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Outline

◮ Classification
◮ Main questions
◮ Efron’s comparison of LDA with logistic regression
◮ Efficiency of support vector machine and boosting
◮ Simulation study
◮ Discussion



Sepal.Length

2.0 3.0 4.0 0.5 1.5 2.5

4.
5

5.
5

6.
5

7.
5

2.
0

3.
0

4.
0

Sepal.Width

Petal.Length

1
2

3
4

5
6

7

4.5 5.5 6.5 7.5

0.
5

1.
5

2.
5

1 2 3 4 5 6 7

Petal.Width

Iris Data (red=setosa,green=versicolor,blue=virginica)



Applications

Figure courtesy of HTF

◮ Handwritten digit recognition
◮ Cancer diagnosis with gene expression profiles
◮ Text categorization



Classification

◮ x = (x1, . . . , xd) ∈ R
d

◮ y ∈ Y = {1, . . . , k}
◮ Learn a rule φ : R

d → Y from the training data
{(xi , yi), i = 1, . . . , n}, where (xi , yi) are i.i.d. with P(X , Y ).

◮ The 0-1 loss function:

ρ(y , φ(x)) = I(y 6= φ(x))

◮ The Bayes decision rule φB minimizing the error rate
R(φ) := P(Y 6= φ(X )) is

φB(x) = arg max
k

P(Y = k |X = x).



Classification Methods

Statistical Modeling: The Two Cultures
“One assumes that the data are generated by a given
stochastic data model. The other uses algorithmic models and
treats the data mechanism as unknown.” – Breiman

◮ Model-based methods in statistics:
LDA, QDA, logistic regression, kernel density classification

◮ Algorithmic methods in machine learning:
Support vector machine (SVM), boosting, decision trees,
neural network

◮ Less is required in pattern recognition.
– Devroye, Györfi and Lugosi



Classification Consistency

◮ In the binary case (k = 2), suppose that y = 1or − 1.
A discriminant function f : R

d → R induces a classifier
φ(x) = sign(f (x)).

◮ Risk minimization under convex surrogate loss:
Lin (2000), Zhang (2004), Bartlett, Jordan, and McAuliffe
(2006)

◮ Logistic regression: negative log likelihood
◮ Support vector machine: hinge loss
◮ Boosting: exponential loss

◮ Both approaches are consistent in classification.



Loss Functions

Elements of Statisti
al Learning 

Hastie, Tibshirani & Friedman 2001 Chapter 10
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Questions

◮ Is modeling necessary for classification?
◮ Does modeling lead to more accurate classification?
◮ How to quantify the relative efficiency?



Normal Distribution Setting
◮ Two multivariate normal distributions in R

d with mean
vectors µ1 and µ2 and a common covariance matrix Σ

◮ π+ = P(Y = 1) and π− = P(Y = −1).
◮ For example, when π+ = π−, Fisher’s LDA boundary is

{
Σ−1(µ1 − µ2)

}
′
{

x − 1
2
(µ1 + µ2)

}
= 0.

µ1

µ2



Canonical LDA setting

Efron (JASA 1975), The Efficiency of Logistic Regression
Compared to Normal Discriminant Analysis

◮ X ∼ N((∆/2)e1, I) for Y = 1 with probability π+

X ∼ N(−(∆/2)e1, I) for Y = −1 with probability π−

where ∆ := {(µ1 − µ2)
′Σ−1(µ1 − µ2)}1/2

◮ Fisher’s linear discriminant function is

ℓ(x) = log(π+/π−) + ∆x1.

◮ Let β∗

0 = log(π+/π−), (β∗

1, . . . , β∗

d)′ = ∆e1, and
β∗ = (β∗

0, . . . , β∗

d)′.



