Does Modeling Lead to More Accurate Classification?

A Comparison of the Efficiency of Classification Methods

Yoonkyung Lee*
Department of Statistics
The Ohio State University
*joint work with Rui Wang

August 26-27, 2010 Summer School at CIMAT, Guanajuato, Mexico

Iris Data (red=setosa,green=versicolor,blue=virginica)

Figure: courtesy of Hastie, Tibshirani, & Friedman (2001)

- Handwritten digit recognition
- Cancer diagnosis with gene expression profiles
- Text categorization

Classification

- $ightharpoonup x = (x_1, \ldots, x_d) \in \mathbb{R}^d$
- ▶ $y \in \mathcal{Y} = \{1, ..., k\}$
- Learn a rule $\phi : \mathbb{R}^d \to \mathcal{Y}$ from the training data $\{(x_i, y_i), i = 1, ..., n\}$, where (x_i, y_i) are i.i.d. with P(X, Y).
- The 0-1 loss function:

$$\rho(\mathbf{y},\phi(\mathbf{x}))=I(\mathbf{y}\neq\phi(\mathbf{x}))$$

► The Bayes decision rule ϕ_B minimizing the error rate $R(\phi) = P(Y \neq \phi(X))$ is

$$\phi_B(x) = \arg\max_k P(Y = k \mid X = x).$$

Statistical Modeling: The Two Cultures

"One assumes that the data are generated by a given stochastic data model. The other uses algorithmic models and treats the data mechanism as unknown." — Breiman (2001)

- Model-based methods in statistics: LDA, QDA, logistic regression, kernel density classification
- Algorithmic methods in machine learning: Support vector machine (SVM), boosting, decision trees, neural network
- Less is required in pattern recognition.
 - Devroye, Györfi and Lugosi (1996)
- If you possess a restricted information for solving some problem, try to solve the problem directly and never solve a general problem as an intermediate step.
 - Vapnik (1998)

Questions

- Is modeling necessary for classification?
- Does modeling lead to more accurate classification?
- How to quantify the relative efficiency?
- How do the two approaches compare?

Convex Risk Minimization

- ▶ In the binary case (k = 2), suppose that y = 1 or -1.
- ▶ Typically obtain a discriminant function $f : \mathbb{R}^d \to \mathbb{R}$, which induces a classifier $\phi(x) = sign(f(x))$, by minimizing the risk under a convex surrogate loss of the 0-1 loss

$$\rho(\mathbf{y}, f(\mathbf{x})) = I(\mathbf{y}f(\mathbf{x}) \leq 0).$$

- Logistic regression: binomial deviance (- log likelihood)
- Support vector machine: hinge loss
- Boosting: exponential loss

Logistic Regression

Agresti (2002), Categorical Data Analysis

► Model the conditional distribution $p_k(x) = P(Y = k | X = x)$ directly.

$$\log \frac{p_1(x)}{1 - p_1(x)} = f(x)$$

▶ Then $Y|X = x \sim$ Bernoulli distribution with

$$p_1(x) = \frac{\exp(f(x))}{1 + \exp(f(x))}$$
 and $p_{-1}(x) = \frac{1}{1 + \exp(f(x))}$.

Maximizing the conditional likelihood of (y_1, \ldots, y_n) given (x_1, \ldots, x_n) (or minimizing the negative log likelihood) amounts to

$$\min_{f} \sum_{i=1}^{n} \log \left(1 + \exp(-y_i f(x_i))\right).$$

Support Vector Machine

Vapnik (1996), The Nature of Statistical Learning Theory

Find f with a large margin minimizing

$$\frac{1}{n}\sum_{i=1}^{n}(1-y_{i}f(x_{i}))_{+}+\lambda\|f\|^{2}.$$

Boosting

Freund and Schapire (1997), A decision-theoretic generalization of on-line learning and an application to boosting

