
Unifying local and nonlocal modelling of
respective and symmetrical predicates

Yusuke Kubota1 and Robert Levine2

1 Ohio State University, JSPS <kubota.7@osu.edu>
2 Ohio State University <levine@ling.ohio-state.edu>

Abstract. We propose a unified analysis of ‘respective’ readings of plu-
ral and conjoined expressions and the internal readings of symmetrical
predicates such as same and different. The two problems have both been
recognized as significant challenges in the literature of syntax and seman-
tics, but so far there is no analysis which captures their close parallel via
some uniform mechanism. In fact, the representative compositional anal-
yses of the two phenomena in the current literature (Gawron and Kehler
(2004) (G&K) on ‘respective’ readings and Barker (2007) on symmetri-
cal predicates) look superficially quite different from each other, where
one (Barker) employs a movement-like nonlocal mechanism for mediat-
ing the dependency between the relevant terms whereas the other (G&K)
achieves a similar effect via a chain of local composition operations.
In this paper, we first point out the parallels and interactions between the
two phenomena that motivate a unified analysis. We then briefly review
G&K’s and Barker’s analyses and show that the G&K-style analysis can
be modelled by the Barker-style analysis once we formulate the relevant
rules within an explicit syntax-semantics interface couched in a variant
of Type-Logical Categorial Grammar called Hybrid TLCG. After clar-
ifying the hitherto unnoticed formal relations between the Barker-style
nonlocal modelling and the G&K-style local modelling by focusing on
the analysis of ‘respective’ readings, we present our unified analysis of
‘respective’ readings and symmetrical predicates and show how their par-
allel behaviors and interactions can be systematically accounted for.

Keywords: ‘respective’ reading, symmetrical predicate, categorial gram-
mar, Hybrid Type-Logical Categorial Grammar, coordination, parasitic
scope

1 Introduction

The so-called ‘respective’ readings of plural and conjoined expressions and the
internal readings of symmetrical predicates such as same and different as in (1)
have posed difficult challenges to theories of the syntax-semantics interface.

(1) a. John and Bill married Mary and Sue, (respectively).
(= ‘John married Mary and Bill married Sue.’)

b. John and Bill bought the same book.
(= ‘There is a single identical book which both John and Bill bought.’)

2

These phenomena interact with coordination, including the ‘noncanonical’ types
of coordination (both Right-Node Raising and Dependent Cluster Coordination):

(2) a. John read, and Bill reviewed, Barriers and LGB, (respectively).

b. John introduced the same girl to Chris on Thursday and (to) Peter
on Friday.

Moreover, these expressions can themselves be iterated and interact with one
another to induce multiple dependencies:

(3) a. John and Bill introduced Mary and Sue to Chris and Pat (respec-
tively).

b. John and Bill gave the same book to the same man.

c. John and Bill gave the same book to Mary and Sue (respectively).

Any adequate analysis of these phenomena needs to account for these em-
pirical facts. In particular, the parallel between the phenomena in the multiple
dependency cases in (3), especially, the interdependency between ‘respective’ and
symmetrical predicates in (3c), raises the interesting possibility that the same
(or a similar) mechanism is at the core of the semantics of these two phenomena.

The present paper has two inter-related goals, one empirical and the other
theoretical. The empirical goal is to develop an explicit analysis of ‘respective’
and symmetrical predicates that systematically accounts for the empirical facts
just reviewed above. In particular, we argue that the core mechanism underly-
ing both ‘respective’ and symmetrical predicates is a pairwise predication that
establishes a one-to-one correspondence between elements of two ordered sets
of denotata each associated with plural, conjoined or symmetrical terms (i.e.
expressions like the same man). Formally, we treat such ‘ordered sets’ by means
of tuples, enriching the semantic ontology slightly by introducing product-type
elements for semantic objects of any arbitrary type. This enables us to formu-
late a unified analysis of these phenomena that immediately accounts for the
complex yet systematic empirical facts noted above.

The theoretical goal of the paper is to explicitly establish a (hidden) con-
nection between two representative compositional analyses of these phenomena
proposed by previous authors: Gawron and Kehler (2004) (G&K) on ‘respective’
readings and Barker (2007) on symmetrical predicates. G&K’s analysis builds on
the idea of recursively assigning a tuple-like object as the denotation of a phrase
containing a plural or a conjoined term at each step of local semantic compo-
sition, so that the ordering inherent in the original conjoined or plural term is
retained in the larger structure which undergoes pairwise predication. By con-
trast, Barker (2007) proposes to analyze the semantics of symmetrical predicates
in terms of a nonlocal, movement-like process of ‘parasitic scope’ whereby the
symmetrical term (the same book) and the plural NP (John and Bill) that is
related to it are scoped out of their local positions and are treated essentially as
an interdependent complex quantifier.

While the strictly local approach by G&K and the nonlocal approach by
Barker look superficially quite different, the effects of the two types of operations

3

(or series of operations) that they respectively invoke are rather similar: they
both allow one to establish some correspondence between the internal structures
of two terms that do not necessarily appear adjacent to each other in the surface
form of the sentence. The main difference is how this correspondence is estab-
lished: G&K opt for a series of local composition operations (somewhat reminis-
cent of the way long-distance dependencies are handled in lexicalist frameworks
such as CCG and G/HPSG), whereas Barker does it by a single step of nonlocal
mechanism (in a way analogous to a movement-based analysis of long-distance
dependencies). But then, is it just an accident that G&K and Barker proposed
their respective solutions for the phenomena they were dealing with, or do we
need both types of approach, but for different phenomena, or can we unify the
two approaches somehow?