Excess Error

◮ For a linear discriminant method ℓ̂ with coefficient vector
β̂n, if

√
n(β̂n − β∗) → N(0, Σβ), the expected increased

error rate of ℓ̂, E(R(ℓ̂) − R(φB))

=
π+φ(D1)

2∆n

[
σ00−

2β∗

0

∆
σ01+

β∗2
0

∆2 σ11+σ22+· · ·+σdd

]
+o(

1
n

),

where D1 = ∆/2 + (1/∆) log(π+/π−).
◮ In particular, when π+ = π−,

E(R(ℓ̂) − R(φB)) =
φ(∆/2)

4∆n

[
σ00 + σ22 + · · · + σdd

]
+ o(

1
n

).



Relative Efficiency

◮ Efron (1975) studied the Asymptotic Relative Efficiency
(ARE) of logistic regression (LR) to normal discrimination
(LDA) defined as

lim
n→∞

E(R(ℓ̂LDA) − R(φB))

E(R(ℓ̂LR) − R(φB))
.

◮ Logistic regression is shown to be between one half and
two thirds as effective as normal discrimination typically.



Framework for Comparison

◮ Identify the limiting distribution of β̂n for other classification
procedures (SVM, boosting, etc.) under the canonical LDA
setting:

β̂n = arg min
β

1
n

n∑

i=1

ρ(yi , xi ; β)

◮ Need large sample theory for M-estimators.
◮ Find the excess error of each method and compute the

efficiency relative to LDA.



M-estimator Asymptotics

◮ Pollard (ET 1991), Hjort and Pollard (1993), Geyer (AOS
1994), Knight and Fu (AOS 2000), Rocha, Wang and Yu
(2009)

◮ Convexity of the loss ρ is the key.
◮ Let L(β) := Eρ(Y , X ; β), β∗ := arg min L(β),

H(β) :=
L(β)

∂β∂β′
, and G(β) := E

(
∂ρ(Y , X ; β)

∂β

)(
∂ρ(Y , X ; β)

∂β

)
′

◮ Under some regularity conditions,
√

n(β̂n − β∗) → N(0, H(β∗)−1G(β∗)H(β∗)−1)

in distribution.



Linear SVM

Koo, Lee, Kim, and Park (JMLR 2008), A Bahadur
Representation of the Linear Support Vector Machine

◮ With β := (β0, w ′)′, ℓ(x ; β) = w ′x + β0

◮ β̂λ,n = arg min
β

{
1
n

n∑

i=1

(1 − yiℓ(xi ; β))+ + λ‖w‖2

}

◮ Under the canonical LDA setting with π+ = π−,
for λ = o(n−1/2),

√
n (β̂λ,n − β∗

SVM) → N(0, Σβ∗

SVM
),

where β∗

SVM =
2

∆(2a∗ + ∆)
β∗

LDA and

a∗ is a constant such that φ(a∗)/Φ(a∗) = ∆/2.
◮ If π+ 6= π−, ŵn ∝ w∗

LDA but β̂0 is inconsistent.



Relative Efficiency of SVM to LDA

Under the canonical LDA setting with π+ = π− = 0.5,
the ARE of the linear SVM to LDA is

Eff =
2
∆

(1 +
∆2

4
)φ(a∗).

∆ R(φB) a∗ SVM LR
2.0 0.1587 -0.3026 0.7622 0.899
2.5 0.1056 -0.6466 0.6636 0.786
3.0 0.0668 -0.9685 0.5408 0.641
3.5 0.0401 -1.2756 0.4105 0.486
4.0 0.0228 -1.5718 0.2899 0.343



Boosting

◮ β̂n = arg min
β

1
n

n∑

i=1

exp(−yiℓ(xi ; β))

◮ Under the canonical LDA setting with π+ = π−,
√

n (β̂n − β∗

boost) → N(0, Σβ∗

boost
),

where β∗

boost =
1
2
β∗

LDA.

◮ In general, β̂n is a consistent estimator of (1/2)β∗

LDA.



