Structured Statistical Learning with Support Vector Machine for Feature Selection and Prediction

Yoonkyung Lee
Department of Statistics
The Ohio State University
http://www.stat.ohio-state.edu/~yklee

Predictive learning

- Multivariate function estimation.
- ► A training data set $\{(\boldsymbol{x}_i, y_i), i = 1, \dots, n\}$.
- Learn functional relationship f between $\mathbf{x} = (x_1, \dots, x_p)$ and y from the training data, which can be generalized to novel cases.
- Examples include

Regression: continuous $y \in R$, and

Classification: categorical $y \in \{1, ..., k\}$.

Goodness of a learning method

- ▶ Accurate prediction with respect to a given loss $\mathcal{L}(y, f(x))$.
- Flexible (nonparametric) and data-adaptive.
- Interpretability (e.g. subset selection).
- Computational ease for large p (high dimensional input) and n (large sample).

Support Vector Machine

Vapnik (1995), http://www.kernel-machines.org

- ▶ $y_i \in \{-1, 1\}.$
- ▶ Find $f(\mathbf{x}) = b + h(\mathbf{x})$ with $h \in \mathcal{H}_K$ minimizing

$$\frac{1}{n}\sum_{i=1}^{n}(1-y_{i}f(\boldsymbol{x}_{i}))_{+}+\lambda\|h\|_{\mathcal{H}_{K}}^{2}.$$

Then $\hat{f}(\mathbf{x}) = \hat{b} + \sum_{i=1}^{n} \hat{c}_{i}K(\mathbf{x}_{i},\mathbf{x})$, where K: a bivariate positive definite function called a reproducing kernel.

► Classification rule: $\phi(\mathbf{x}) = sign[f(\mathbf{x})]$.

Hinge loss

Figure: $(1 - yf(\mathbf{x}))_+$ is an upper bound of the misclassification loss function $I(y \neq \phi(\mathbf{x})) = [-yf(\mathbf{x})]_* \leq (1 - yf(\mathbf{x}))_+$ where $[t]_* = I(t \geq 0)$ and $(t)_+ = \max\{t, 0\}$.

Feature Selection

- Linear SVM with ℓ₁ penalty [Bradley & Mangasarian (1998)].
- Recursive feature selection [Guyon et al. (2002)].
- Rescaling parameters [Chapelle et al. (2002)].
- Least Absolute Shrinkage and Selection Operator [Tibshirani (1996)].
- COmponent Selection and Smoothing Operator [Lin & Zhang (2003)].
- Structural modelling with sparse kernels [Gunn & Kandola (2002)].

Strategy for feature selection

- Structured representation of f.
- ▶ A sparse solution approach with ℓ_1 penalty.
- A unified treatment of the nonlinear and multiclass case.
- Not expensive additional computation.
- Systematic elaboration of f with features.

Functional ANOVA decomposition

Wahba (1990)

- ▶ Function: $f(\mathbf{x}) = b + \sum_{\alpha=1}^{p} f_{\alpha}(\mathbf{x}_{\alpha}) + \sum_{\alpha<\beta} f_{\alpha\beta}(\mathbf{x}_{\alpha}, \mathbf{x}_{\beta}) + \cdots$
- ► Functional space: $f \in \mathcal{H} = \bigotimes_{\alpha=1}^{p} (\{1\} \oplus \bar{\mathcal{H}}_{\alpha}),$ $\mathcal{H} = \{1\} \oplus \sum_{\alpha=1}^{p} \bar{\mathcal{H}}_{\alpha} \oplus \sum_{\alpha < \beta} (\bar{\mathcal{H}}_{\alpha} \otimes \bar{\mathcal{H}}_{\beta}) \oplus \cdots$
- Particle Reproducing kernel (r.k.): $K(\mathbf{x}, \mathbf{x}') = 1 + \sum_{\alpha=1}^{p} K_{\alpha}(\mathbf{x}, \mathbf{x}') + \sum_{\alpha < \beta} K_{\alpha\beta}(\mathbf{x}, \mathbf{x}') + \cdots$
- Modification of r.k. by rescaling parameters $\theta \ge 0$ $K_{\theta}(\mathbf{x}, \mathbf{x}') = 1 + \sum_{\alpha=1}^{p} \theta_{\alpha} K_{\alpha}(\mathbf{x}, \mathbf{x}') + \sum_{\alpha < \beta} \theta_{\alpha\beta} K_{\alpha\beta}(\mathbf{x}, \mathbf{x}') + \cdots$

