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Example: Patient-Diagnosis Matrix



Main Questions

I How to characterize common factors underlying a set of
binary variables?

I Principal components are often used to define latent
factors for continuous variables.

Can we apply the same idea to binary data?

I Any implicit link between PCA and Gaussian distributions?

I How to extend PCA to non-Gaussian data?



Generalization of PCA
Collins et al. (2001), A generalization of principal components
analysis to the exponential family

I Draws on the ideas from the exponential family and
generalized linear models.

I For Gaussian data, assume that xi ∼ Np(θi , Ip) and θi ∈ Rp

lies in a k dimensional subspace:

for a basis {b`}k`=1, θi =
k∑

`=1

ai`b` = B(p×k)ai

I To find Θ = [θij ], maximize the log likelihood or equivalently
minimize the negative log likelihood (or deviance):

n∑
i=1

‖xi − θi‖2 = ‖X −Θ‖2F = ‖X − AB>‖2F



Generalization of PCA
I According to Eckart-Young theorem, the best rank-k

approximation of X (= Un×pDp×pV>p×p) is given by the
rank-k truncated singular value decomposition UkDk︸ ︷︷ ︸

A

V>k︸︷︷︸
B>

.

I For exponential family data, factorize the matrix of natural
parameter values Θ as AB> with rank-k matrices An×k and
Bp×k (of orthogonal columns) by maximizing the log
likelihood.

I For binary data X = [xij ] with P = [pij ], “logistic PCA” looks

for a factorization of Θ =
[
log pij

1−pij

]
= AB> that maximizes

`(X ; Θ) =
∑
i,j

{
xij(a>i bj∗)− log(1 + exp(a>i bj∗))

}

subject to B>B = Ik .



Drawbacks of the Matrix Factorization Formulation

I Involves estimation of both case-specific (or row-specific)
scores A and variable-specific (or column-specific) factors
B: more of extension of SVD than PCA.

I The number of parameters increases with the number of
observations.

I The scores of generalized PC for new data involve
additional optimization while PC scores for standard PCA
are simple linear combinations of the data.



Alternative Interpretation of Standard PCA

I Assuming that data are centered, minimize

n∑
i=1

‖xi − VV>xi‖2 = ‖X − XVV>‖2F

subject to V>V = Ik .

I XVV> can be viewed as a rank-k projection of the matrix
of natural parameters (“means” in this case) of the
saturated model Θ̃ (best possible fit) for Gaussian data.

I Standard PCA finds the best rank-k projection of Θ̃ by
minimizing the deviance under Gaussian distribution.



Natural Parameters of the Saturated Model

I For an exponential family distribution with natural
parameter θ and pdf

f (x |θ) = exp (θx − b(θ) + c(x)) ,

E(X ) = b′(θ) and the canonical link function is the inverse
of b′.

θ b(θ) canonical link
N(µ,1) µ θ2/2 identity
Bernoulli(p) logit(p) log(1 + exp(θ)) logit
Poisson(λ) log(λ) exp(θ) log

I Take Θ̃ = [canonical link(xij)].



New Formulation of Logistic PCA

Landgraf and Lee (2015), Dimensionality Reduction for Binary
Data through the Projection of Natural Parameters

I Given xij ∼ Bernoulli(pij), the natural parameter (logit pij )
of the saturated model is

θ̃ij = logit(xij) =∞× (2xij − 1)

We will approximate θ̃ij ≈ m × (2xij − 1) for large m > 0.

I Project Θ̃ to a k -dimensional subspace by using the
deviance D(X ; Θ) = −2{`(X ; Θ)− `(X ; Θ̃)} as a loss:

min
V∈Rp×k

D(X ; Θ̃VV>︸ ︷︷ ︸
Θ̂

) = −2
∑
i,j

{
xij θ̂ij − log(1 + exp(θ̂ij))

}

subject to V>V = Ik



Logistic PCA vs Logistic SVD
I The previous logistic SVD (matrix factorization) gives an

approximation of logit P:

Θ̂LSVD = AB>

I Alternatively, our logistic PCA gives

Θ̂LPCA = Θ̃V︸︷︷︸
A

V>,

which has much fewer parameters.

I Computation of PC scores on new data only requires
matrix multiplication for logistic PCA while logistic SVD
requires fitting k -dimensional logistic regression for each
new observation.

I Logistic SVD with additional A is prone to overfit.



Geometry of Logistic PCA
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Figure: Logistic PCA projection in the natural parameter space with
m = 5 (left) and in the probability space (right) compared to the PCA
projection



New Formulation of Generalized PCA

Landgraf and Lee (2015), Generalized PCA: Projection of
Saturated Model Parameters

I The idea can be applied to any exponential family
distribution (e.g. Poisson, multinomial).

I Find the best rank-k projection of the matrix of natural
parameters from the saturated model Θ̃ by minimizing the
appropriate deviance for the data:

min
V∈Rp×k

D(X ; Θ̃VV>)

subject to V>V = Ik

I If desired, main effects µ can be added to the
approximation of Θ:

Θ̂ = 1µ> + (Θ̃− 1µ>)VV>



MM Algorithm for Generalized PCA

I Majorize the objective function with a simpler objective at
each iterate, and minimize the majorizing function.
(Hunter and Lange, 2004)

I From the quadratic approximation of the deviance at Θ(t),
step t solution, and the fact that p(1− p) ≤ 1/4,

D(X ; 1µ> + (Θ̃− 1µ>)VV>)

≤ 1
4
‖1µ> + (Θ̃− 1µ>)VV> − Z (t+1)‖2F + C,

where Z (t+1) = Θ(t) + 4(X − P̂(t)).

I Update Θ at step (t + 1):
averaging for µ(t+1) given V (t) and
eigen-analysis of a p × p matrix for V (t+1) given µ(t+1).



Medical Diagnosis Data

I Part of electronic health record data on 12,000 adult
patients admitted to the intensive care units (ICU) in Ohio
State University Medical Center from 2007 to 2010
(provided by S. Hyun)

I Patients are classified as having one or more diseases of
over 800 disease categories from the International
Classification of Diseases (ICD-9).

I Interested in characterizing the co-morbidity as latent
factors, which can be used to define patient profiles for
prediction of other clinical outcomes

I Analysis is based on a sample of 1,000 patients, which
reduced the number of disease categories to 584.



Deviance Explained by Components
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Figure: Cumulative and marginal percent of deviance explained by
principal components of LPCA, LSVD, and PCA



Deviance Explained by Parameters
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Figure: Cumulative percent of deviance explained by principal
components of LPCA, LSVD, and PCA versus the number of free
parameters



Predictive Deviance
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Figure: Cumulative and marginal percent of predictive deviance over
test data (1,000 patients) by the principal components of LPCA and
PCA



Interpretation of Loadings
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Figure: The first component is characterized by common serious
conditions that bring patients to ICU, and the second component is
dominated by diseases of the circulatory system (07’s).



Concluding Remarks

I We have generalized PCA via projections of the natural
parameters of the saturated model using the generalized
linear model framework.

I We have extended generalized PCA to handle differential
case weights, missing data, and variable normalization.

I Further extensions are possible with other constraints than
rank for desirable properties (e.g. sparsity) on the loadings
and predictive formulations.

I R package, logisticPCA is available at CRAN and
generalizedPCA is available at GitHub.
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