranking function f as

Co(F; %, X"y, y") = ey 1(F(x) < f(x)) + %cy/yl(f(x) =f(x))

where cyy is the cost of misranking a pair of y and y’.
(Waegeman et al. 2008)

» Again, {g is invariant under order-preserving
transformations.



Optimal Ranking Function for Multipartite Ranking

Theorem PY = 20%) P(Y = 3x)
C12 = Z2|X) + C13 = 3|X

i) When k = 3, letf .

v o0x) = 13P(Y = 1|x) 4+ c23P(Y = 2|x)

Then for any ranking function f,

Ro(fg;c) < Ro(f;c).

(i) When k > 3 and let f£(x) = Zk' A PLY =ix)

j=1 CJKP( 7”X)

If c11Cji = C1iCjk — CyjCik forall 1 < j <i <k, then for any
ranking function f,

Ro(fék; C) < Ro(f; C).

Remark )
Let cji = (si — Sj)wiw;I(i > j) for some increasing scale {s; }j:1

and non-negative weight {wj}ik:l. e.g. cj = (i — (i >])



Ordinal Regression

» Ordinal regression is commonly used to analyze data with
ordinal responses in practice.

» A typical form of loss in ordinal regression for f with
thresholds {6, }}:11

UG} y) = () = Oy 1) + 00y — (X)),

where g = —oo and 6 =



Convex Loss in Ordinal Regression

» ORBoost (Lin and Li 2006):
{(s) = exp(—s)
» Proportional Odds model (McCullagh 1980, Rennie 2006):
{(s) =log(1 + exp(—s))
» Support Vector Ordinal Regression (Herbrich et al. 2000):

s)=(1-s).



Optimal Ranking Function with Ordinal Regression
Letting p;(x) = P(Y =j|X =x), whenk =3,

“(x) = C12P2(X) + C13P3(X)
C13P1(X) + C23P2(X)

» Ordinal Regression Boosting (ORBoost):
1, Pa(X) + exp(6; — 07)ps(x)
f*(x)==lo D
()= 219 exp(@ — 0)p103) + p2(x)

Hl

1
= = logfJ(x
5 gfo(x)
with ¢y = C3 =land cis — e’z

» Proportional Odds Model:
f*(x) preserves the ordering of
P2(X) + P3(x)
rx)=-—-—~-——"--+=
)= 0160+ pa()

» Support Vector Ordinal Regression (SVOR):
f*(x) is a non-decreasing step function of r(x).

= fék(X) with ¢ = Coz3 = C13 = L.



Numerical lllustration

v

Simulation setting:
XY =1~ N(-2,1), X]Y =2~ N(0,1) and
XY =3~N(2,1)

v

When cio = Cy3 = C13 = 1,

P(Y =2]X =x)+P(Y =3|X =x)  e* 4e?

fo(x) = PY =1X =x)+P(Y =2X =x) e X te2

v

Generate 500 observations in each category.

Apply pairwise ranking risk minimization with exponential
loss, proportional odds model, ORBoost and SVOR.

v



Pairwise Ranking ORBoost
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Figure: Theoretical ranking function (dotted line) and estimated ranking function (solid line) for pairwise ranking
risk minimization with exponential loss, ORBoost, proportional odds model and SVOR with implicit constraints.



Application to Movie-Lens Data

» The data set consists of 100,000 ratings (on a scale of 1 to
5) for 1,682 movies by 943 users (GroupLens-Research).

» Contains content information about the movies (release
date and genres) and demographic information about the
users (age, gender and occupation).

» Transform five categories into three categories:
“Low” (1-3), “Middle” (4) and “High” (5)
and check the analytical results in k = 3.
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Concluding Remarks

» Provide a statistical view of ranking by identifying the
optimal ranking function given loss criteria.

» lllustrate the connection between ranking and
classification/ordinal regression in the framework of convex

risk minimization.

» Ranking requires more information than classification.
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