- A meta-algorithm that combines the outputs of many "weak" classifiers to form a powerful committee
- Sequentially apply a weak learner to produce a sequence of classifiers $f_m(x)$, m = 1, 2, ..., M and take a weighted majority vote for the final prediction.
- AdaBoost minimizes the exponential risk function with a stagewise gradient descent algorithm:

$$\min_{f} \sum_{i=1}^{n} \exp(-y_i f(x_i)).$$

Friedman, Hastie, and Tibshirani (2000), Additive Logistic Regression: A Statistical View of Boosting

Loss Functions

Figure: courtesy of HTF (2001)

Classification Consistency

- ► The population minimizer f^* of ρ is defined as f with the minimum risk $R(f) = E\rho(Y, f(X))$.
 - Negative log-likelihood (deviance)

$$f^*(x) = \log \frac{p_1(x)}{1 - p_1(x)}$$

Hinge loss (SVM)

$$f^*(x) = sign(p_1(x) - 1/2)$$

Exponential loss (boosting)

$$f^*(x) = \frac{1}{2} \log \frac{p_1(x)}{1 - p_1(x)}$$

sign(f*) yields the Bayes rule.
 Both modeling and algorithmic approaches are consistent.

 Lin (2000), Zhang (AOS 2004), Bartlett, Jordan, and McAuliffe (JASA 2006)

Outline

- Efron's comparison of LDA with logistic regression
- Efficiency of algorithmic approach (support vector machine and boosting)
- Simulation study
- Discussion

Normal Distribution Setting

- Two multivariate normal distributions in \mathbb{R}^d with mean vectors μ_1 and μ_2 and a common covariance matrix Σ
- ho $\pi_+ = P(Y = 1)$ and $\pi_- = P(Y = -1)$.
- ▶ For example, when $\pi_+ = \pi_-$, Fisher's LDA boundary is

$$\left\{\Sigma^{-1}(\mu_1-\mu_2)\right\}'\left\{x-\frac{1}{2}(\mu_1+\mu_2)\right\}=0.$$

Canonical LDA setting

Efron (JASA 1975), The Efficiency of Logistic Regression Compared to Normal Discriminant Analysis

- ► $X \sim N((\Delta/2)e_1, \mathbf{I})$ for Y = 1 with probability π_+ $X \sim N(-(\Delta/2)e_1, \mathbf{I})$ for Y = -1 with probability π_- where $\Delta = \{(\mu_1 \mu_2)'\Sigma^{-1}(\mu_1 \mu_2)\}^{1/2}$
- Fisher's linear discriminant function is

$$\ell(\mathbf{x}) = \log(\pi_+/\pi_-) + \Delta \mathbf{x}_1.$$

Let $\beta_0^* = \log(\pi_+/\pi_-)$, $(\beta_1^*, \dots, \beta_d^*)' = \Delta e_1$, and $\beta^* = (\beta_0^*, \dots, \beta_d^*)'$.

Excess Error

For a linear discriminant method $\hat{\ell}$ with coefficient vector $\hat{\beta}_n$, if $\sqrt{n}(\hat{\beta}_n - \beta^*) \to N(0, \Sigma_\beta)$, the expected increased error rate of $\hat{\ell}$, $E(R(\hat{\ell}) - R(\phi_B))$

$$=\frac{\pi_{+}\phi(D_{1})}{2\Delta n}\left[\sigma_{00}-\frac{2\beta_{0}^{*}}{\Delta}\sigma_{01}+\frac{\beta_{0}^{*2}}{\Delta^{2}}\sigma_{11}+\sigma_{22}+\cdots+\sigma_{dd}\right]+o(\frac{1}{n}),$$

where $D_1 = \Delta/2 + (1/\Delta) \log(\pi_+/\pi_-)$.

