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Figure: courtesy of Hastie, Tibshirani, & Friedman (2001)

» Handwritten digit recognition
» Cancer diagnosis with gene expression profiles
» Text categorization



Classification

» X = (Xg,...,Xg) € RY
»yeyY=A{1,...,k}
» Learnarule ¢ : RY — Y from the training data
{(Xi,vi),i =1,...,n}, where (xj,y;) are i.i.d. with P(X,Y).
» The 0-1 loss function:

p(y;d(x)) = Iy # ¢(x))

» The Bayes decision rule ¢g minimizing the error rate

R(¢) = P(Y # ¢(X)) is

¢g(x) = arg ml?xP(Y =k | X =x).



Statistical Modeling: The Two Cultures

“One assumes that the data are generated by a given
stochastic data model. The other uses algorithmic models and
treats the data mechanism as unknown.” — Breiman (2001)

» Model-based methods in statistics:
LDA, QDA, logistic regression, kernel density classification

» Algorithmic methods in machine learning:
Support vector machine (SVM), boosting, decision trees,
neural network

» Less is required in pattern recognition.
— Devroye, Gyorfi and Lugosi (1996)

» If you possess a restricted information for solving some
problem, try to solve the problem directly and never solve a
general problem as an intermediate step.

— Vapnik (1998)



Questions

v

Is modeling necessary for classification?

v

Does modeling lead to more accurate classification?
How to quantify the relative efficiency?
How do the two approaches compare?

v

v



Convex Risk Minimization

» In the binary case (k = 2), suppose thaty = 1 or -1.

» Typically obtain a discriminant function f : R — R, which
induces a classifier ¢(x) = sign(f(x)), by minimizing the
risk under a convex surrogate loss of the 0-1 loss

p(y,f(x)) = I(yf(x) <0).

» Logistic regression: binomial deviance (- log likelihood)
» Support vector machine: hinge loss
» Boosting: exponential loss



Logistic Regression
Agresti (2002), Categorical Data Analysis

» Model the conditional distribution px(x) = P(Y = k|X =x)

directly.
p1(x)
log ———— =f(x
91 p1(x) &)
» Then Y |X = x ~ Bernoulli distribution with
exp(f (x)) 1
X)=r————F—andp_1(X) = —— .
P = T ep(f(x)) 2P0 = T el ()
» Maximizing the conditional likelihood of (y1,...,Yyn) given
(X1,...,X%n) (or minimizing the negative log likelihood)
amounts to

min > log (1 + exp(-yif(x))).

i=1



Support Vector Machine

Vapnik (1996), The Nature of Statistical Learning Theory

Find f with a large
margin minimizing
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Boosting

Freund and Schapire (1997), A decision-theoretic
generalization of on-line learning and an application to boosting

» A meta-algorithm that combines the outputs of many
“weak” classifiers to form a powerful committee

» Sequentially apply a weak learner to produce a sequence
of classifiers f(x), m =1,2,...,M and take a weighted
majority vote for the final prediction.

» AdaBoost minimizes the exponential risk function with a
stagewise gradient descent algorithm:

min ; exp(—yif (xi))-

Friedman, Hastie, and Tibshirani (2000), Additive Logistic
Regression: A Statistical View of Boosting



Loss Functions
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Classification Consistency
» The population minimizer f* of p is defined as f with the
minimum risk R(f) = Ep(Y,f(X)).
» Negative log-likelihood (deviance)
X
-2
» Hinge loss (SVM)

f*(x) = sign(p1(x) — 1/2)

» Exponential loss (boosting)

. P1(x)
f Io —
(x) = 5 log 1— 01(<)
» sign(f*) yields the Bayes rule.
Both modeling and algorithmic approaches are consistent.

— Lin (2000), Zzhang (AOS 2004), Bartlett, Jordan, and
McAuliffe (JASA 2006)



Outline

» Efron’s comparison of LDA with logistic regression

» Efficiency of algorithmic approach
(support vector machine and boosting)

» Simulation studies for comparison of efficiency and
robustness

» Discussion



Normal Distribution Setting

» Two multivariate normal distributions in RY9 with mean
vectors p; and pp and a common covariance matrix X

» 7 =P(Y =1)and 7_ = P(Y = —1).

» For example, when 7, = 7_, Fisher’'s LDA boundary is

{Z_l(ﬂl - Mz)}/{x - %(Ml + Mz)} =0.

<



Canonical LDA setting

Efron (JASA 1975), The Efficiency of Logistic Regression
Compared to Normal Discriminant Analysis

» X ~N((A/2)eq,1)for Y = 1 with probability =
X ~N(=(A/2)ey,!) for Y = —1 with probability 7_
where A = {(u1 — p2)' T (u1 — p2) }+/2

» Fisher’s linear discriminant function is

0(x) = log(my/m_) + AXy.

