
Part III: Dimensionality reduction

Hotelling’s principal component analysis (PCA)
to generalized PCA for non-Gaussian data

Hotelling, H. (1933), Analysis of a complex of statistical
variables into principal components
Journal of Educational Psychology 24(6), 417-441

Pearson, K. (1901), On Lines and Planes of Closest Fit to
Systems of Points in Space
Philosophical Magazine 2(11), 559-572.



Hotelling’s Test Data

� Hotelling analyzed the correlations found in a sample of
140 seventh-grade children among numerous tests
(from T. L. Kelley’s study).

Displayed below are the correlations among (1) reading
speed, (2) reading power, (3) arithmetic speed and
(4) arithmetic power:

R =





1 .698 .264 .081
1 −.061 .092

1 .594
1





� Given correlated variables Xj , does there exist some more
fundamental set of independent variables, perhaps fewer
in number than the original Xj ’s, which determine the
values of Xj ’s?



Principal Component Analysis (PCA)

PCA is concerned with explaining the variance-covariance
structure of a set of correlated variables through a few linear
combinations of these variables.
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Figure: Data on the mineral content measurements (g/cm) of three
bones (humerus, radius and ulna) on the dominant and nondominant
sides for 25 old women



Variance Maximization

� Given p correlated variables X = (X1, · · · ,Xp)�, consider a
linear combination of Xj ’s,

p�

j=1

ajXj = a�X

for a = (a1, . . . , ap)� ∈ Rp with �a�2 = 1.

� The first principal component direction is defined as the
vector a that gives the largest sample variance of a�X
amongst all normalized linear combinations of Xj :

max
a∈Rp,�a�2=1

a�Sna

where Sn is the sample variance-covariance matrix of X .



Principal Components

� Let Sn =
�p

j=1 λj vjv�
j with eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λp > 0, and the corresponding
eigenvectors v1, . . . , vp.
Then the first principal component direction is given by v1.

� The derived variable Z1 = v�
1 X is called the first principal

component.

� Similarly, the second principal component direction is
defined as the vector a that gives the largest sample
variance of a�X among all normalized a subject to a�X
being uncorrelated with v�

1 X . It is given by v2.

� In general, the j th principal component direction is defined
successively from j = 1 to p.



Pearson’s Reconstruction Error Formulation

Pearson, K. (1901), On Lines and Planes of Closest Fit to
Systems of Points in Space

� Given x1, · · · , xn ∈ Rp, consider the following data
approximation:

xi ≈ µ+ vv�(xi − µ)

where µ ∈ Rp and v is a unit vector in Rp so that vv� is a
rank-one projection.

� What are µ and v ∈ Rp that minimize the reconstruction
error?

min
v�v=1

n�

i=1

�xi − µ− vv�(xi − µ)�2

� µ̂ = x̄ and v̂ = v1 minimize the error.



Minimization of Reconstruction Error

� More generally, consider a rank-k (< p) approximation:

xi ≈ µ+ VV�(xi − µ)

where µ ∈ Rp and V is a p × k matrix with orthogonal
columns that results in a rank-k projection of VV�.

� Wish to minimize the reconstruction error:
n�

i=1

�xi − µ− VV�(xi − µ)�2

subject to V�V = Ik

� µ̂ = x̄ and V̂ = [v1, · · · , vk ] provide the best reconstruction
of the data.



PCA for Non-Gaussian Data?

� PCA finds a low rank subspace by implicitly minimizing the
reconstruction error under squared error loss, which is
linked to Gaussian distribution.

� Binary, count, or non-negative data abound in practice.

e.g. images, term frequencies for documents, ratings for
movies, click-through rates for on-line ads

� How to generalize PCA to non-Gaussian data?



Generalized PCA
Collins et al. (2001), A generalization of principal components
analysis to the exponential family

� Draws on the ideas from the exponential family and
generalized linear models.

� For Gaussian data, assume that xi ∼ Np(θi , Ip) and θi ∈ Rp

lies in a k dimensional subspace:

for a basis {b�}k
�=1, θi =

k�

�=1

ai�b� = B(p×k)ai

� To find Θ = [θij ], maximize the log likelihood or equivalently
minimize the negative log likelihood (or deviance):

min
n�

i=1

�xi − θi�2 = �X −Θ�2
F = �X − AB��2

F



Generalized PCA
� According to Eckart-Young theorem, the best rank k

approximation of X (= Un×pDp×pV�
p×p) is given by the rank

k truncated singular value decomposition UkDk� �� �
A

V�
k����

B�

.

