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Figure: courtesy of Hastie, Tibshirani, & Friedman (2001)

» Handwritten digit recognition
» Cancer diagnosis with gene expression profiles
» Text categorization



Classification

> X :(Xl,...,Xd) GRd

»yeY={1,....kj

» Learn a rule ¢ : RY — ) from the training data
{(%,Yi),i =1,...,n}, where (x;,y;) are i.i.d. with P(X,Y).

» The 0-1 loss function:

ply, (X)) = Iy # ¢(x))

» The Bayes decision rule ¢g minimizing the error rate

R(¢) =P(Y # ¢(X)) is

¢»g(X) = arg méixP(Y =k | X =X).



Statistical Modeling: The Two Cultures

“*One assumes that the data are generated by a given
stochastic data model. The other uses algorithmic models and
treats the data mechanism as unknown.” — Breiman (2001)

» Model-based methods in statistics:
LDA, QDA, logistic regression, kernel density classification

» Algorithmic methods in machine learning:
Support vector machine (SVM), boosting, decision trees,

neural network

» Less Is required in pattern recognition.
— Devroye, Gyorfi and Lugosi (1996)

» If you possess a restricted information for solving some
problem, try to solve the problem directly and never solve a
general problem as an intermediate step.

— Vapnik (1998)



Questions

Is modeling necessary for classification?

Does modeling lead to more accurate classification?
How to quantify the relative efficiency?

How do the two approaches compare?
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Convex Risk Minimization

» In the binary case (k = 2), suppose thaty =1 or -1.

» Typically obtain a discriminant function f : R — R, which
iInduces a classifier ¢(x) = sign(f(x)), by minimizing the
risk under a convex surrogate loss of the 0-1 loss

ply,f(x)) = I{yf(x) < 0).

» Logistic regression: binomial deviance (- log likelihood)
» Support vector machine: hinge loss
» Boosting: exponential loss



Logistic Regression
Agresti (2002), Categorical Data Analysis

» Model the conditional distribution py(x) = P(Y = k|X = x)

directly.
P1(X)
lo = f(X
I P1(x) %)
» Then Y |X = x ~ Bernoulli distribution with
exp(f(x)) 1
X) = and p_1(X) = :
P19 = T exp(r ) 2™ P = T ()
» Maximizing the conditional likelihood of (y1,...,yn) given
(X1, ..., Xn) (Or minimizing the negative log likelihood)
amounts to

min > “log (1 + exp(—yif(x))).
=1



Support Vector Machine

Vapnik (1996), The Nature of Statistical Learning Theory

Find f with a large
margin minimizing

—Z (1 — yif (i) + A1
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Boosting

Freund and Schapire (1997), A decision-theoretic
generalization of on-line learning and an application to boosting

» A meta-algorithm that combines the outputs of many
“weak” classifiers to form a powerful committee

» Sequentially apply a weak learner to produce a sequence
of classifiers f,,(x), m=1,2,..., M and take a weighted
majority vote for the final prediction.

» AdaBoost minimizes the exponential risk function with a
stagewise gradient descent algorithm:

min > exp(—yif (xi)).
=

Friedman, Hastie, and Tibshirani (2000), Additive Logistic
Regression: A Statistical View of Boosting
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Classification Consistency

» The population minimizer f* of p is defined as f with the
minimum risk R(f) = Ep(Y,f(X)).

» Negative log-likelihood (deviance)

pP1(X)

f*(x) = log T py(X)

» Hinge loss (SVM)

f*(x) = sign(ps(x) — 1/2)

» Exponential loss (boosting)

P1(X)
— p1(X)

1
f*(x) = 5 log 1

» sign(f*) yields the Bayes rule.

Both modeling and algorithmic approaches are consistent.

— Lin (2000), Zhang (AOS 2004), Bartlett, Jordan, and
McAuliffe (JASA 2006)



Outline

» Efron’s comparison of LDA with logistic regression

» Efficiency of algorithmic approach
(support vector machine and boosting)

» Simulation study
» Discussion



Normal Distribution Setting

» Two multivariate normal distributions in RY with mean
vectors p1 and pp, and a common covariance matrix

» 7. =P(Y =1)and 7_ =P(Y = -1).