▶ In particular, when $\pi_+ = \pi_-$,

$$E(R(\hat{\ell}) - R(\phi_B)) = \frac{\phi(\Delta/2)}{4\Delta n} \left[\sigma_{00} + \sigma_{22} + \cdots + \sigma_{dd} \right] + o(\frac{1}{n}).$$

Relative Efficiency

 Efron (1975) studied the Asymptotic Relative Efficiency (ARE) of logistic regression (LR) to normal discrimination (LDA) defined as

$$\lim_{n\to\infty}\frac{E(R(\hat{\ell}_{LDA})-R(\phi_B))}{E(R(\hat{\ell}_{LR})-R(\phi_B))}.$$

Logistic regression is shown to be between one half and two thirds as effective as normal discrimination typically.

General Framework for Comparison

▶ Identify the limiting distribution of $\hat{\beta}_n$ for other classification procedures (SVM, boosting, etc.) under the canonical LDA setting:

$$\hat{\beta}_n = arg \min_{\beta} \frac{1}{n} \sum_{i=1}^n \rho(y_i, x_i; \beta)$$

- Need large sample theory for M-estimators.
- Find the excess error of each method and compute the efficiency relative to LDA.

M-estimator Asymptotics

- Pollard (ET 1991), Hjort and Pollard (1993), Geyer (AOS 1994), Knight and Fu (AOS 2000), Rocha, Wang and Yu (2009)
- ▶ Convexity of the loss ρ is the key.
- ▶ Let $L(\beta) = E\rho(Y, X; \beta)$, $\beta^* = arg \min L(\beta)$,

$$H(\beta) = \frac{L(\beta)}{\partial \beta \partial \beta'}$$
, and $G(\beta) = E\left(\frac{\partial \rho(Y, X; \beta)}{\partial \beta}\right) \left(\frac{\partial \rho(Y, X; \beta)}{\partial \beta}\right)'$

Under some regularity conditions,

$$\sqrt{n}(\hat{\beta}_n - \beta^*) \rightarrow N(0, H(\beta^*)^{-1}G(\beta^*)H(\beta^*)^{-1})$$

in distribution.

Linear SVM

Koo, Lee, Kim, and Park (JMLR 2008), A Bahadur Representation of the Linear Support Vector Machine

- ▶ With $\beta = (\beta_0, w')'$, $\ell(x; \beta) = w'x + \beta_0$
- $\widehat{\beta}_{\lambda,n} = \arg\min_{\beta} \left\{ \frac{1}{n} \sum_{i=1}^{n} (1 y_i \ell(x_i; \beta))_+ + \lambda \|w\|^2 \right\}$
- ▶ Under the canonical LDA setting with $\pi_+ = \pi_-$, for $\lambda = o(n^{-1/2})$,

$$\sqrt{n} \ (\widehat{eta}_{\lambda,n} - eta_{\mathsf{SVM}}^*) o \mathsf{N}(0, \Sigma_{eta_{\mathsf{SVM}}^*}),$$

where
$$eta_{SVM}^*=rac{2}{\Delta(2a^*+\Delta)}eta_{LDA}^*$$
 and a^* is a constant such that $\phi(a^*)/\Phi(a^*)=\Delta/2$.

▶ If $\pi_+ \neq \pi_-$, $\hat{w}_n \propto w_{IDA}^*$ but $\hat{\beta}_0$ is inconsistent.

Relative Efficiency of SVM to LDA

Under the canonical LDA setting with $\pi_+ = \pi_- = 0.5$, the ARE of the linear SVM to LDA is

$$Eff = \frac{2}{\Delta}(1 + \frac{\Delta^2}{4})\phi(a^*).$$

$\overline{\Delta}$	$R(\phi_B)$	a*	SVM	LR
2.0	0.1587	-0.3026	0.7622	0.899
2.5	0.1056	-0.6466	0.6636	0.786
3.0	0.0668	-0.9685	0.5408	0.641
3.5	0.0401	-1.2756	0.4105	0.486
4.0	0.0228	-1.5718	0.2899	0.343

Boosting

$$\widehat{\beta}_n = \arg\min_{\beta} \frac{1}{n} \sum_{i=1}^n \exp(-y_i \ell(x_i; \beta))$$

▶ Under the canonical LDA setting with $\pi_+ = \pi_-$,

$$\sqrt{n} (\widehat{\beta}_n - \beta^*_{boost}) \rightarrow N(0, \Sigma_{\beta^*_{boost}}),$$

where
$$\beta^*_{boost} = \frac{1}{2} \beta^*_{LDA}$$
.