We attempt to shed some light on these questions by simulating G&K’s
and Barker’s approaches in Hybrid Type-Logical Categorial Grammar (Hybrid
TLCG), a variant of categorial grammar that is notable for its flexible and
systematic syntax-semantics interface (Kubota and Levine, 2012, 2013; Kubota,
to appear). A comparison of the two approaches in this setting reveals that the
G&K-style local modelling of ‘respective’ predication can be modelled by the
Barker-style approach once we recognize one independently needed mechanism
for dealing with (non-‘respective’) distributive predication. We take this result to
be highly illuminating, as it once again shows that the logic-based setup of TLCG
enables us to gain a deeper insight into the underlying connections between two
related empirical phenomena and two apparently different but deeply related
approaches to each, which, without such a perspective, may have gone unnoticed.

2 Modelling ‘respectively’ readings locally and nonlocally

We start by briefly reviewing the key components of G&K’s and Barker’s analy-
ses. In order to facilitate the comparison (both to each other and to the unified
analysis that we present below), we replace sums in their analyses that model
complex structured objects with the notion of tuples (which has inherent order-
ing of elements), but nothing essential in their respective analyses are lost by
this adjustment.

2.1 Local modelling of ‘respective’ readings by Gawron and Kehler
(2004)

G&K propose to analyze ‘respective’ readings of sentences like the following via
a recursive application of ‘respective’ and distributive operators:

(4) John and Bill married Mary and Sue, (respectively).

Since they assume a simple phrase structure grammar for syntax, we model it
via a simple AB grammar, with the following two rules of /E and \E alone:

4

(5) a. Forward Slash Elimination

a; F ; A/B b; G; B
/E

a ◦ b; F(G); A

b. Backward Slash Elimination

b; G; B a; F ; B\A
\E

b ◦ a; F(G); A

As noted above, we replace their sum-based treatment with a tuple-based
treatment, where the two NPs John and Bill and Mary and Sue both denote
tuples (or pairs) of individuals 〈j,b〉 and 〈m, s〉.3

The core (empty) semantic operators that G&K exploit are the following
dist(ributive) and resp(ective) operators:

(6) ε; λPλg.
∏n

i P (πi(g)); X/X

(7) ε; λFλx.
∏n

i πi(F)(πi(x)); X/X

There is in addition the following ‘boolean reduction’ operator which takes a
tuple of propositions and returns their boolean conjunction at the S level:

(8) ε; λp.
∧

i πi(p); S|S

We can analyze (4) as follows:

(9)

ε;
λp.
∧

i πi(p);
S|S

john ◦
and ◦
bill;
〈j,b〉;
NP

ε;
λFλx.∏n

i πi(F)(πi(x));
X/X

ε;
λPλg.∏n

i P (πi(g));
X/X

married;
marry;
(NP\S)/NP

married;
λg.
∏n

i marry(πi(g));
(NP\S)/NP

mary ◦
and ◦
sue;
〈m, s〉;
NP

married ◦mary ◦ and ◦ sue;∏n
i marry(πi(〈m, s〉)); NP\S

. .
married ◦mary ◦ and ◦ sue;
〈marry(m),marry(s)〉; NP\S

married ◦mary ◦ and ◦ sue;
λx.

∏n
i πi(〈marry(m),marry(s)〉)(πi(x)); NP\S

john ◦ and ◦ bill ◦married ◦mary ◦ and ◦ sue;∏n
i πi(〈marry(m),marry(s)〉)(πi(〈j,b〉)); S

. .
john ◦ and ◦ bill ◦married ◦mary ◦ and ◦ sue;
〈marry(m)(j),marry(s)(b)〉; S

john ◦ and ◦ bill ◦married ◦mary ◦ and ◦ sue;
marry(m)(j) ∧marry(s)(b); S

The derivation in (11) for (10) illustrates a more complex case involving a
recursive application of the ‘respective’ operator (here, dist and resp abbreviate
the semantic translations of the two operators in (6) and (7)).

3 This also removes G&K’s ontological commitment of taking propositions rather than
worlds as primitives (which is necessary for them since sums of two extensionally
identical properties in the Montagovian setup collapse to a single property). While
such a position is not necessarily implausible, we do not think that the semantics of
respective readings should be taken to form a basis for this ontological choice.

5

(10) John and Mary drove to Berkeley and Santa Cruz on Monday and Tuesday.

(11)

john ◦
and ◦
mary;
〈j,m〉;
NP

ε;
resp;
X/X

ε;
dist;
X/X

drove;
drive;
VP/PP

drove;
λg.
∏n

i
drive(πi(g));
VP/PP

to ◦
bkl ◦
and ◦
sc;
〈b, s〉;
PP

drove ◦ to ◦ bkl ◦ and ◦ sc;
〈drive(b),drive(s)〉; VP

ε;
resp;
X/X

ε;
dist;
X/X

on;
on;
(VP\VP)/NP

on;
λg.
∏n

i on(πi(g));
(VP\VP)/NP

mon ◦
and ◦
tue;
〈m, t〉;
NP

on ◦mon ◦ and ◦ tue;
〈on(m),on(t)〉; VP\VP

on ◦mon ◦ and ◦ tue;
λg.
∏n

i πi(〈on(m),on(t)〉)(πi(g));
VP\VP

drove ◦ to ◦ bkl ◦ and ◦ sc ◦ on ◦mon ◦ and ◦ tue;
〈on(m)(drive(b)),on(t)(drive(s))〉; VP

drove ◦ to ◦ bkl ◦ and ◦ sc ◦ on ◦mon ◦ and ◦ tue;
λx.

