Generalized Principal Component Analysis:
Dimensionality Reduction through the Projection of Natural Parameters

Yoonkyung Lee*
Department of Statistics
The Ohio State University
*joint work with Andrew Landgraf

November 10, 2017
Data Science Research Group
School of Mathematical Sciences
Rochester Institute of Technology
Dimensionality Reduction

Principal component analysis (PCA) to generalized PCA for non-Gaussian data

Hotelling, H. (1933), *Analysis of a complex of statistical variables into principal components*
Journal of Educational Psychology 24(6), 417-441

Pearson, K. (1901), *On Lines and Planes of Closest Fit to Systems of Points in Space*
Philosophical Magazine 2(11), 559-572
Principal Component Analysis (PCA)

▶ Explain the variance-covariance structure of a set of correlated variables through a few linear combinations of these variables.

Figure: Data on the mineral content measurements (g/cm) of three bones (humerus, radius and ulna) on the dominant and nondominant sides for 25 old women
Variance Maximization

- Given \(p \) correlated variables \(X = (X_1, \cdots, X_p)^\top \), consider a linear combination of \(X_j \)'s,

\[
\sum_{j=1}^{p} a_j X_j = a^\top X
\]

for \(a = (a_1, \ldots, a_p)^\top \in \mathbb{R}^p \) with \(\|a\|^2 = 1 \).

- The **first principal component direction** is defined as the vector \(a \) that gives the largest sample variance of \(a^\top X \) among all unit vectors \(a \):

\[
\max_{a \in \mathbb{R}^p, \|a\|^2 = 1} a^\top S_n a
\]

where \(S_n \) is the sample variance-covariance matrix of \(X \).
Principal Components

Let $\mathbf{S}_n = \sum_{j=1}^{p} \lambda_j \mathbf{v}_j \mathbf{v}_j^\top$ with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_p > 0$, and the corresponding eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_p$.

The first principal component direction is given by \mathbf{v}_1, and the derived variable $Z_1 = \mathbf{v}_1^\top \mathbf{X}$ is called the first principal component.

In general, the jth principal component direction is defined successively from $j = 1$ to p with orthogonality constraints.
Pearson’s Reconstruction Error Formulation

Pearson, K. (1901), *On Lines and Planes of Closest Fit to Systems of Points in Space*

- Given $x_1, \cdots, x_n \in \mathbb{R}^p$, consider the data approximation

$$x_i \approx \mu + vv^\top (x_i - \mu)$$

where $\mu \in \mathbb{R}^p$ and v is a unit vector in \mathbb{R}^p so that vv^\top is a rank-one projection.

- What are μ and $v \in \mathbb{R}^p$ (with $\|v\|^2 = 1$) that minimize the reconstruction error?

$$\sum_{i=1}^{n} \|x_i - \mu - vv^\top (x_i - \mu)\|^2$$

- $\hat{\mu} = \bar{x}$ and $\hat{v} = v_1$ minimize the error.
Minimization of Reconstruction Error

More generally, consider a rank-k ($< p$) approximation:

$$x_i \approx \mu + V V^\top (x_i - \mu)$$

where $\mu \in \mathbb{R}^p$ and V is a $p \times k$ matrix with orthogonal columns that results in a rank-k projection of VV^\top.

Wish to minimize the reconstruction error:

$$\sum_{i=1}^{n} \|x_i - \mu - VV^\top (x_i - \mu)\|^2$$

subject to $V^\top V = I_k$

$\hat{\mu} = \bar{x}$ and $\hat{V} = [v_1, \cdots, v_k]$ provide the best k-dimensional reconstruction of the data.
PCA finds a low rank subspace by implicitly minimizing the reconstruction error under squared error loss, which is linked to the Gaussian distribution.

Binary, count, or non-negative data abound in practice. e.g. images, term frequencies for documents, ratings for movies, click-through rates for online ads

How to generalize PCA to non-Gaussian data?
Generalization of PCA

Collins et al. (2001), *A generalization of principal components analysis to the exponential family*

- Draws on the ideas from the exponential family and generalized linear models.