ℓ_1 penalty on $\boldsymbol{\theta}$

▶ Truncating \mathcal{H} to $\mathcal{F} = \{1\} \oplus_{\nu=1}^d \mathcal{F}_{\nu}$, find $f(\mathbf{x}) \in \mathcal{F}$ minimizing

$$\frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(y_i, f(\mathbf{x}_i)) + \lambda \sum_{\nu} \theta_{\nu}^{-1} ||P^{\nu} f||^2.$$

Then
$$\hat{f}(\mathbf{x}) = \hat{b} + \sum_{i=1}^{n} \hat{c}_i \left[\sum_{\nu=1}^{d} \theta_{\nu} K_{\nu}(\mathbf{x}_i, \mathbf{x}) \right].$$

For sparsity, minimize

$$\frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(y_i, f(\mathbf{x}_i)) + \lambda \sum_{\nu} \theta_{\nu}^{-1} ||P^{\nu} f||^2 + \lambda_{\theta} \sum_{\nu} \theta_{\nu}$$
subject to $\theta_{\nu} > 0, \forall \nu$.

Related to kernel learning

- Micchelli and Pontil (2005), Learning the kernel function via regularization, to appear JMLR.
- $\triangleright \mathcal{K} = \{K_{\nu}, \nu \in \mathcal{N}\}$: a compact and convex set of kernels.
- A variational problem for optimal kernel configuration

$$\min_{K \in \mathcal{K}} \left(\min_{f \in \mathcal{H}_K} \frac{1}{n} \sum_{i=1}^n \mathcal{L}(y_i, f(\boldsymbol{x}_i)) + \lambda J(f) \right).$$

Structured MSVM with ANOVA decomposition

Lee, Lin & Wahba, JASA (2004)

Find $\mathbf{f} = (f^1, \dots, f^k) = (b^1 + h^1(\mathbf{x}), \dots, b^k + h^k(\mathbf{x}))$ with the sum-to-zero constraint minimizing

$$\frac{1}{n} \sum_{i=1}^{n} \mathbf{L}(\mathbf{y}_{i}) \cdot (\mathbf{f}(\mathbf{x}_{i}) - \mathbf{y}_{i})_{+} + \frac{\lambda}{2} \sum_{j=1}^{k} \left(\sum_{\nu=1}^{d} \theta_{\nu}^{-1} ||P^{\nu} h^{j}||^{2} \right)$$

$$+\lambda_{ heta}\sum_{
u=1}^d heta_{
u}$$
 subject to $heta_{
u}\geq 0, ext{ for }
u=1,\ldots,d.$

- ▶ $y = (y^1, ..., y^k)$: class code with $y^j = 1$ and -1/(k-1) elsewhere, if y = j and L(y): misclassification cost.
- ▶ By the representer theorem, $\hat{f}^{j}(\mathbf{x}) = \hat{b}^{j} + \sum_{i=1}^{n} \hat{c}_{i}^{j} \left[\sum_{\nu=1}^{d} \theta_{\nu} K_{\nu}(\mathbf{x}_{i}, \mathbf{x}) \right].$

Updating Algorithm

Letting $\mathbf{C} = (\{b^j\}, \{c_i^j\})$ and denoting the objective function by $\Phi(\theta, \mathbf{C})$,

- ▶ Initialize $\theta^{(0)} = (1, ..., 1)^t$ and $\mathbf{C}^{(0)} = \operatorname{argmin} \Phi(\theta^{(0)}, \mathbf{C})$.
- At the *m*-th iteration (m = 1, 2, ...)

(θ -step) find $\theta^{(m)}$ minimizing $\Phi(\theta, \mathbf{C}^{(m-1)})$ with \mathbf{C} fixed.

(c-step) find $\mathbf{C}^{(m)}$ minimizing $\Phi(\theta^{(m)}, \mathbf{C})$ with θ fixed.

One-step update can be used in practice.

Two-way regularization

- ▶ c-step solutions range from the simplest majority rule to the complete overfit to data as λ decreases.
- ▶ θ -step solutions range from the constant model to the full model with all the variables as λ_{θ} decreases.
- Any computational shortcut to get the entire regularization path?
 - e.g. Least Angle Regression [Efron et al. (2004)] and SVM solution path [Hastie et al. (2004)].

c-step regularization path

- Extension of the binary SVM solution path [Hastie et al. (2004)].
- By the Karush-Kuhn-Tucker (KKT) complementarity conditions, the MSVM solution at λ satisfies that for i, j

$$\alpha_i^j (f_i^j - y_i^j - \xi_i^j) = 0$$

$$(L_{cat(i)}^j - \alpha_i^j) \xi_i^j = 0$$

$$0 \le \alpha_i^j \le L_{cat(i)}^j \text{ and } \xi_i^j \ge 0$$

where $f_i^j = \hat{f}_{\lambda}^j(\mathbf{x}_i)$ and cat(i): the category of y_i , thus $(L_{cat(i)}^1, \ldots, L_{cat(i)}^k) = \mathbf{L}(\mathbf{y}_i)$.