» For example, when 7, = «_, Fisher’s LDA boundary is

{Z_l(m — Nz)}/{x - %(Nl + Nz)} =0.




Canonical LDA setting

Efron (JASA 1975), The Efficiency of Logistic Regression
Compared to Normal Discriminant Analysis

» X ~N((A/2)ey,l) for Y = 1 with probability 7
X ~N(—(A/2)ey,l) for Y = —1 with probability 7_
where A = {(u1 — p2)' T (p1 — p2)}/?

» Fisher’s linear discriminant function is

((x) =log(my /7)) + AX;.

> Let 8§ = log(n4/7-), (B7,...,05) = Aeq, and
5" =(5g,---,83)"



Excess Error

» For a linear discriminant method ¢ with coefficient vector
Bn, if v/N(Bn — 3*) — N(0, L), the expected increased
error rate of ¢, E(R(Y) — R(¢g))

= GERCEY [000— 20001+i)2 011 +022+ " "|‘Udd] +0(ﬁ),

2AN

where D1 = A/2 + (1/A)log(7 /m_).
» In particular, when 7, = 7_,

E(R(Y) —R(¢s)) = ¢(4AA/n2) [000 + 0oy -+ Udd] + 0(%)-




Relative Efficiency

» Efron (1975) studied the Asymptotic Relative Efficiency
(ARE) of logistic regression (LR) to normal discrimination
(LDA) defined as

im E(R({Lpa) — R(¢B)).
n—co E(R({Rr) — R(¢B))

» Logistic regression is shown to be between one half and
two thirds as effective as normal discrimination typically.



General Framework for Comparison

» Identify the limiting distribution of 3, for other classification
procedures (SVM, boosting, etc.) under the canonical LDA

setting:

. I
On = arg min = ;P(Yiaxi;ﬁ)
|=
» Need large sample theory for M-estimators.

» Find the excess error of each method and compute the
efficiency relative to LDA.



M-estimator Asymptotics

» Pollard (ET 1991), Hjort and Pollard (1993), Geyer (AOS
1994), Knight and Fu (AOS 2000), Rocha, Wang and Yu
(2009)

» Convexity of the loss p Is the key.
» LetL(3) = Ep(Y,X;3), p* =argminL(j3),

H(3) — al_gg%" and G(3) = E (3p(YéﬁX;ﬁ)) (ap(Ya,;;ﬁ)>

» Under some regularity conditions,
VN(Bn — 5°) — N(O,H(8")'G(B")H(B") ™)

In distribution.




Linear SVM

Koo, Lee, Kim, and Park (JMLR 2008), A Bahadur
Representation of the Linear Support Vector Machine

>

>

>

With 5 = (8o, W'Y, ( 8) =wW'X + (o
5Anaf9mm{ Z(l Yil(Xi; )++>\|W2}

Under the canonlcal LDA setting with 7, = 7_,
for A = o(n—1/2),

vn (EA,n — Bswm) — N(O, Zﬁ;VM),

2 ES
A(zar 1 A) oA 2
a* is a constant such that ¢(a*)/®(a*) = A/2.

If T # m_, Wn oc W[5, but B Is Inconsistent.




Relative Efficiency of SVM to LDA

Under the canonical LDA setting with 7, = 7_ = 0.5,
the ARE of the linear SVM to LDA is

2 A2

Eff = (1 + 5-)o(@").
A | R(gg) a SVM LR
2.0 | 0.1587 -0.3026 0.7622 0.899
2.5 | 0.1056 -0.6466 0.6636 0.786
3.0 | 0.0668 -0.9685 0.5408 0.641
3.5 | 0.0401 -1.2756 0.4105 0.486
4.0 | 0.0228 -1.5718 0.2899 0.343




Boosting

. R
>@v=wng52;@®GNM@m@)

» Under the canonical LDA setting with 7, = 7_,

vn (B\n — ﬁgoost) — N(O, Zﬂﬁoost)’

b3 1 %k
where 5boost — zﬂLDA'