∏n
i πi(〈on(m)(drive(b)),on(t)(drive(s))〉)(πi(x)); VP

john ◦ and ◦mary ◦ drove ◦ to ◦ bkl ◦ and ◦ sc ◦ on ◦mon ◦ and ◦ tue;∏n
i πi(〈on(m)(drive(b)),on(t)(drive(s))〉)(πi(〈j,m〉)); S

Note that at each step where a functor takes a product-type term as an
argument, the dist operator is first applied to the functor so that the functor is
distributively applied to each member of the tuple and the result is ‘summed up’
as a tuple (rather than conjoined by a generalized conjunction operator as in the
standard definition of the distributive operator in the plurality literature). Thus,
the larger constituent inherits the ordering of elements in its subconstituent.

Another notable property of G&K’s analysis is that after the application of
the resp operator, the larger constituent still denotes a tuple (of two properties of
type e→ t, in the case of (11)), rather than boolean conjunction. This is crucial
for making the recursive application of the resp operator straightforward. Since
the tuple structure is preserved after the application of the first resp operator,
the result can simply be taken up by another resp operator which relates it to
another tuple in a ‘respective’ manner.

Although G&K does not discuss this point explicitly, in order to generalize
this analysis to cases like the following in which the tuple structure is percolated
from the functor rather than the argument, one either needs to assume that
type-raising is generally available in the grammar so that the functor-argument
relation of any arbitrary pair of functor and argument types can be flipped, or
else needs to introduce another version of the dist operator, call it dist’, which
distributes a single argument meaning to a tuple of functor meanings.4

(12) a. John and Bill read and reviewed the book, respectively.

4 G&K speculate on a possibility of unifying their dist and resp operators toward
the end of their paper; if this unification is successfully done, both the argument-
distributing dist operator in (6) above and the functor-distributing dist’ operator
under discussion here might be thought of as special cases of a single unified ‘predi-
cation’ operator. But this part of their proposal remains somewhat obscure and not
worked out in full detail.

6

b. John and Bill sent the bomb and the letter to the president yesterday,
respectively.

Essentially, at the expense of applying either the dist or resp operator at each
step of local composition, G&K does away with hypothetical reasoning entirely
and their fragment can be modelled by a simple AB grammar.

2.2 Nonlocal modeling of ‘respective’ readings building on Barker
(2007)

In contrast to G&K, Barker (2007) extensively relies on hypothetical reasoning
for characterizing the semantics of symmetrical predicates. In order to facilitate
a comparison with G&K’s analysis, we first discuss an extension of Barker’s
approach to ‘respective’ readings (it should be noted that Barker himself confines
his analysis to the case of symmetrical predicates, mostly focusing on the analysis
of same), and come back to the case of symmetrical predicates in the next section.

The key idea behind Barker’s proposal is that the interdependency between
the relevant two complex terms (i.e. the two plural or conjoined terms in the case
of ‘respective’ readings) can be straightforwardly mediated by abstracting over
the positions in the sentence that such terms occupy and then directly giving the
relevant terms (and the abstracted proposition) as arguments to the operator
that mediates their interdependency.

For modelling this ‘covert’ movement treatment of ‘respective’/symmetrical
predicates, we introduce here a new connective |, called ‘vertical slash’, together
with the Elimination and Introduction rules for it formulated in (21) (just like
/, we write the argument to the right for this slash; thus, in A|B, B is the
argument).5

(13) a. Vertical Slash Introduction
...

...
...

...

[ϕ; x; A]n

...
...

...
...

...
...

b; F ; B
|In

λϕ.b; λx.F ; B|A

b. Vertical Slash Elimination

a; F ; A|B b; G; B
|E

a(b); F(G); A

These rules are essentially the same as the rules for the linear implication connec-
tive (() posited in the family of ‘Linear Categorial Grammars’ (Oehrle, 1994;
de Groote, 2001; Muskens, 2003; Mihaliček and Pollard, 2012).

5 These rules introduce functional prosodic objects. One might wonder how the gram-
mar (or the prosodic calculus that is part of it) is constrained in such a way that it
does not admit of uninterpretable prosodic objects such as john ◦ λϕ.ϕ (i.e., ‘con-
catenation’ of a string and a function from strings to strings). In fact, Hybrid TLCG
does not admit of any such ill-formed prosodic objects. Such an expression would be
obtained only by applying a functor that has a syntactic type of the form X/(Y|Z)
to its argument Y|Z, but a syntactic type of the form X/(Y|Z), with the vertical
slash ‘under’ a directional slash, are explicitly excluded from the grammar. For the
details of the syntax-prosody mapping which ensures this, see Kubota and Levine
(2014).