▶ In general, $\widehat{\beta}_n$ is a consistent estimator of $(1/2)\beta_{LDA}^*$.

Relative Efficiency of Boosting to LDA

Under the canonical LDA setting with $\pi_+ = \pi_- = 0.5$, the ARE of Boosting to LDA is

$$Eff = \frac{1 + \Delta^2/4}{\exp(\Delta^2/4)}.$$

Δ	$R(\phi_B)$	Boosting	SVM	LR
2.0	0.1587	0.7358	0.7622	0.899
2.5	0.1056	0.5371	0.6636	0.786
3.0	0.0668	0.3425	0.5408	0.641
3.5	0.0401	0.1900	0.4105	0.486
4.0	0.0228	0.0916	0.2899	0.343

Smooth SVM

Lee and Mangasarian (2001), SSVM: A Smooth Support Vector Machine

$$\widehat{\beta}_{\lambda,n} = \arg\min_{\beta} \left\{ \frac{1}{n} \sum_{i=1}^{n} (1 - y_i \ell(x_i; \beta))_+^2 + \lambda \|w\|^2 \right\}$$

▶ Under the canonical LDA setting with $\pi_+ = \pi_-$, for $\lambda = o(n^{-1/2})$,

$$\sqrt{n} \ (\widehat{eta}_{\lambda,n} - eta^*_{\mathsf{SSVM}}) o \mathsf{N}(0, \Sigma_{eta^*_{\mathsf{SSVM}}}),$$

where
$$eta^*_{SSVM}=rac{2}{\Delta(2a^*+\Delta)}eta^*_{LDA}$$
 and a^* is a constant such that $\{a^*\Phi(a^*)+\phi(a^*)\}\Delta=2\Phi(a^*)$.

Relative Efficiency of SSVM to LDA

Under the canonical LDA setting with $\pi_+ = \pi_- = 0.5$, the ARE of the Smooth SVM to LDA is

$$extit{\it Eff} = rac{(4+\Delta^2)\Phi(a^*)}{\Delta(2a^*+\Delta)}.$$

Δ	$R(\phi_B)$	a*	SSVM	SVM	LR
2.0	0.1587	0.4811	0.9247	0.7622	0.899
2.5	0.1056	0.0058	0.8200	0.6636	0.786
3.0	0.0668	-0.4073	0.6779	0.5408	0.641
3.5	0.0401	-0.7821	0.5206	0.4105	0.486
4.0	0.0228	-1.1312	0.3712	0.2899	0.343

Possible Explanation for Increased Efficiency

Hastie, Tibshirani, and Friedman (2001), Elements of Statistical Learning

► There is a close connection between Fisher's LDA and regression approach to classification with class indicators:

$$\min \sum_{i=1}^n (y_i - \beta_0 - w'x_i)^2$$

The least squares coefficient is identical up to a scalar multiple to the LDA coefficient:

$$\hat{w} \propto \hat{\Sigma}^{-1}(\hat{\mu}_1 - \hat{\mu}_2)$$

Finite-Sample Excess Error

Figure: $\Delta = 2$, d = 5, $R(\phi_B) = 0.1587$, and $\pi_+ = \pi_-$. The results are based on 1000 replicates.

A Mixture of Two Gaussian Distributions

Figure: Δ_W and Δ_B indicate the mean difference between two Gaussian components within each class and the mean difference between two classes.