> In general, 3, is a consistent estimator of (1/2)8; o



Relative Efficiency of Boosting to LDA

Under the canonical LDA setting with 7, = 7_ = 0.5,
the ARE of Boosting to LDA is

e A?/4
exp(Az/4)
A | R(¢g) Boosting SVM LR
2.0 | 0.1587 0.7358 0.7622 0.899
2.5 0.1056 0.5371 0.6636 0.786
3.0 | 0.0668 0.3425 0.5408 0.641
3.5(0.0401 0.1900 0.4105 0.486
4.0 | 0.0228 0.0916 0.2899 0.343




Smooth SVM

Lee and Mangasarian (2001), SSVM: A Smooth Support Vector
Machine

>6>\nargmm{ Z(l Vil(Xi; 5 ++)\|W2}

» Under the canonlcal LDA setting with 7, = w_,
for A = o(n—1/2),

VN (Ban — Bssvm) — N(0, Xz, );

* 2 *
where Sssym = A(2a* + A)ﬁLDA and

a* is a constant such that {a*®(a*) + ¢(a*)} A = 2d(a*).




Relative Efficiency of SSVM to LDA

Under the canonical LDA setting with 7, = 7_ = 0.5,
the ARE of the Smooth SVM to LDA is

o _ (44 07)0(@)

A(2a* + A)
A | R(¢g) a SSVM SVM LR
2.0 | 0.1587 0.4811 0.9247 0.7622 0.899
2.5|0.1056 0.0058 0.8200 0.6636 0.786
3.0 | 0.0668 -0.4073 0.6779 0.5408 0.641
3.5|0.0401 -0.7821 0.5206 0.4105 0.486
4.0 | 0.0228 -1.1312 0.3712 0.2899 0.343




Possible Explanation for Increased Efficiency

Hastie, Tibshirani, and Friedman (2001),
Elements of Statistical Learning

» There is a close connection between Fisher’s LDA and
regression approach to classification with class indicators:

min » (Y — Bo — w'x;)?
=1

» The least squares coefficient is identical up to a scalar
multiple to the LDA coefficient:



Finite-Sample Excess Error
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Figure: A =2,d =5, R(¢g) = 0.1587, and 7. = n_. The results are
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A Mixture of Two Gaussian Distributions

Figure: Ay and Ag indicate the mean difference between two
Gaussian components within each class and the mean difference
between two classes.



As Ay Varies
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As Ag Varies
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Figure: Aw =1,d =5, 7, =n_, m = m,and n = 100



As Ag Varies
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As Dimension d Varies
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QDA Setting

Figure: X|Y =1~ N(u1,¥)and X|Y = -1 ~ N(u2,CX)



Decomposition of Error

» Forarule ¢ € F,

R(¢) ~R(¢s) = R(6)—R(¢x) + R(d5)—R(ds)

‘estimation’ error approximation error

where ¢ = arg mingcr R(¢).
» When a method M is used to choose ¢ from F,

R(¢)-R(¢65) = R(#)-R(éu) + R(du)—R(6%)

M-specific est.error M-specific approx.error

where ¢y, is the method-specific limiting rule within F.



Approximation Error
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Method-Specific Approximation Error
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Figure: Method-specific approximation error of linear classifiers in the
QDA setting



Extensions

» For high dimensional data, study double asymptotics
where d also grows with n.

» Compare methods in a regularization framework.

» Investigate consistency and relative efficiency under other
models.

» Consider potential mis-specification of a model.
All models are wrong, but some are useful — George Box

» Compare methods in terms of robustness.



Concluding Remarks

» Compared modeling approach with algorithmic approach
In the efficiency of reducing error rates.

» Under the normal setting, modeling leads to more efficient
use of data.
— Linear SVM is shown to be between 40% and 67% as
effective as LDA when the Bayes error rate is between 4%
and 10%.

» A loss function plays an important role in determining the
efficiency of the corresponding procedure.
— Squared hinge loss could yield more effective procedure
than logistic regression.

» The theoretical comparisons can be extended in many
directions.
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