7

With this vertical slash, extending Barker’s ‘parasitic scope’ analysis to ‘re-
spective’ readings is in fact mostly straightforward, with one extra complication
discussed below. Assuming (as above) that plural and conjoined terms denote
tuples (of the relevant type of semantic objects), we just need the following three-
place ‘respective’ operator which semantically takes a relation (denoted by the
sentence containing the two ‘gap’ positions for the two product-type terms) and
two tuples as arguments and returns a tuple as an output (this is so that, as
above, multiple ‘respective’ readings can be handled by recursive application of
this operator).

(14) λσ0λϕ1λϕ2.σ0(ϕ1)(ϕ2); resp3; (Z|X|Y)|(Z|X|Y)

As can be seen in (14), the resp operator is a (polymorphic) identity function
both syntactically and prosodically. The semantics is unpacked in (15).

(15) resp3 = λRλT×λU×.
∏

iR(πi(T×))(πi(U×))

Semantically, this operator relates the elements of the two tuples in a pairwise
manner with respect to the relation in question. Note that this three-place resp3
operator is distinct from the two place resp operator posited in G&K’s approach
though their semantic effects are similar. We come back to the relationship be-
tween these two operators immediately below (see (19)).

The analysis of the simple ‘respective’ sentence is then straightforward:

(16)

λϕ1.ϕ1;
λp.
∧

i πi(p);
S|S

mary ◦ and ◦
sue;
〈m, s〉;
NP

john ◦ and ◦
bill;
〈j,b〉;
NP

λσ0λϕ1λϕ2.
σ0(ϕ1)(ϕ2);

resp3;
(Z|X|Y)|(Z|X|Y)

married;
marry; (NP\S)/NP

...
...

λϕ3λϕ4.
ϕ4 ◦married ◦ϕ3;
marry; (S|NP)|NP

λϕ1λϕ2.ϕ2 ◦married ◦ϕ1;
resp3(marry); S|NP|NP

λϕ2.ϕ2 ◦married ◦ john ◦ and ◦ bill;
resp3(marry)(〈j,b〉); S|NP

mary ◦ and ◦ sue ◦married ◦ john ◦ and ◦ bill;
resp3(marry)(〈j,b〉)(〈m, s〉); S
. .
mary ◦ and ◦ sue ◦married ◦ john ◦ and ◦ bill;
〈marry(j)(m),marry(b)(s)〉; S

mary ◦ and ◦ sue ◦married ◦ john ◦ and ◦ bill;
marry(j)(m) ∧marry(b)(s); S

Just as in G&K’s analysis, multiple ‘respective’ readings in examples like the
following are obtained via recursive application of the resp operator:

(17) Tolstoy and Dostoevsky sent Anna Karenina and the Idiot to Dickens and
Thackeray (respectively).

The analysis is in fact straightforward. After two of the tuple-denoting terms
are related to each other with respect to the predicate denoted by the verb, the
resultant S|NP expression is a tuple of two properties.

8

(18)

Di ◦ and ◦ Th;
〈di, th〉; NP

AK ◦ and ◦ Id;
〈ak, id〉; NP

λσ0λϕ1λϕ2.σ0(ϕ1)(ϕ2);
resp3;
(Z|X|Y)|(Z|X|Y)

...
...

λϕ1λϕ2λϕ3.
ϕ3 ◦ sent ◦ϕ1 ◦ to ◦ϕ2;
send; S|NP|NP|NP

λϕ1λϕ2λϕ3.ϕ3 ◦ sent ◦ϕ1 ◦ to ◦ϕ2;
resp3(send); S|NP|NP|NP

λϕ2λϕ3.ϕ3 ◦ sent ◦ AK ◦ and ◦ Id ◦ to ◦ϕ2;
resp3(send)(〈ak, id〉); S|NP|NP

λϕ3.ϕ3 ◦ sent ◦ AK ◦ and ◦ Id ◦ to ◦ Di ◦ and ◦ Th;
resp3(send)(〈ak, id〉)(〈di, th〉); S|NP
. .
λϕ3.ϕ3 ◦ sent ◦ AK ◦ and ◦ Id ◦ to ◦ Di ◦ and ◦ Th;
〈send(ak)(di), send(id)(th)〉; S|NP

And the remaining conjoined term 〈to,do〉 is related to this product-type prop-
erty in the following way:

(19)

λρλσλϕ.ρ(σ)(ϕ);
λRλT×λU×.

∏
iR(πi(T×))(πi(U×));

(Z|X|Y)|(Z|X|Y)

[σ; f ; S|NP]1 [ϕ;x; NP]2
|E

σ(ϕ); f(x); S
|I2

λϕ.σ(ϕ); λx.f(x); S|NP
|I1

λσλϕ.σ(ϕ); λfλx.f(x); (S|NP)|(S|NP)
|E

λσ1λϕ1.σ1(ϕ1); λP×λX×.
∏

i πi(P×)(πi(X×)); (S|NP)|(S|NP)

To ◦ and ◦ Do;
〈to,do〉;
NP

...
...

λσ2λϕ2.σ2(ϕ2);
λP×λX×.∏

i πi(P×)(πi(X×));
(S|NP)|(S|NP)

...
...

λϕ3.ϕ3 ◦ sent ◦ AK ◦ and ◦ Id ◦
to ◦ Di ◦ and ◦ Th;
〈send(ak)(di), send(id)(th)〉; S|NP

|E
λϕ2.ϕ2 ◦ sent ◦ AK ◦ and ◦ Id ◦ to ◦ Di ◦ and ◦ Th;
λY×.

