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Introduction

I Stability and robustness is desired for modeling (or
prediction) procedures

I Given a modeling procedure, how sensitive is the fitted
model to some change in the data?

I How much does the model change if a case is deleted?

I Connected to privacy-preserving data analysis and
adversarial machine learning
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Case Influence in Case Deletion Scheme
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Overview

I Case deletion is considered for
I model assessment (e.g. regression diagnostics)
I model selection (e.g. leave-one-out CV)
I measuring model complexity (model df)

I Extensively studied for mean regression with squared error
loss (e.g. Cook’s distance)

I Generalize the ideas of case influence to classification



Case Influence in Linear Regression

I Cook’s distance for case i? (Cook, 1977):

Di? =
1

pσ̂2

n∑
i=1

(
f̂ (xi)− f̂ [−i?](xi)

)2



Case Influence in Linear Regression

I Cook’s distance for case i? (Cook, 1977):

Di? =
1

pσ̂2

n∑
i=1

(
f̂ (xi)− f̂ [−i?](xi)

)2

I It can be expressed using the residual and leverage:

Di? =
1

pσ̂2

[
hi?

(1− hi?)2

]
r2
i? ,

where ri? = yi? − f̂ (xi?) and hi? is the leverage of case i?

(i?th diagonal entry of the hat matrix X (X>X )−1X>)



Support Vector Machine

Vapnik (1996), The Nature of Statistical Learning Theory

yi =

{
1 for class 1
−1 for class 2

and φ(x) = sign(f (x)).

Find f (x) = β0 + β>x
with a large margin by
minimizing

n∑
i=1

(1− yi f (xi))+ +
λ

2
‖β‖2.
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Review of Support Vector Machine

I The solution as a discriminant function is shown to be of
the form:

f̂ (x) = a +
1
λ

n∑
i=1

αiyi(x>i x)

I The coefficients αi are determined by solving a quadratic
programming problem

I According to the optimality conditions, if yi f̂ (xi) > 1, α̂i = 0

I If α̂i = 0, then f̂ [−i] = f̂

I Data points with α̂i > 0 are called support vectors



Margin-Based Loss Function

For a real-valued discriminant function f (x) which induces the
rule φ(x) = sign(f (x)),

I Misclassification (0-1): I(yf (x) ≤ 0)

I SVM (hinge) : (1− yf (x))+

I Logistic regression (binomial deviance):
log(1 + exp(−yf (x)))

I Boosting (exponential): exp(−yf (x))



Loss Function
10.6 Loss Functions and Robustness 347
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FIGURE 10.4. Loss functions for two-class classification. The response is
y = ±1; the prediction is f , with class prediction sign(f). The losses are
misclassification: I(sign(f) != y); exponential: exp(−yf); binomial deviance:
log(1 + exp(−2yf)); squared error: (y − f)2; and support vector: (1 − yf)+ (see
Section 12.3). Each function has been scaled so that it passes through the point
(0, 1).

f(x) = 0. The goal of the classification algorithm is to produce positive
margins as frequently as possible. Any loss criterion used for classification
should penalize negative margins more heavily than positive ones since
positive margin observations are already correctly classified.

Figure 10.4 shows both the exponential (10.8) and binomial deviance
criteria as a function of the margin y · f(x). Also shown is misclassification
loss L(y, f(x)) = I(y ·f(x) < 0), which gives unit penalty for negative mar-
gin values, and no penalty at all for positive ones. Both the exponential
and deviance loss can be viewed as monotone continuous approximations
to misclassification loss. They continuously penalize increasingly negative
margin values more heavily than they reward increasingly positive ones.
The difference between them is in degree. The penalty associated with bi-
nomial deviance increases linearly for large increasingly negative margin,
whereas the exponential criterion increases the influence of such observa-
tions exponentially.

At any point in the training process the exponential criterion concen-
trates much more influence on observations with large negative margins.
Binomial deviance concentrates relatively less influence on such observa-

source: Hastie, Tibshirani & Friedman (2009)



Challenges in Extension to Classification

I Extension of Cook’s distance appropriate for margin-based
classification?

I How to calculate the leave-one-out (LOO) solution f̂ [−i] for
i = 1, · · · ,n?



Case Influence Measure
I Classification discrepancy rate:

CDi? =
1
n

n∑
i=1

∣∣∣I(yi f̂ (xi) < 0)− I(yi f̂ [−i?](xi) < 0)
∣∣∣

=
1
n

n∑
i=1

I(f̂ (xi)f̂ [−i?](xi) < 0)

I Functional margin difference:

MDi? =
1
n

n∑
i=1

(
yi f̂ (xi)− yi f̂ [−i?](xi)

)2
=

1
n

n∑
i=1

(
f̂ (xi)− f̂ [−i?](xi)

)2

I Loss difference:

LDi? =
1
n

n∑
i=1

(
L(yi f̂ (xi))− L(yi f̂ [−i?](xi))

)2



Computation for Case Deletion

I Can we calculate the leave-one-out (LOO) solution f̂ [−i]

efficiently from the full data solution f̂?

I Take f̂ as a warm start?

I Using a homotopy technique, examine the link between the
two solutions by a case-weight adjusted solution path



Case-Weight Adjusted SVM

I For each case i?, consider minimizing∑
i 6=i?