Relative Efficiency of Boosting to LDA

Under the canonical LDA setting with π+ = π− = 0.5,
the ARE of Boosting to LDA is

Eff =
1 + ∆2/4

exp(∆2/4)
.

∆ R(φB) Boosting SVM LR
2.0 0.1587 0.7358 0.7622 0.899
2.5 0.1056 0.5371 0.6636 0.786
3.0 0.0668 0.3425 0.5408 0.641
3.5 0.0401 0.1900 0.4105 0.486
4.0 0.0228 0.0916 0.2899 0.343



Smooth SVM

Lee and Mangasarian (2001), SSVM: A Smooth Support Vector
Machine

◮ β̂λ,n = arg min
β

{
1
n

n∑

i=1

(1 − yiℓ(xi ; β))2
+ + λ‖w‖2

}

◮ Under the canonical LDA setting with π+ = π−,
for λ = o(n−1/2),

√
n (β̂λ,n − β∗

SSVM) → N(0, Σβ∗

SSVM
),

where β∗

SVM =
2

∆(2a∗ + ∆)
β∗

LDA and

a∗ is a constant such that {a∗Φ(a∗) + φ(a∗)}∆ = 2Φ(a∗).



Relative Efficiency of SSVM to LDA

Under the canonical LDA setting with π+ = π− = 0.5,
the ARE of the Smooth SVM to LDA is

Eff =
(4 + ∆2)Φ(a∗)

∆(2a∗ + ∆)
.

∆ R(φB) a∗ SSVM SVM LR
2.0 0.1587 0.4811 0.9247 0.7622 0.899
2.5 0.1056 0.0058 0.8200 0.6636 0.786
3.0 0.0668 -0.4073 0.6779 0.5408 0.641
3.5 0.0401 -0.7821 0.5206 0.4105 0.486
4.0 0.0228 -1.1312 0.3712 0.2899 0.343



Possible Explanation for Increased Efficiency

Hastie, Tibshirani, and Friedman (2001),
Elements of Statistical Learning

◮ There is a close connection between Fisher’s LDA and
regression approach to classification with class indicators:

min
n∑

i=1

(yi − β0 − w ′xi)
2

◮ The least squares coefficient is identical up to a scalar
multiple to the LDA coefficient:

ŵ ∝ Σ̂−1(µ̂1 − µ̂2)



A Mixture of Two Gaussian Distributions
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Figure: ∆W and ∆B indicate the mean difference between two
Gaussian components within each class and the mean difference
between two classes.



As ∆W Varies
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Figure: ∆B = 2, d = 5, π+ = π
−

, π1 = π2, and n = 100



As ∆B Varies
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Figure: ∆W = 1, d = 5, π+ = π
−

, π1 = π2, and n = 100



As ∆B Varies
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Figure: ∆W = 1, d = 5, π+ = π
−

, π1 = π2, and n = 100



As Dimension d Varies

Dimension

E
rr

or
 R

at
e

5 15 25 35 45 55 65 75 85

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

 
 
 
 
 

Bayes Rule
LDA

LR
SVM

SSVM

Figure: ∆W = 1, ∆B = 2, π+ = π
−

, π1 = π2, and n = 100



Extensions

◮ For high dimensional data, study double asymptotics
where d also grows with n.

◮ Compare methods in a regularization framework.
◮ Investigate consistency and relative efficiency under other

models.
◮ Compare methods in terms of robustness.



Concluding Remarks

◮ Compared modeling-based approach with algorithmic
approach in the efficiency of reducing error rates.

◮ Under the normal setting, modeling leads to more efficient
use of data.
– Linear SVM is shown to be between 40% and 67% as
effective as LDA when the Bayes error rate is between 4%
and 10%.

◮ A loss function plays an important role in determining the
efficiency of the corresponding procedure.
– Squared hinge loss could yield more effective procedure
than logistic regression.

◮ The theoretical comparisons can be extended in many
directions.
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