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Predictive learning

I Multivariate function estimation.
I A training data set {(x i , yi ), i = 1, . . . , n}.
I Learn functional relationship f between x = (x1, . . . , xp)

and y from the training data, which can be generalized to
novel cases.

I Examples include
Regression: continuous y ∈ R, and
Classification: categorical y ∈ {1, . . . , k}.



Goodness of a learning method

I Accurate prediction with respect to a given loss L(y , f (x)).
I Flexible (nonparametric) and data-adaptive.
I Interpretability (e.g. subset selection).
I Computational ease for large p (high dimensional input)

and n (large sample).



Support Vector Machine

Vapnik (1995), http://www.kernel-machines.org
I yi ∈ {−1, 1}.
I Find f (x) = b + h(x) with h ∈ HK minimizing

1
n

n
∑

i=1

(1 − yi f (x i))+ + λ‖h‖2
HK

.

Then f̂ (x) = b̂ +
∑n

i=1 ĉiK (x i , x), where K : a bivariate
positive definite function called a reproducing kernel.

I Classification rule: φ(x) = sign [f (x)].



Hinge loss
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Figure: (1 − yf (x))+ is an upper bound of the misclassification loss
function I(y 6= φ(x)) = [−yf (x)]∗ ≤ (1 − yf (x))+ where [t]∗ = I(t ≥ 0)
and (t)+ = max{t , 0}.



Feature Selection

I Linear SVM with `1 penalty [Bradley & Mangasarian
(1998)].

I Recursive feature selection [Guyon et al. (2002)].
I Rescaling parameters [Chapelle et al. (2002)].
I Least Absolute Shrinkage and Selection Operator

[Tibshirani (1996)].
I COmponent Selection and Smoothing Operator

[Lin & Zhang (2003)].
I Structural modelling with sparse kernels

[Gunn & Kandola (2002)].



Strategy for feature selection

I Structured representation of f .
I A sparse solution approach with `1 penalty.
I A unified treatment of the nonlinear and multiclass case.
I Not expensive additional computation.
I Systematic elaboration of f with features.



Functional ANOVA decomposition

Wahba (1990)

I Function: f (x) = b +
∑p

α=1 fα(xα) +
∑

α<β fαβ(xα, xβ) + · · ·

I Functional space: f ∈ H = ⊗p
α=1({1} ⊕ H̄α),

H = {1} ⊕
∑p

α=1 H̄α ⊕
∑

α<β(H̄α ⊗ H̄β) ⊕ · · ·

I Reproducing kernel (r.k.):
K (x , x ′) = 1 +

∑p
α=1 Kα(x , x ′) +

∑

α<β Kαβ(x , x ′) + · · ·

I Modification of r.k. by rescaling parameters θ ≥ 0
Kθ(x , x ′) = 1+

∑p
α=1 θαKα(x , x ′)+

∑

α<β θαβKαβ(x , x ′)+· · ·



`1 penalty on θ

I Truncating H to F = {1} ⊕d
ν=1 Fν , find f (x) ∈ F minimizing

1
n

n
∑

i=1

L(yi , f (x i)) + λ
∑

ν

θ−1
ν ‖Pν f‖2.

Then f̂ (x) = b̂ +
∑n

i=1 ĉi

[

∑d
ν=1 θνKν(x i , x)

]

.

I For sparsity, minimize

1
n

n
∑

i=1

L(yi , f (x i)) + λ
∑

ν

θ−1
ν ‖Pν f‖2 + λθ

∑

ν

θν

subject to θν ≥ 0,∀ν.



Related to kernel learning

I Micchelli and Pontil (2005), Learning the kernel function
via regularization, to appear JMLR.

I K = {Kν , ν ∈ N}: a compact and convex set of kernels.
I A variational problem for optimal kernel configuration

min
K∈K

(

min
f∈HK

1
n

n
∑

i=1

L(yi , f (x i)) + λJ(f )
)

.



Structured MSVM with ANOVA decomposition

Lee, Lin & Wahba, JASA (2004)
I Find f = (f 1, . . . , f k ) = (b1 + h1(x), . . . , bk + hk (x)) with

the sum-to-zero constraint minimizing

1
n

n
∑

i=1

L(y i) · (f (x i) − y i)+ +
λ

2

k
∑

j=1

(

d
∑

ν=1

θ−1
ν ‖Pνhj‖2

)

+λθ

d
∑

ν=1

θν subject to θν ≥ 0, for ν = 1, . . . , d .

I y = (y1, . . . , yk ): class code with y j = 1 and −1/(k − 1)
elsewhere, if y = j and L(y): misclassification cost.

I By the representer theorem,

f̂ j(x) = b̂j +
∑n

i=1 ĉj
i

[

∑d
ν=1 θνKν(x i , x)

]

.



Updating Algorithm

Letting C = ({bj}, {cj
i }) and denoting the objective function by

Φ(θ, C),

I Initialize θ
(0) = (1, . . . , 1)t and C(0) = argmin Φ(θ(0), C).