» Let 3§ =log(my/m), (B7,-..,03) = Aeq, and
B* = (Bg,---,B3)



Excess Error

» For a linear discriminant method 7 with coefficient vector
B, if \/_(ﬁn B*) — N(0, X ), the expected increased
error rate of /, E(R(/) — R(¢g))

_ 1 ¢(D1) 203, B2
~ " 2An |77 A001+A2

1
011+020+- - +0dd +0(ﬁ),

where D; = A/2 + (1/A)log(my /7).
» In particular, when 7, = 7_,

P(A/2)
4An

E(R() —R(¢s)) =

1
000 + 022 + -+ + 0gd —I-O(H).



Relative Efficiency

» Efron (1975) studied the Asymptotic Relative Efficiency
(ARE) of logistic regression (LR) to normal discrimination
(LDA) defined as

im E(R(%pa) — R(¢B))_
n—oo E(R(fR) — R(¢B))

» Logistic regression is shown to be between one half and
two thirds as effective as normal discrimination typically.




General Framework for Comparison

» Identify the limiting distribution of /3, for other classification
procedures (SVM, boosting, etc.) under the canonical LDA
setting:

A 1
Bn = arg mﬁmﬁ;p(yi,xi;ﬁ)

» Need large sample theory for M-estimators.

» Find the excess error of each method and compute the
efficiency relative to LDA.



M-estimator Asymptotics

» Pollard (ET 1991), Hjort and Pollard (1993), Geyer (AOS
1994), Knight and Fu (AOS 2000), Rocha, Wang and Yu
(2009)

» Convexity of the loss p is the key.
> LetL(B) = Ep(Y,X; ), 5* = argminL(g),

_PL(B) 8p(Y,X:ﬁ)> <3P(Y,X:ﬁ)>'
~0pop’ op op

» Under some regularity conditions,
VN(Bn = B%) = N(O,H(B")"G(6)H(8") ™)

in distribution.

H(5)

and G(p) =E (



Linear SVM

Koo, Lee, Kim, and Park (JMLR 2008), A Bahadur
Representation of the Linear Support Vector Machine

» With 8 = (Bo, W'Y, £(x; 8) = WX + Bo

-~ (1
> Ban = arg mb!n {ﬁ Z; (L —yil(xi; B)+ + )\||W||2}
1=
» Under the canonical LDA setting with 7, = 7_,
for A = o(n~1/2),

vn (Bk,n — B3wm) = N(0, Xz, ),

2
—————pa @and
A(2a + 4) oA
a* is a constant such that ¢(a*)/¢(a*) = A/2.
> If my # m_, Wn o Wp, but g is inconsistent.



Relative Efficiency of SVM to LDA

Under the canonical LDA setting with 7, = 7_ = 0.5,
the ARE of the linear SVM to LDA is
2 N2 .
A | R(¢s) a* SVM LR
2.0 | 0.1587 -0.3026 0.7622 0.899
2.5 0.1056 -0.6466 0.6636 0.786
3.0 | 0.0668 -0.9685 0.5408 0.641
3.5 | 0.0401 -1.2756 0.4105 0.486
4.0 | 0.0228 -1.5718 0.2899 0.343




Boosting

~ 1
> P = argmin = > exp(—yit(xi; 3))
i=1
» Under the canonical LDA setting with 7, = 7_,

\/ﬁ (,/B\n - BE;OOSI) — N(O’ zﬁgoost)’

* 1 *
where ﬂboost = EﬂLDA'

» In general, 3, is a consistent estimator of (1/2)B;pa-



Relative Efficiency of Boosting to LDA

Under the canonical LDA setting with 7. = 7_ = 0.5,
the ARE of Boosting to LDA is

14+ A%/4

~ exp(A2/4)
A | R(¢g) Boosting SVM LR
2.0 0.1587 0.7358 0.7622 0.899
2.5|0.1056 0.5371 0.6636 0.786
3.0 | 0.0668 0.3425 0.5408 0.641
3.5]0.0401 0.1900 0.4105 0.486
4.0 1 0.0228 0.0916 0.2899 0.343




Smooth SVM

Lee and Mangasarian (2001), SSVM: A Smooth Support Vector
Machine
~ 1
> Ban =argmin {ﬁ 3@ - yit(xi: £))% + Auwuz}
i=1
» Under the canonical LDA setting with 7, = 7_,
for A = o(n=1/2),

\/ﬁ (//B\A,n - /BESVM) — N (O, Zf3§SVM )’

2 .
A(za 1 &) o 2N

a* is a constant such that {a*®(a*) + ¢(a*)}A = 2d(a*).



