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Ranking
! Aims to order a set of objects or instances reflecting their

underlying utility, relevance or quality.
! Has gained increasing attention in machine learning,

collaborative filtering and information retrieval for website
search and document retrieval.

(Source: Google images of “ranking”)





Data for Ranking
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How to order objects so that positive cases are ranked higher
than negative cases?



Main Questions

! How to rank?
! What loss criteria to use for ranking?
! What is the best ranking function given a criterion?
! How is it related to the underlying probability distribution for

data?
! How to learn a ranking function from data?



Notation

! X ∈ X : an instance to rank

! Y ∈ Y = {1, · · · , k}: an ordinal response in multipartite
ranking (bipartite ranking when k = 2)

! f : X → R: a real-valued ranking function whose scores
induce ordering over the input space

! Training data: n pairs of (X ,Y ) from X × Y



Pairwise Ranking Loss
For a pair of “positive” x and “negative” x ′, define a loss of
ranking function f as

!0(f ; x , x ′) = I(f (x)− f (x ′) < 0) + 1
2 I(f (x)− f (x ′) = 0)

!

"

f (x)− f (x ′)

!

!
"



Bipartite Ranking

! Note the invariance of the pairwise loss under
order-preserving transformations.

! Find f minimizing the empirical ranking risk

Rn+,n−(f ) =
1

n+n−

n+∑

i=1

n−∑

j=1
!0(f ; xi , x ′j )

! Minimizing ranking error is equivalent to maximizing AUC
(area under ROC curve).

! Use convex surrogate loss for risk minimization.
(e.g. RankBoost, RankSVM, and RankNet)



Likelihood Ratio Minimizes Ranking Risk

Clémençon et al. (2008) and Uematsu and Lee (2011)

Theorem
Define f ∗0 (x) = g+(x)/g−(x), and let R0(f ) = E(!0(f ;X ,X ′))
denote the ranking risk of f under the bipartite ranking loss.
Then for any ranking function f ,

R0(f ∗0 ) ≤ R0(f ).



Extension to Multipartite Ranking

! In general (k ≥ 2), for a pair of (x , y) and (x ′, y ′) with
y > y ′, define a loss of ranking function f as

!0(f ; x , x ′, y , y ′) = cy ′y I(f (x) < f (x ′)) + 1
2cy ′y I(f (x) = f (x ′))

where cy ′y is the cost of misranking a pair of y and y ′.
(Waegeman et al. 2008)

! Again, !0 is invariant under order-preserving
transformations.



Optimal Ranking Function for Multipartite Ranking
Theorem
(i) When k = 3, let f ∗0 (x) =

c12P(Y = 2|x) + c13P(Y = 3|x)
c13P(Y = 1|x) + c23P(Y = 2|x) .

Then for any ranking function f ,

R0(f ∗0 ;c) ≤ R0(f ;c).

(ii) When k > 3 and let f ∗0 (x) =
∑k

i=2 c1iP(Y = i |x)
∑k−1

j=1 cjKP(Y = j |x)
.

If c1kcji = c1i cjk − c1j cik for all 1 < j < i < k, then for any
ranking function f ,

R0(f ∗0 ;c) ≤ R0(f ;c).

Remark
Let cji = (si − sj)wiwj I(i > j) for some increasing scale

{
sj
}k
j=1

and non-negative weight
{
wj
}k
j=1. e.g. cji = (i − j)I(i > j)



Ordinal Regression

! Ordinal regression is commonly used to analyze data with
ordinal response in practice.

# ! f (x)
−∞ = θ0 θ1 θ2 · · · θk−2 θk−1 θk = ∞

y = 1 2 · · · k − 1 k

! A typical form of loss in ordinal regression for f with
thresholds

{
θj
}k−1
j=1 :

!(f ,
{
θj
}k−1
j=1 ; x , y) = !(f (x)− θy−1) + !(θy − f (x)),

where θ0 = −∞ and θk = ∞.



Convex Loss in Ordinal Regression

! ORBoost (Lin and Li 2006):

!(s) = exp(−s)

! Proportional Odds model (McCullagh 1980, Rennie 2006):

!(s) = log(1 + exp(−s))

! Support Vector Ordinal Regression (Herbrich et al. 2000):

!(s) = (1 − s)+



Ordinal Regression Boosting (ORBoost)

! The optimal ranking function f ∗ under !(s) = exp(−s) is

f ∗(x) = 1
2 log

∑k
i=2 P(Y = i |x)exp(θ∗i−1)∑k−1
j=1 P(Y = j |x)exp(−θ∗j )

where θ∗j are constants depending only on PX ,Y .