∏
i πi(〈send(ak)(di), send(id)(th)〉)(πi(Y×)); S|NP

|E
To ◦ and ◦ Do ◦ sent ◦ AK ◦ and ◦ Id ◦ to ◦ Di ◦ and ◦ Th;∏

i πi(〈send(ak)(di), send(i)(th)〉)(πi(〈to,do〉)); S
. .
To ◦ and ◦ Do ◦ sent ◦ AK ◦ and ◦ Id ◦ to ◦ Di ◦ and ◦ Th;
〈send(ak)(di)(to), send(id)(th)(do)〉; S

The first chunk of derivation in (19) (where X is instantiated as NP, Y as S|NP,
and Z as S), the point of which may not be immediately clear, can be thought
of as a way of deriving the two-place resp operator (identical to the one that
G&K posit) from the lexically specified three-place resp3 operator introduced
above. As in G&K’s analysis discussed above, the two place resp operator di-
rectly relates the product-type property (of type S|NP) derived in (18) with the
product-type NP occupying the subject position via function application of the
corresponding elements.

3 Comparison of local modelling and nonlocal modelling

We now show that the G&K-style ‘local’ modelling of ‘respective’ predication can
be simulated by the Barker-style ‘nonlocal’ approach. Consider first a case which

9

contains only two product-type terms to be related in a ‘respective’ manner. The
structure of the derivation for a sentence containing two product-type terms in
the G&K-style analysis can be schematically shown in (20), where i, j, n,m ≥
0, n ≥ i,m ≥ j and l ≥ 2 and for any k, γk or δk is some linguistic sign.6 Note
here that both Ψ and Φ, which are meanings of expressions that contain exactly
one tuple-denoting (lexical) term inside themselves, denote tuples, and they are
then related by the two-place resp operator with each other.

(20)

ε;
resp;
Z/Z

γ1 . . .γi

...
...

...

a;
〈a1, . . . , al〉;
A

...
...

γi+1 . . .γn

...
...

...
c;
Ψ ; X/Y

c; resp(Ψ); X/Y

δ1 . . . δj

...
...

...

b;
〈b1, . . . , bl〉;
B

...
...

δj+1 . . . δm

...
...

...
d;
Φ; Y

c ◦ d; resp(Ψ)(Φ); X

We derive two auxiliary rules in G&K’s system to facilitate the comparison
to the Barker-style analysis.7

(21) a. Rule 1

a; f ; A/B b; 〈a1 . . . al〉; B

a ◦ b; 〈f(a1) . . . f(al)〉; A

b. Rule 2
a; 〈f1 . . . fn〉; A/B b; a; B

a ◦ b; 〈f1(a) . . . fn(a)〉; A

Rule 1 is obtained by applying the dist operator (6) to the functor f and then
applying it to its tuple argument. Rule 2 is obtained by applying the dist’ opera-
tor discussed above (see the discussion pertaining to (12)) to the argument a and
applying it to the tuple functor. (We remain agnostic about how dist’ is obtained
in G&K’s setup.) These two rules are introduced here just for expository ease.
We show below how they can be derived from the more general resp3 operator
in the present setup with the use of hypothetical reasoning by introducing one
auxiliary rule converting an atomic object to an n-tuple of identical objects.

By assumption, among the signs γ1 . . .γn, δ1 . . . δn, and a and b constituting
the leaves of (20), only a and b have product-type meanings. Thus, at each step
of local composition inside c and d, either the functor or the argument (but not
both) has a product-type meaning. From this it further follows that each local
step of composition inside c and d instantiates either Rule 1 or Rule 2.

Now, consider a structure in which we replace the two product-type terms in
(20) by the variables x and y, both fresh in Ψ and Φ.

6 We assume here that the lefthand substructure is the functor. The same result
obtains for a structure where the righthand substructure is the functor, by merely
replacing the linear order between c and d in (20).

7 Here we are inspired by Bekki’s (2006) reformulation of G&K’s analysis in terms of
product-types.

10

(22) γ1 . . .γi

...
...

...

ϕ1; x; A

...
...

γi+1 . . .γn

...
...

...

c′;
Γ ; X/Y

δ1 . . . δj

...
...

...

ϕ2; y; B

...
...

δj+1 . . . δm

...
...

...

d′;
∆; Y

c′ ◦ d′; Γ (∆); X

The relation between the internal structures of (22) and (20) is such that
each step of function application in (22) is replaced by an application of either
Rule 1 or Rule 2 in (20). Thus, by induction,8

(23) Ψ = 〈Γ [x/a1], . . . , Γ [x/al]〉

(where Γ [x/ak] is a term identical to Γ except that all occurrences of x in Γ are
replaced by ak). Similarly,

(24) Φ = 〈∆[y/b1], . . . ,∆[y/bl]〉

Thus,

(25) resp(Φ)(Ψ)
= resp(〈Γ [x/a1], ., Γ [x/al])(〈∆[y/b1], 〉., ∆[y/bl]〉)
= 〈Γ [x/a1](∆[y/b1]), . . . , Γ [x/al](∆[y/bl])〉

This is exactly the same interpretation that we obtain in the following Barker-
style analysis of the same string of words:

(26)

γ1. . .γi

...
...

...

[ϕ1;
x;
A

]1
...