- For Gaussian data, assume that $x_i \sim N_p(\theta_i, I_p)$ and $\theta_i \in \mathbb{R}^p$ lies in a k dimensional subspace:

 $\theta_i = \sum_{\ell=1}^{k} a_{i\ell} b_\ell = B_{(p \times k)} a_i$

- To find $\Theta = [\theta_{ij}]$, maximize the log likelihood or equivalently minimize the negative log likelihood (or deviance):

 \[
 \sum_{i=1}^{n} \|x_i - \theta_i\|^2 = \|X - \Theta\|_F^2 = \|X - AB^\top\|_F^2
 \]
Generalization of PCA

According to Eckart-Young theorem, the best rank-\(k\) approximation of \(X(= U_{n \times p} D_{p \times p} V_{p \times p}^\top)\) is given by the rank-\(k\) truncated singular value decomposition \(U_k D_k V_k^\top\).

For exponential family data, factorize the matrix of natural parameter values \(\Theta\) as \(AB^\top\) with rank-\(k\) matrices \(A_{n \times k}\) and \(B_{p \times k}\) (of orthogonal columns) by maximizing the log likelihood.

For binary data \(X = [x_{ij}]\) with \(P = [p_{ij}]\), “logistic PCA” looks for a factorization of \(\Theta = \log \frac{p_{ij}}{1-p_{ij}} = AB^\top\) that maximizes

\[
\ell(X; \Theta) = \sum_{i,j} \left\{ x_{ij}(a_i^\top b_{j*}) - \log(1 + \exp(a_i^\top b_{j*})) \right\}
\]

subject to \(B^\top B = I_k\).
Drawbacks of the Matrix Factorization Formulation

- Involves estimation of both case-specific (or row-specific) scores A and variable-specific (or column-specific) factors B: more of extension of SVD than PCA.

- The number of parameters increases with the number of observations.

- The scores of generalized PC for new data involve additional optimization while PC scores for standard PCA are simple linear combinations of the data.
Alternative Interpretation of Standard PCA

- Assuming that data are centered ($\mu = 0$), minimize

$$\sum_{i=1}^{n} \|x_i - VV^\top x_i\|^2 = \|X - XXV^\top\|_F^2$$

subject to $V^\top V = I_k$.

- XXV^\top can be viewed as a rank-k projection of the matrix of natural parameters ("means" in this case) of the saturated model $\tilde{\Theta}$ (best possible fit) for Gaussian data.

- Standard PCA finds the best rank-k projection of $\tilde{\Theta}$ by minimizing the deviance under Gaussian distribution.
Natural Parameters of the Saturated Model

For an exponential family distribution with natural parameter θ and pdf

$$f(x|\theta) = \exp(\theta x - b(\theta) + c(x)),$$

$E(X) = b'(\theta)$ and the canonical link function is the inverse of b'.

<table>
<thead>
<tr>
<th>Distribution</th>
<th>θ</th>
<th>$b(\theta)$</th>
<th>Canonical link</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N(\mu, 1)$</td>
<td>μ</td>
<td>$\theta^2/2$</td>
<td>identity</td>
</tr>
<tr>
<td>Bernoulli(p)</td>
<td>logit(p)</td>
<td>log($1 + \exp(\theta)$)</td>
<td>logit</td>
</tr>
<tr>
<td>Poisson(λ)</td>
<td>log(λ)</td>
<td>$\exp(\theta)$</td>
<td>log</td>
</tr>
</tbody>
</table>

Take $\tilde{\Theta} = [\text{canonical link}(x_{ij})]$.
New Formulation of Logistic PCA

Landgraf and Lee (2015), *Dimensionality Reduction for Binary Data through the Projection of Natural Parameters*

- Given \(x_{ij} \sim \text{Bernoulli}(p_{ij}) \), the natural parameter (logit \(p_{ij} \)) of the saturated model is

\[
\tilde{\theta}_{ij} = \text{logit}(x_{ij}) = \infty \times (2x_{ij} - 1)
\]

We will approximate \(\tilde{\theta}_{ij} \approx m \times (2x_{ij} - 1) \) for large \(m > 0 \).

- Project \(\tilde{\Theta} \) to a \(k \)-dimensional subspace by using the deviance \(D(X; \Theta) = -2\{\ell(X; \Theta) - \ell(X; \tilde{\Theta})\} \) as a loss:

\[
\min_{V \in \mathbb{R}^{p \times k}} D(X; \tilde{\Theta} V V^\top) = -2 \sum_{i,j} \left\{ x_{ij} \tilde{\theta}_{ij} - \log(1 + \exp(\tilde{\theta}_{ij})) \right\}
\]

subject to \(V^\top V = I_k \)
Logistic PCA vs Logistic SVD

- The previous logistic SVD (matrix factorization) gives an approximation of logit P:

$$\hat{\Theta}_{LSVD} = AB^\top$$

- Alternatively, our logistic PCA gives

$$\hat{\Theta}_{LPCA} = \tilde{\Theta} V V^\top,$$

which has much fewer parameters.