! When k = 3,

f ∗(x) = 1
2 log P(Y = 2|x) + exp(θ∗2 − θ∗1)P(Y = 3|x)

exp(θ∗2 − θ∗1)P(Y = 1|x) + P(Y = 2|x)

up to a constant. Hence, f ∗ preserves the ordering of f ∗0
with c12 = c23 = 1 and c13 = eθ∗2−θ∗1 .



Proportional Odds Model
! Cumulative logits (McCullagh 1980)

log P(Y ≤ j |x)
P(Y > j |x) = f (x)− θj ,

where −∞ = θ0 < θ1 < . . . < θk−1 < θk = ∞.

! Given
{
θj
}k−1
j=1 , maximizing the log likelihood amounts to

ordinal regression with !(s) = log(1 + exp(−s)).

! When k = 3, given θ1 and θ2, the minimizer of the deviance
risk f ∗ satisfies

exp(f ∗(x)) = q(x)− 1 +
√

(q(x)− 1)2 + 4 exp(θ1 − θ2)q(x)
2 exp(−θ2)

,

where q(x) = P(Y = 2|x) + P(Y = 3|x)
P(Y = 1|x) + P(Y = 2|x) = f ∗0 (x) with

c12 = c23 = c13 = 1.

! When θ2 > θ1, f ∗(x) preserves the ordering of q(x).



Support Vector Ordinal Regression

! SVOR with Implicit constraints in Chu and Keerthi (2007)

!(r ,
{
θj
}k−1
j=1 ; x , y) =

y−1∑

j=1
(1−(f (x)−θj))++

k−1∑

j=y
(1−(θj−f (x)))+.

! When k = 3, f ∗(x) is a step function of
r(x) = p2(x) + p3(x)

p1(x) + p2(x)
(i.e. f ∗0 with c12 = c13 = c23).

r(x) (0, 1
2) (1

2 ,1) (1,2) (2,∞)

f ∗(x) θ1 − 1 min(θ1 + 1, θ2 − 1) max(θ1 + 1, θ2 − 1) θ2 + 1



Numerical Illustration

! Simulation setting:
X |Y = 1 ∼ N(−2,1), X |Y = 2 ∼ N(0,1) and
X |Y = 3 ∼ N(2,1)

! When c12 = c23 = c13 = 1,

f ∗0 (x) =
P(Y = 2|X = x) + P(Y = 3|X = x)
P(Y = 1|X = x) + P(Y = 2|X = x) =

e2x + e2

e−2x + e2 .

! Generate 500 observations in each category.
! Apply pairwise ranking risk minimization with exponential

loss, proportional odds model, ORBoost and SVOR.
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Figure: Theoretical ranking function (dotted line) and estimated ranking function (solid line) for pairwise ranking
risk minimization with exponential loss, ORBoost, proportional odds model and SVOR with implicit constraints.



Application to Movie-Lens Data

! The data set consists of 100,000 ratings (on a scale of 1 to
5) for 1,682 movies by 943 users (GroupLens-Research).

! Contains content information about the movies (release
date and genres) and demographic information about the
users (age, gender and occupation).

! Transform five categories into three categories:
“Low” (1-3), “Middle” (4) and “High” (5)
and check the analytical results in k = 3.
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Figure: Scatter plots of ranking scores from ORBoost, regression, proportional odds model, and SVOR against
pairwise ranking scores with matching cost c13 for MovieLens data with three categories. The solid lines indicate
theoretical relation between ranking scores.



Effect of Differential Ranking Cost

c13 = 1
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Figure: Scatter plots of pairwise ranking scores (centered to zero) with different ranking cost c 13 for MovieLens
data when c12 = c23 = 1.



Concluding Remarks

! Provide a statistical view of ranking by identifying the
optimal ranking function given loss criteria

! For pairwise multipartite ranking, the optimal ranking
depends on the ratio of conditional probability weighted by
misranking costs.

! The solution to some ordinal regression methods can be
viewed as a special case of the optimal function in
multipartite ranking.

! Our study bridges traditional methods such as proportional
odds model in statistics with ranking algorithms in machine
learning.
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