As Δ_W Varies

Figure: $\Delta_B = 2$, d = 5, $\pi_+ = \pi_-$, $\pi_1 = \pi_2$, and n = 100

As Δ_B Varies

Figure: $\Delta_W = 1$, d = 5, $\pi_+ = \pi_-$, $\pi_1 = \pi_2$, and n = 100

As Δ_B Varies

Figure: $\Delta_W = 1$, d = 5, $\pi_+ = \pi_-$, $\pi_1 = \pi_2$, and n = 100

As Dimension d Varies

Figure: $\Delta_W = 1$, $\Delta_B = 2$, $\pi_+ = \pi_-$, $\pi_1 = \pi_2$, and n = 100

QDA Setting

C= 1

C= 2

Figure: $X|Y=1\sim N(\mu_1,\Sigma)$ and $X|Y=-1\sim N(\mu_2,C\Sigma)$

Decomposition of Error

▶ For a rule $\phi \in \mathcal{F}$,

$$R(\phi) - R(\phi_B) = \underbrace{R(\phi) - R(\phi_F)}_{\text{estimation' error}} + \underbrace{R(\phi_F) - R(\phi_B)}_{\text{approximation error}}$$

where $\phi_{\mathcal{F}} = \arg\min_{\phi \in \mathcal{F}} R(\phi)$.

▶ When a method M is used to choose ϕ from \mathcal{F} ,

$$R(\phi)-R(\phi_{\mathcal{F}}) = \underbrace{R(\phi)-R(\phi_{M})}_{\text{M-specific est.error}} + \underbrace{R(\phi_{M})-R(\phi_{\mathcal{F}})}_{\text{M-specific approx.error}}$$

where ϕ_M is the method-specific limiting rule within \mathcal{F} .

Approximation Error

Figure: QDA setting with $\Delta=2, \Sigma=I, d=10,$ and $\pi_+=\pi_-$

Method-Specific Approximation Error

Figure: Method-specific approximation error of linear classifiers in the QDA setting

Extensions

- ► For high dimensional data, study double asymptotics where *d* also grows with *n*.
- Compare methods in a regularization framework.
- Investigate consistency and relative efficiency under other models.
- Consider potential mis-specification of a model.
 All models are wrong, but some are useful George Box
- Compare methods in terms of robustness.

Concluding Remarks

- Compared modeling approach with algorithmic approach in the efficiency of reducing error rates.
- Under the normal setting, modeling leads to more efficient use of data.
 - Linear SVM is shown to be between 40% and 67% as effective as LDA when the Bayes error rate is between 4% and 10%.
- A loss function plays an important role in determining the efficiency of the corresponding procedure.
 - Squared hinge loss could yield more effective procedure than logistic regression.
- The theoretical comparisons can be extended in many directions.

References

P.L. Bartlett, M.I. Jordan, and J.D. McAuliffe.

Convexity, classification, and risk bounds.

Journal of the American Statistical Association, 101:138–156, 2006.

B. Efron.

The efficiency of logistic regression compared to normal discriminant analysis.

Journal of the American Statistical Association, 70(352):892–898, Dec. 1975.

N. L. Hjort and D. Pollard.

Asymptotics for minimisers of convex processes.

Statistical Research Report, May 1993.

Ja-Yong Koo, Yoonkyung Lee, Yuwon Kim, and Changyi Park.

A Bahadur representation of the linear Support Vector Machine.

Journal of Machine Learning Research, 9:1343–1368, 2008.

Y.-J. Lee and O.L. Mangasarian.
SSVM: A smooth support vector machine.

Computational Optimization and Applications, 20:5–22, 2001.

Y. Lin.

A note on margin-based loss functions in classification. *Statististics and Probability Letters*, 68:73–82, 2002.

D. Pollard.

Asymptotics for least absolute deviation regression estimators. *Econometric Theory*, 7:186–199, 1991.

G. Rocha, X. Wang, and B. Yu.

Asymptotic distribution and sparsistency for I_1 penalized parametric M-estimators, with applications to linear SVM and logistic regression.

arXiv, 0908.1940v1:1-55, Aug 2009.

Tong Zhang.

Statistical behavior and consistency of classification methods based on convex risk minimization.