- Computation of PC scores on new data only requires matrix multiplication for logistic PCA while logistic SVD requires fitting k-dimensional logistic regression for each new observation.

- Logistic SVD with additional A is prone to overfit.
Geometry of Logistic PCA

Figure: Logistic PCA projection in the natural parameter space with $m = 5$ (left) and in the probability space (right) compared to the PCA projection.
New Formulation of Generalized PCA

Landgraf and Lee (2015), Generalized PCA: Projection of Saturated Model Parameters

- The idea can be applied to any exponential family distribution (e.g. Poisson, multinomial).

- Find the best rank-\(k\) projection of the matrix of natural parameters from the saturated model \(\tilde{\Theta}\) by minimizing the appropriate deviance for the data:

\[
\min_{V \in \mathbb{R}^{p \times k}} D(X; \tilde{\Theta}VV^T)
\]

subject to \(V^TV = I_k\)

- If desired, main effects \(\mu\) can be added to the approximation of \(\Theta\):

\[
\hat{\Theta} = 1_1\mu^T + (\tilde{\Theta} - 1_1\mu^T)VV^T
\]
MM Algorithm for Generalized PCA

- **Majorize** the objective function with a simpler objective at each iterate, and **minimize** the majorizing function. (Hunter and Lange, 2004)

- From the quadratic approximation of the Bernoulli deviance at $\Theta^{(t)}$, step t solution, and the fact that $p(1-p) \leq 1/4$,

 $$ D(X; 1\mu^T + (\tilde{\Theta} - 1\mu^T)VV^T) $$

 $$ \leq \frac{1}{4} \|1\mu^T + (\tilde{\Theta} - 1\mu^T)VV^T - Z^{(t+1)}\|^2_F + C, $$

 where $Z^{(t+1)} = \Theta^{(t)} + 4(X - \hat{P}^{(t)})$.

- Update Θ at step $(t + 1)$:
 averaging for $\mu^{(t+1)}$ given $V^{(t)}$ and
 eigen-analysis of a $p \times p$ matrix for $V^{(t+1)}$ given $\mu^{(t+1)}$.
Medical Diagnosis Data

- Part of electronic health record data on 12,000 adult patients admitted to the intensive care units (ICU) in Ohio State University Medical Center from 2007 to 2010 (provided by S. Hyun)

- Patients are classified as having one or more diseases of over 800 disease categories from the International Classification of Diseases (ICD-9).

- Interested in characterizing the co-morbidity as latent factors, which can be used to define patient profiles for prediction of other clinical outcomes

- Analysis is based on a sample of 1,000 patients, which reduced the number of disease categories to 584.
Patient-Diagnosis Matrix
Deviance Explained by Components

Figure: Cumulative and marginal percent of deviance explained by principal components of LPCA, LSVD, and PCA
Deviance Explained by Parameters

Figure: Cumulative percent of deviance explained by principal components of LPCA, LSVD, and PCA versus the number of free parameters
Figure: Cumulative and marginal percent of predictive deviance over test data (1,000 patients) by the principal components of LPCA and PCA
Interpretation of Loadings

Figure: The first component is characterized by common serious conditions that bring patients to ICU, and the second component is dominated by diseases of the circulatory system (07's).
Concluding Remarks

- We have generalized PCA via projections of the natural parameters of the saturated model using the generalized linear model framework.

- We have extended generalized PCA to handle differential case weights, missing data, and variable normalization.

- Further extensions are possible with other constraints than rank for desirable properties (e.g. sparsity) on the loadings and predictive formulations.

- R package, logisticPCA is available at CRAN and generalizedPCA is currently under development.
Acknowledgments

Andrew Landgraf
@ Battelle Memorial Institute

Sookyung Hyun and Cheryl Newton
@ College of Nursing, OSU

DMS-15-13566
Dimensionality reduction for binary data through the projection of natural parameters.
Also available at arXiv:1510.06112.

Generalized principal component analysis: Projection of saturated model parameters.