...

γi+1. . .γn

...
...

...

c′;
Γ ; X/Y

δ1. . . δj

...
...

...

[ϕ2;
y;
B

]2
...

...

δj+1. . . δm

...
...

...

d′;
∆; Y

c′ ◦ d′; Γ (∆); X
|I2

λϕ2.c
′ ◦ d′; λy.Γ (∆); X|B

|I1
λϕ1λϕ2.c

′ ◦ d′; λxλy.Γ (∆); X|B|A

...
...

λϕ1λϕ2.c
′ ◦ d′; λxλy.Γ (∆); X|B|A

λϕ.ϕ;
resp3;
(Z|X|Y)|(Z|X|Y)

λϕ1λϕ2.c
′ ◦ d′; resp3(λxλy.Γ (∆)); X|B|A

a;
〈a1, ..., al〉;
A

λϕ2.c ◦ d′; resp3(λxλy.Γ (∆))(〈a1, ..., al〉); X|B

b;
〈b1, ..., bl〉;
B

c ◦ d; resp3(λxλy.Γ (∆))(〈a1, ..., al〉)(〈b1, ..., bl〉); X

The final translation we obtain in this derivation is

(27) resp3(λxλy.Γ (∆))(〈a1, . . . , al〉)(〈b1, . . . , bl〉)
8 See Appendix for a formal proof.

11

Since | is linear, x is fresh in∆ and y in Γ . Thus, for any k, λxλy.[Γ (∆)](ak)(bk) =
Γ [x/ak](∆[y/bk]). From this it follows that

(28) resp3(λxλy.Γ (∆))(〈a1, . . . , al〉)(〈b1, . . . , bl〉)
= 〈Γ [x/a1](∆[y/b1]), . . . , Γ [x/al](∆[y/bl])〉

For cases containing more than two respective terms, the correspondence
between the G&K-style analysis and the Barker style analysis can be established
recursively by taking the whole structure (20)/(26) to instantiate either a or b
and relating it to the next ‘adjacent’ product-type term one by one.

It now remains to show how Rule 1 and Rule 2 can be derived in the Barker-
style setup. For this, we need a mechanism that derives the two dist operators
in the G&K setup from the three-place resp3 operator posited in the Barker
system in (15). Following Bekki (2006), we assume that the following ‘product
duplicator’ is responsible for this operation, which takes some term x and returns
an n-tuple consisting of x: 〈x, . . . , x〉:

(29) λϕ.ϕ; λx.
∏n

i x; X|X

With this operator and the three-place resp3 operator in (15), Rule 1 and Rule
2 can be derived as follows:

(30)

λϕ.ϕ;
λx.

∏l
i x;

X|X
a;
f ; A/B

a; 〈f, . . . , f〉; A/B

b;
〈a1, ..., al〉;
B

λσ0λϕ1λϕ2.
σ0(ϕ1)(ϕ2);
resp3;
(Z|X|Y)|(Z|X|Y)

[
ϕ1;
f ; A/B

]1 [
ϕ2;
x; B

]2
ϕ1 ◦ϕ2; f(x); A

|I1
λϕ1.ϕ1 ◦ϕ2;
λf.f(x); A|(A/B)

|I2
λϕ2λϕ1.ϕ1 ◦ϕ2;
λxλf.f(x); A|(A/B)|B

λϕ1λϕ2.ϕ2 ◦ϕ1; resp3(λxλf.f(x)); A|(A/B)|B
λϕ2.ϕ2 ◦ b; resp3(λxλf.f(x))(〈a1, ..., al〉); A|(A/B)

a ◦ b; resp3(λxλf.f(x))(〈a1, ..., al〉)(〈f, ..., f〉); A
. .

a ◦ b; 〈f(a1), ..., f(al)〉; A

(31)

a;
〈f1, ..., fl〉;
A/B

λϕ.ϕ;
λx.

∏l
i x;

X|X
b;
a; B

b; 〈a, ..., a〉; B

...
...

λϕ1λϕ2.ϕ2 ◦ϕ1;
resp3(λxλf.f(x)); A|(A/B)|B

λϕ2.ϕ2 ◦ b; resp3(λxλf.f(x))(〈a, ..., a〉); A|(A/B)

a ◦ b; resp3(λxλf.f(x))(〈a, ..., a〉)(〈f1, ..., fl〉); A
. .

a ◦ b; 〈f1(a), ..., fl(a)〉; A

4 Extension of the analysis

In this section, we extend the above analysis in two ways. We first show that,
by enriching the calculus with rules for hypothetical reasoning for directional
slashes / and \, the interaction between ‘respective’ readings and nonconstituent

12

coordination exemplified by the data such as (2) straightforwardly falls out. We
then extend the tuple-based analysis to symmetrical predicates and show that
this analysis immediately extends to multiple dependencies among symmetrical
and ‘respective’ predicates observed in (3).

For the analysis of NCC, we add the following Introduction rules for direc-
tional slashes / and \:

(32) a. Forward Slash Introduction
...

...
...

...

[ϕ; x; A]n

...
...

...
...

...
...

b ◦ϕ; F ; B
/In

b; λx.F ; B/A

b. Backward Slash Introduction
...

...
...

...

[ϕ; x; A]n

...
...

...
...

...
...