Relative Efficiency of SSVM to LDA

Under the canonical LDA setting with 7. = 7_ = 0.5,
the ARE of the Smooth SVM to LDA is

f — (4 + A%)d(a )

A(2a* 4+ A)
A | R(¢g) a* SSVM SVM LR
2.0 [ 0.1587 0.4811 0.9247 0.7622 0.899
2.5|0.1056 0.0058 0.8200 0.6636 0.786
3.0 | 0.0668 -0.4073 0.6779 0.5408 0.641
3.5|0.0401 -0.7821 0.5206 0.4105 0.486
4.00.0228 -1.1312 0.3712 0.2899 0.343




Possible Explanation for Increased Efficiency

Hastie, Tibshirani, and Friedman (2001),
Elements of Statistical Learning
» There is a close connection between Fisher's LDA and
regression approach to classification with class indicators:

min (3 — fo — w'xi)? = (1 - yi(Bo + w'x))?
i=1

i=1

» The least squares coefficient is identical up to a scalar
multiple to the LDA coefficient:

W oo 57 (g — fiz)



Finite-Sample Excess Error
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What If Model is Mis-specified?

“All models are wrong, but some are useful.” — George Box

Compare methods under
» A mixture of two Gaussian distributions
» Mislabeling in LDA setting
» Quadratic discriminant analysis setting



A Mixture of Two Gaussian Distributions

Figure: Ay and Ag indicate the mean difference between two
Gaussian components within each class and the mean difference
between two classes.



As Ay Varies
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As Ag Varie

Increased Error Rate
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As Dimension d Varies
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Mislabeling in LDA
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Figure: Mean excess errors of SVM and its variants from 400
replicates as the mislabeling proportion varies. A =2.7,d =5,
R(¢g) = 0.08851, 7, = 7_, and n = 100.



QDA Setting




Decomposition of Error

» Forarule ¢ € F,
R(¢) —R(¢s) = R(¢) —R(or) + R(or)—R(ds)
—_———— —_——
‘estimation’ error approximation error

where ¢ = arg minge r R(¢).
» When a method M is used to choose ¢ from F,

R(¢)-R(¢r)= R(¢)-R(¢m) + Rlom)—R(or)

M-specific est.error M-specific approx.error

where ¢y, is the method-specific limiting rule within F.



Approximation Error

Approximation Error
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Method-Specific Approximation Error
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Extensions

» For high dimensional data, study double asymptotics
where d also grows with n.

» Compare methods in a regularization framework.

» Investigate consistency and relative efficiency under other
models.

» Also consider potential model mis-specification and
compare methods in terms of robustness.



Concluding Remarks

» Compared modeling approach with algorithmic approach
in the efficiency of reducing error rates.

» Under the normal setting, modeling leads to more efficient
use of data.
— Linear SVM is shown to be between 40% and 67% as
effective as LDA when the Bayes error rate is between 4%
and 10%.

» A loss function plays an important role in determining the
efficiency of the corresponding procedure.
— Squared hinge loss could yield more effective procedure
than logistic regression.

» There is a trade-off between efficiency and robustness.

» The theoretical comparisons can be extended in many
directions.



References

[3 PL. Bartlett, M.I. Jordan, and J.D. McAuliffe.
Convexity, classification, and risk bounds.
Journal of the American Statistical Association, 101:138-156,
2006.

@ B. Efron.

The efficiency of logistic regression compared to normal
discriminant analysis.

Journal of the American Statistical Association,
70(352):892—-898, Dec. 1975.

[@ N.L.Hjort and D. Pollard.
Asymptotics for minimisers of convex processes.
Statistical Research Report, May 1993.

[@ Ja-Yong Koo, Yoonkyung Lee, Yuwon Kim, and Changyi Park.
A Bahadur representation of the linear Support Vector Machine.
Journal of Machine Learning Research, 9:1343-1368, 2008.



Y.-J. Lee and O.L. Mangasarian.
SSVM: A smooth support vector machine.
Computational Optimization and Applications, 20:5-22, 2001.

Y. Lin.
A note on margin-based loss functions in classification.
Statististics and Probability Letters, 68:73—-82, 2002.

D. Pollard.
Asymptotics for least absolute deviation regression estimators.
Econometric Theory, 7:186-199, 1991.

G. Rocha, X. Wang, and B. Yu.

Asymptotic distribution and sparsistency for I; penalized
parametric M-estimators, with applications to linear SVM and
logistic regression.

arXiv, 0908.1940v1:1-55, Aug 2009.

Tong Zhang.

Statistical behavior and consistency of classification methods
based on convex risk minimization.

Annals of Statistics. 32(1):56-85. 2004.



	Applications
	Classification
	Classification Methods
	Questions
	From the Viewpoint of Consistency
	Outline
	Normal Distribution Setting
	Excess Error
	Relative Efficiency
	General Framework for Comparison
	M-estimator Asymptotics
	Linear SVM Asymptotics
	Boosting Asymptotics
	Smooth SVM Asymptotics
	Finite-Sample Error Rates
	What If Model is Mis-specified?
	A Mixture of Two Gaussian Distributions
	Mislabeling in LDA
	QDA Setting

	Extensions
	Concluding Remarks
	References