I At the m-th iteration (m = 1, 2, . . .)

(θ-step) find θ
(m) minimizing Φ(θ, C (m−1)) with C fixed.

(c-step) find C(m) minimizing Φ(θ(m), C) with θ fixed.

I One-step update can be used in practice.



Two-way regularization

I c-step solutions range from the simplest majority rule to
the complete overfit to data as λ decreases.

I θ-step solutions range from the constant model to the full
model with all the variables as λθ decreases.

I Any computational shortcut to get the entire regularization
path?
e.g. Least Angle Regression [Efron et al. (2004)] and SVM
solution path [Hastie et al. (2004)].



c-step regularization path

I Extension of the binary SVM solution path [Hastie et al.
(2004)].

I By the Karush-Kuhn-Tucker (KKT) complementarity
conditions, the MSVM solution at λ satisfies that for i , j

αj
i (f j

i − y j
i − ξj

i ) = 0

(Lj
cat(i) − αj

i) ξj
i = 0

0 ≤ αj
i ≤ Lj

cat(i) and ξj
i ≥ 0

where f j
i = f̂ j

λ
(x i) and cat(i): the category of yi , thus

(L1
cat(i), . . . , Lk

cat(i)) = L(y i).



fj−1/(k−1)

Figure: MSVM component loss (f j − yj)+ where yj = −1/(k − 1).
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i − y j

i = 0, ξ
j
i = 0, 0 ≤ α

j
i ≤ Lj

cat(i)} Elbow set,
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i − y j
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i = Lj
cat(i)} Upper set,

L = {(i , j)| f j
i − y j

i < 0, ξj
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Characterization of the entire solution path

I Keep track of the events that change the elbow set.
I λ0 > λ1 > λ2 > . . . , a decreasing sequence of breakpoints

of λ at which the elbow set E changes.
I Piecewise linearity of the solution:

The coefficient path of the MSVM is linear in 1/λ on the
interval (λ`+1, λ`).

I Construct the path sequentially by solving a system of
linear equations.
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Figure: The entire paths of f̂ 1
λ
(x i), f̂ 2

λ
(x i), and f̂ 3

λ
(x i) for an outlying

instance x i from class 3. The circles correspond to λ with the
minimum test error rate.
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Figure: The size of elbow set E j
`

for three classes as a function λ.



Small Round Blue Cell Tumors of Childhood

I Khan et al. (2001) in Nature Medicine
I Tumor types: neuroblastoma (NB), rhabdomyosarcoma

(RMS), non-Hodgkin lymphoma (NHL) and the Ewing
family of tumors (EWS).

I Number of genes : 2308
I Class distribution of data set

Data set EWS BL(NHL) NB RMS total
Training set 23 8 12 20 63
Test set 6 3 6 5 20
Total 29 11 18 25 83



A synthetic miniature data set

I It consists of 100 genes from Khan et al. (63 training and
20 test cases)

I Use the F-ratio for each gene based on the training cases
only.

I The top 20 genes as variables truly associated with the
class.

I The bottom 80 genes with the class label randomly
jumbled as irrelevant variables.

I 100 replicates by bootstrapping samples from this
miniature data set keeping the class proportions the same
as the original data.



The proportion of gene inclusion (%)
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Figure: The proportion of inclusion (%) of each gene in the final
classifiers over 100 runs. The dotted line delimits informative
variables from noninformative ones. 10-fold CV was used for tuning.



The original data with 2308 genes
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Figure: The proportion of selection of each gene in one-step updated
SMSVMs for 100 bootstrap samples. Genes are presented in the
order of marginal rank in the original sample.
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Figure: The number of genes selected less often than or as
frequently as a given proportion in 100 runs.



Summary of the full data analysis

I The empirical distribution of the number of genes included
in one-step updates contained the middle 50% of values
between 212 and 228 with median 221.

I 67 genes were consistently selected for more than 95% of
the time.

I About 2000 genes were selected less than 20% of the
time.

I Gene selection led to reduction in test error rates by
0.0230 on average (from 0.0455 to 0.0225) with standard
error of 0.00484.

I It also reduced the variance of test error rates.



Concluding remarks

I Integrate feature selection with SVM using `1 type penalty
for general case.

I Enhance interpretation without compromising prediction
accuracy.

I Construct the entire solution path of c-step regularization
via the optimality conditions.

I Further streamline the c-step fitting process by early
stopping and basis thinning.

I Characterize the solution path of θ-step for effective
computation and tuning.



The following papers are available from
www.stat.ohio-state.edu/∼yklee.

I Structured Multicategory Support Vector Machine with
ANOVA decomposition, Lee, Y., Kim, Y., Lee, S., and Koo,
J.-Y., Technical Report No. 743, The Ohio State University,
2004.

I Characterizing the Solution Path of Multicategory Support
Vector Machines, Lee, Y. and Cui, Z., Technical Report No.
754, The Ohio State University, 2005.
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