ϕ ◦ b; F ; B
\In

b; λx.F ; A\B

In TLCG, dependent cluster coordination is analyzed by directly analyzing
the apparent nonconstituents that are coordinated in examples like (33) to be a
(higher-order) derived constituent, via hypothetical reasoning.

(33) I lent Syntactic Structures and Barriers to Robin on Thursday and to
Mary on Friday, respectively.

Specifically, by hypothesizing the verb and the direct object and withdrawing
them after a whole VP is formed, the string to Robin on Thursday can be
analyzed as a constituent of type NP\(VP/PP/NP)\VP:

(34) [ϕ1;P ; VP/PP/NP]1 [ϕ2;x; NP]2
/E

ϕ1 ◦ϕ2; P (x); VP/PP
to ◦ robin;
r; PP

/E
ϕ1 ◦ϕ2 ◦ to ◦ robin; P (x)(r); VP

on ◦ thursday;
onTh; VP\VP

\E
ϕ1 ◦ϕ2 ◦ to ◦ robin ◦ on ◦ thursday; onTh(P (x)(r)); VP

\I1
ϕ2 ◦ to ◦ robin ◦ on ◦ thursday; λP.onTh(P (x)(r)); (VP/PP/NP)\VP

\I2
to ◦ robin ◦ on ◦ thursday; λxλP.onTh(P (x)(r)); NP\(VP/PP/NP)\VP

We then derive a sentence containing gap positions corresponding to this
derived constituent and the object NP, that is, an expression that has the syn-
tactic type S|(NP\(VP/PP/NP)\VP)|NP, to be given as an argument to the
three-place resp3 operator (15) introduced above. Since the relevant steps are
the same as in the previous examples, we omit the details and just reproduce
the derived sign:

(35) λϕ1λϕ2.I ◦ lent ◦ϕ1 ◦ϕ2;
λxλf.f(x)(lend)(I); S|(NP\(VP/PP/NP)\VP)|NP

The rest of the derivation just involves giving this relation and the two product-
type arguments of types NP and NP\(VP/PP/NP)\VP respectively as argu-
ments to the resp3 operator. The final translation obtained:

(36) onTh(lend(s)(r))(I) ∧ onFr(lend(b)(l))(I)

13

corresponds exactly to the relevant reading of the sentence.
We now turn to an extension of the analysis to symmetrical predicates. The

key intuition behind our proposal here is that the NP containing same, different,
etc. (we call such NPs ‘symmetrical terms’ below) in examples like (37) denotes
a tuple (linked to the other tuple denoted by the plural John and Bill in the
same way as in the ‘respective’ readings above) but that it imposes a special
condition on each member of the tuple.

(37) John and Bill read the same book.

Specifically, to assign the right meaning to (37), John and Bill need to be each
paired with an identical book, and in the case of different, they need to be paired
with distinct books. To capture this additional constraint on the tuples denoted
by symmetrical terms, we assign to them GQ-type meanings of type S|(S|NP),
where the abstracted NP in their arguments are product-type expressions:9

(38) a. λϕ0λσ0.σ0(the ◦ same ◦ϕ0);
λPλQ.∃X×∀i P (πi(X×)) ∧ ∀i∀j[πi(X×) = πj(X×)] ∧Q(X×);
S|(S|NP)|N

b. λϕ0λσ0.σ0(different ◦ϕ0);
λPλQ.∃X×∀i P (πi(X×)) ∧ ∀i∀j[i 6= j → πi(X×) 6= πj(X×)] ∧Q(X×);
S|(S|NP)|N

For both the same N and different Ns, the relevant tuple (which enters into
the ‘respective’ relation with another tuple via the resp3 operator) consists of

9 So far as we can tell, the lexical meanings given in (38) capture the truth conditions
for the internal readings of same and different correctly. A reviewer raises a concern
that (38a) may be too weak as the meaning of same since the existentially bound
X× would merely be ‘a common subset of the books read by John and by [Bill], while
the actual sets of read books may still differ’. We do not agree with this reviewer. We
believe that (37) is true and felicitous as long as one can identify (at least) one book
commonly read by John and Bill. They may have read other books in addition, but
that doesn’t make (37) false or infelicitous. Such an implication, if felt to be present,
is presumably a conversational implicature since it’s clearly cancellable:

(i) John and Bill read the same book, although they both read several different
books in addition.

Likewise, the same reviewer says that in (38b), as it stand, ‘it suffices if X× is taken,
say, as a pair of different books read by both, all other books still being the same’,
on the basis of which s/he claims that the truth conditions need to be strengthed
in such a way that X× satisfies some maximality condition. Here again, we disagree.
The following (ii) shows that the maximality implication excluding the existence of
common books read by the two (if present at all) is not part of the entailment of
the sentence.

(ii) John and Bill read different books, although they read the same books too.

14

objects that satisfy the description provided by the N. The difference is that in
the case of same, the elements of the tuple are all constrained to be identical,
whereas in the case of different, they are constrained to differ from one another.

The analysis for (37) now goes as follows:

(39)

λϕ0λσ0.
σ0(the ◦
same ◦ϕ0);

same;
S|(S|NP)|N

book;
book;
N

λσ0.σ0(the ◦
same ◦ book);

same(book);
S|(S|NP)

λϕ1.ϕ1;
λp.
∧

i
πi(p);
S|S

john ◦
and ◦
bill;
〈j,b〉;
NP

[ϕ;
X×;
NP

]1
λσ0λϕ1λϕ2.
σ0(ϕ1)(ϕ2);
resp3;
(Z|X|Y)|(Z|X|Y)

...
...