Figure: MSVM component loss $(f^j - y^j)_+$ where $y^j = -1/(k-1)$.

$$\mathcal{E} = \{(i,j) | f_i^j - y_i^j = 0, \ \xi_i^j = 0, \ 0 \le \alpha_i^j \le L_{cat(i)}^j \} \text{ Elbow set,}$$

$$\mathcal{U} = \{(i,j) | f_i^j - y_i^j > 0, \ \xi_i^j > 0, \ \alpha_i^j = L_{cat(i)}^j \} \text{ Upper set,}$$

$$\mathcal{L} = \{(i,j) | f_i^j - y_i^j < 0, \ \xi_i^j = 0, \ \alpha_i^j = 0 \} \text{ Lower set.}$$

Characterization of the entire solution path

- Keep track of the events that change the elbow set.
- ▶ $\lambda_0 > \lambda_1 > \lambda_2 > \dots$, a decreasing sequence of breakpoints of λ at which the elbow set \mathcal{E} changes.
- Piecewise linearity of the solution:

The coefficient path of the MSVM is linear in $1/\lambda$ on the interval $(\lambda_{\ell+1}, \lambda_{\ell})$.

Construct the path sequentially by solving a system of linear equations.

Figure: The entire paths of $\hat{f}_{\lambda}^{1}(\mathbf{x}_{i})$, $\hat{f}_{\lambda}^{2}(\mathbf{x}_{i})$, and $\hat{f}_{\lambda}^{3}(\mathbf{x}_{i})$ for an outlying instance \mathbf{x}_{i} from class 3. The circles correspond to λ with the minimum test error rate.

Figure: The size of elbow set \mathcal{E}_{ℓ}^{j} for three classes as a function λ .

Small Round Blue Cell Tumors of Childhood

- ► Khan et al. (2001) in *Nature Medicine*
- Tumor types: neuroblastoma (NB), rhabdomyosarcoma (RMS), non-Hodgkin lymphoma (NHL) and the Ewing family of tumors (EWS).
- Number of genes : 2308
- Class distribution of data set

Data set	EWS	BL(NHL)	NB	RMS	total
Training set	23	8	12	20	63
Test set	6	3	6	5	20
Total	29	11	18	25	83

A synthetic miniature data set

- It consists of 100 genes from Khan et al. (63 training and 20 test cases)
- Use the F-ratio for each gene based on the training cases only.
- The top 20 genes as variables truly associated with the class.
- The bottom 80 genes with the class label randomly jumbled as irrelevant variables.
- 100 replicates by bootstrapping samples from this miniature data set keeping the class proportions the same as the original data.

The proportion of gene inclusion (%)

Figure: The proportion of inclusion (%) of each gene in the fi nal classifi ers over 100 runs. The dotted line delimits informative variables from noninformative ones. 10-fold CV was used for tuning.

The original data with 2308 genes

Figure: The proportion of selection of each gene in one-step updated SMSVMs for 100 bootstrap samples. Genes are presented in the order of marginal rank in the original sample.

Figure: The number of genes selected less often than or as frequently as a given proportion in 100 runs.

Summary of the full data analysis

- ► The empirical distribution of the number of genes included in one-step updates contained the middle 50% of values between 212 and 228 with median 221.
- 67 genes were consistently selected for more than 95% of the time.
- About 2000 genes were selected less than 20% of the time.
- Gene selection led to reduction in test error rates by 0.0230 on average (from 0.0455 to 0.0225) with standard error of 0.00484.
- It also reduced the variance of test error rates.

Concluding remarks

- ▶ Integrate feature selection with SVM using ℓ_1 type penalty for general case.
- Enhance interpretation without compromising prediction accuracy.
- Construct the entire solution path of c-step regularization via the optimality conditions.
- Further streamline the c-step fitting process by early stopping and basis thinning.
- ▶ Characterize the solution path of θ -step for effective computation and tuning.

The following papers are available from www.stat.ohio-state.edu/~yklee.

- Structured Multicategory Support Vector Machine with ANOVA decomposition, Lee, Y., Kim, Y., Lee, S., and Koo, J.-Y., Technical Report No. 743, The Ohio State University, 2004.
- Characterizing the Solution Path of Multicategory Support Vector Machines, Lee, Y. and Cui, Z., Technical Report No. 754, The Ohio State University, 2005.