(1− yi(β0 + x>i β))+ + ω (1− yi?(β0 + x>i?β))+︸ ︷︷ ︸
weight-adjusted

+
λ

2
‖β‖2,

with a case weight ω ∈ [0,1]

I Treat the case weight ω as a homotopy parameter linking
the full data solution to the leave-one-out (LOO) solution:

u uFull data solution f̂ LOO solution f̂ [−i?]=⇒

ω = 1 ω = 0



Constrained Optimization
I Express the hinge loss with slack variable ξ:

(1− yf )+ =


minξ ξ
s.t. 1− yf ≤ ξ

ξ ≥ 0

I The SVM problem can be formulated as a constrained
optimization with linear inequalities

I The KKT optimality conditions can be derived for the
solution (β0,ω, βω) given case weight ω for each i?

I Representation of the discriminant function:

fω(x) = aω +
1
λ

n∑
i=1

θi,ωyi(x>i x)



Optimality Conditions
I The KKT conditions with dual variables θi,ω, i = 1, . . . ,n:

n∑
i=1

θi,ωyi = 0

θi,ω = 0 if yi(β0,ω + x>i βω) > 1

θi,ω ∈
{
[0,1], for i 6= i?

[0, ω], for i = i?
if yi(β0,ω + x>i βω) = 1

θi,ω =

{
1, for i 6= i?

ω, for i = i?
if yi(β0,ω + x>i βω) < 1

I According to the margin yi fω(xi) = yi(β0,ω + x>i βω), cases
are categorized into

Rω = {i : yi fω(xi) > 1} (right)
Eω = {i : yi fω(xi) = 1} (elbow)
Lω = {i : yi fω(xi) < 1} (left) ●

RightElbowLeft



Piecewise Linearity of Solution Path

Proposition
The solution path (aω, θω) satisfying the KKT conditions is
piecewise linear in case weight ω.

In particular, for ωm+1 < ω < ωm, if yi? fωm(xi?) ≥ 1, (aω, θω) is
constant; otherwise, (aω, θω) changes linearly.

Corollary
The slope of yi fω(xi) on [ωm+1, ωm) for i = 1, · · · ,n is 0 if
yi? fωm(xi?) ≥ 1, and nonzero constant otherwise.



Monotonicity of Functional Margin Path

Proposition
The functional margin of the weighted case, yi? fω(xi?), is
piecewise linear and nondecreasing in ω.

Remark
This result is analogous to the monotonicity of a residual in
case weight in regression.



Path-Following Algorithm

I Similar to the results for SVM and kernel QR solution paths
(Rosset and Zhu 2007, Li et al. 2007)

I Devise a path-following algorithm

I By tracking changes in the three sets with ω, we can
identify breakpoints 0 ≤ ωM < · · · < ω1 < ω0 = 1 and
corresponding solutions.

I Can generate the entire case-weight adjusted solution path
as ω decreases from 1 to 0



Example:
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Figure: The discriminant score path f̂ω(xi?) for SVM with radial kernel
starting from the original full-data fit at ω = 1 to the fit at ω = 0 when
case i? is removed.



Example: Detection of Mislabeled Cases

I Subset 100 cases of digits 3 and 8 from handwritten digit
data (Le Cun et al. 1990)

I Randomly flip the class labels for 10% of the cases for
each digit

I Rank cases according to influence measures for SVM in
case deletion scheme to detect mislabeled cases
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Case Influence Graph
I Case-weight adjusted Cook’s distance (Cook, 1986):

Di?(ω) =

∑n
i=1(f̂ (xi)− f̂ i?

ω (xi))
2

pσ̂2

Case A
Case B

0

1

2

3

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Case Weight ω

S
ca

le
d 

D
i* (ω

)

Figure: An illustrative example of case-influence graphs in least
squares regression based on Figure 1 in Cook (1986)



Case Influence Graph for SVM
I Case-weight adjusted loss difference:

Mi?(ω) =
1
n

n∑
i=1

(
L(yi f̂ (xi))− L(yi f̂ i?

ω (xi))
)2

I Area under the influence graph as an alternative measure
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(a) Linear SVM
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influence graph. Red circles represent the mislabeled cases.



Global and Local Influence Measures

I Global influence:

Gi? =

∫ 1

0
Mi?(ω)dω

I Local influence (Cook, 1986):
the curvature of the case influence graph at ω = 1

`i? =
∂2Mi?,ω

∂ω2

∣∣∣∣∣
ω=1

I Since Mi?,ω = 0 at ω = 1, if ∂Mi?,ω
∂ω

∣∣∣
ω=1

= 0, then the local
influence provides a quadratic approximation to Gi?



Local Influence

Lemma
For each i = 1, · · · ,n, the rate of change in the discriminant

score at ω = 1, ∂ f̂ i?
ω (xi )
∂ω

∣∣∣
ω=1

, in SVM is 0, if the functional margin

of the weighted case, yi? f̂ (xi?) ≥ 1; otherwise, obtained
explicitly.

Proposition
Let Mi?,ω be the case-weight adjusted loss difference with
continuously differentiable loss L(·). Then the local influence `i?
of each case i? ∈ {1, · · · ,n} in SVM is 0 if yi? f̂ (xi?) ≥ 1;
otherwise,

`i? =
∂2Mi?,ω

∂ω2

∣∣∣∣∣
ω=1

=
2
n

n∑
i=1

(
L′(yi f̂ (xi))

)2
·
(
∂ f̂ i?
ω (xi)

∂ω

∣∣∣∣∣
ω=1

)2

.
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Remarks

I Extended case influence statistics for SVM

I Presented a homotopy method for a case-weight adjusted
solution path that connects the full data solution to LOO
solutions for SVM

I How to extend the framework for case influence
assessment to other classification methods (e.g.
boosting)?

I How to define model complexity in classification using the
notion of case sensitivity?
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