� For exponential family data, factorize the matrix of natural
parameter values Θ as AB� with rank-k matrices An×k and
Bp×k (of orthogonal columns) by maximizing the log
likelihood.

� For binary data X = [xij ] with P = [pij ], “logistic PCA” looks
for a factorization of Θ =

�
log pij

1−pij

�
= AB� that maximizes

�(X ; Θ) =
�

i,j

�
xij(a�

i bj∗)− log(1 + exp(a�
i bj∗))

�

subject to B�B = Ik .



Drawbacks of the Matrix Factorization Formulation

� Involves estimation of both case-specific (or row-specific)
factors A and variable-specific (or column-specific) factors
B: more of extension of SVD than PCA.

� The number of parameters increases with observations.

� The scores of generalized PC for new data involve
additional optimization while PC scores for standard PCA
are simple linear combinations of the data.



Alternative Interpretation of Standard PCA

� Assuming that data are centered (µ = 0),

min
n�

i=1

�xi − VV�xi�2 = �X − XVV��2
F

subject to V�V = Ik

� XVV� can be viewed as a rank k projection of the matrix
of natural parameters (“means” in this case) of the
saturated model Θ̃ for Gaussian data.

� Standard PCA finds the best rank k projection of Θ̃ by
minimizing the deviance under Gaussian distribution.



New Formulation of Logistic PCA

Landgraf and Lee (2015), Dimensionality Reduction for Binary
Data through the Projection of Natural Parameters

� Given xij ∼ Bernoulli(pij), the natural parameter (logit pij )
of the saturated model is

θ̃ij = logit(xij) = ∞× (2xij − 1)

We will approximate θ̃ij ≈ m × (2xij − 1) for large m > 0.

� Project Θ̃ to a k -dimensional subspace by using the
deviance D(X ; Θ) = −2�(X ; Θ) as a loss:

min
V

D(X ; Θ̃VV�
� �� �

Θ̂

) = −2
�

i,j

�
xij θ̂ij − log(1 + exp(θ̂ij))

�

subject to V�V = Ik



Logistic PCA vs Logistic SVD

� The previous logistic SVD gives an approximation of logit
P:

Θ̂LSVD = AB�

� Alternatively, logistic PCA gives

Θ̂LSVD = Θ̃V����
A

V�,

which has much fewer parameters.

� Computation of PC scores on new data only requires linear
combinations of θ̃(x) for logistic PCA while Logistic SVD
requires fitting k -dimensional logistic regression for each
new observation.

� Logistic SVD with additional A is prone to overfit.



New Formulation of Generalized PCA

� The idea can be applied to any exponential family
distribution.

� Find the best rank k projection of the matrix of natural
parameters from the saturated model Θ̃X by minimizing the
appropriate deviance for the data:

min
V

D(X ; Θ̃X VV�)

subject to V�V = Ik

� If desired, main effects µ can be added to the
approximation of Θ:

Θ̂ = 1µ� + (Θ̃− 1µ�)VV�



Medical Diagnosis Data

� Part of electronic health record data on 12,000 adult
patients admitted to the intensive care units (ICU) in Ohio
State University Medical Center from 2007 to 2010
(provided by S. Hyun)

� Patients are classified as having one or more diseases of
over 800 disease categories from the International
Classification of Diseases (ICD-9).

� Interested in characterizing the co-morbidity as latent
factors, which can be used to define patient profiles for
prediction of other clinical outcomes

� Analysis is based on a sample of 1,000 patients, which
reduced the number of disease categories to 584.



Patient-Diagnosis Matrix

courtesy of A. Landgraf



Deviance Explained by Components
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Deviance Explained by Parameters
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Deviance Predicted
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Interpretation of Loadings
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Figure: The first component is characterized by common serious
conditions that bring patients to ICU, and the second component is
dominated by diseases of the circulatory system (07’s). courtesy of A. Landgraf
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