λϕ3λϕ4.
ϕ4 ◦ read ◦
ϕ3;
read;
S|NP|NP

λϕ1λϕ2.ϕ2 ◦ read ◦ϕ1;
resp3(read);
S|NP|NP

λϕ2.ϕ2 ◦ read ◦ϕ;
resp3(read)(X×);
S|NP

john ◦ and ◦ bill ◦ read ◦ϕ;
resp3(read)(X×)(〈j,b〉); S

john ◦ and ◦ bill ◦ read ◦ϕ;∧
i πi(resp3(read)(X×)(〈j,b〉)); S

|I1
λϕ.john ◦ and ◦ bill ◦ read ◦ϕ;
λX×.

∧
i πi(resp3(read)(X×)(〈j,b〉)); S|NP

john ◦ and ◦ bill ◦ read ◦ the ◦ same ◦ book;
same(book)(λX×.

∧
i πi(resp3(read)(X×)(〈j,b〉))); S

The derivation proceeds by first positing a product-type variable X×, which
is related to the other product-type term denoted by John and Bill via the
resp operator. Then, after the boolean reduction operator reduces the pair of
propositions to their conjunction, the variable X× is abstracted over to yield a
property of product-type objects (of syntactic type S|NP). Since the same book
is a GQ over product-type terms, it takes this property as an argument to return
a proposition.

The final translation is unpacked in (40):

(40) same(book)(λX×.
∧

i πi(resp3(read)(X×)(〈j,b〉)))
= ∃X×∀ibook(πi(X×))∧∀i∀j[πi(X×) = πj(X×)]∧

∧
i πi(resp3(read)(X×)(〈j,b〉))

= ∃X×∀ibook(πi(X×)) ∧ ∀i∀j[πi(X×) = πj(X×)] ∧ read(π1(X×))(j)∧
read(π2(X×))(b)

Since, by definition, π1(X×) = π2(X×), this correctly ensures that the book that
John read and the one that Bill read are identical.

Importantly, since the same ‘respective’ operator is at the core of the anal-
ysis as in the case of ‘respective’ readings, this analysis immediately predicts
that symmetrical predicates can enter into multiple dependencies both among
themselves and with respect to ‘respective’ predication, as exemplified by the
data in (3). Since the relevant derivations can be reconstructed easily by taking
(18)–(19) as a model, we omit the details and reproduce here only the derived
meanings for (3b) and (3c) in (41) and (42), respectively.

15

(41) same(book)(λX×.give(m)(π1(X×))(j) ∧ give(s)(π2(X×))(b))

= ∃X×∀ibook(πi(X×)) ∧ ∀i∀j[πi(X×) = πj(X×)] ∧ give(m)(π1(X×))(j) ∧
give(s)(π2(X×))(b)

(42) same(book)(λX×.same(man)(λY×.give(π1(Y×))(π1(X×))(j)
∧give(π2(Y×))(π2(X×))(b)))

= ∃X×∀ibook(πi(X×)) ∧ ∀i∀j[πi(X×) = πj(X×)] ∧ ∃Y×∀iman(πi(Y×)) ∧
∀i∀j[πi(Y×) = πj(Y×)]∧give(π1(Y×))(π1(X×))(j)∧give(π2(Y×))(π2(X×))(b)

5 Conclusion

In this paper, we have proposed a unified analysis of ‘respective’ readings and
symmetrical predicates, building on the previous accounts of the two phenom-
ena by Gawron and Kehler (2004) and Barker (2007). While these two previous
proposals look apparently quite different from each other, in that one involves
a nonlocal mechanism for obtaining the right meaning of the sentence whereas
the other involves a chain of local operations, we showed that the underlying
mechanisms that they rely on are not so different from each other, and that, by
recasting the two analyses in a general calculus of the syntax-semantics inter-
face, one (G&K) can essentially be seen as a ‘lexicalized’ version of the other
(Barker), in the sense that it involves only local composition rules but these local
composition rules themselves can be derived from the general rules for ‘pairwise’
predication posited in the latter. We argued that this enables us to unify the
analyses of ‘respective’ readings and symmetrical predicates, and that such a
unified analysis is empirically desirable; it immediately accounts for the close
parallels and interactions between ‘respective’ and symmetrical predication via
a single uniform mechanism of pairwise predication that is at the core of the
semantics of both phenomena. We have demonstrated this point by working out
an explicit analysis that captures these parallels and interactions between the
two phenomena systematically.

We would like to comment on one technical (and conceptual) point (albeit
briefly) before concluding the paper. As noted by two reviewers, the present sys-
tem relies heavily on empty operators manipulating tuple-denoting objects to
yield ‘respective’ readings and these operators do not affect the syntactic types
of the expressions that they apply to. So, for example, a perfectly well-formed
syntactic derivation may nonetheless yield an incongruent semantic translation
because there is a type mismatch in the semantics. One could alternatively explic-
itly distinguish tuple-denoting expressions from expressions denoting non-tuple
objects by enriching the syntactic typing system with product connectives (so
that, for example, John and Bill denoting the tuple 〈j,b〉 has syntactic type
NP×NP rather than NP). This will enable us to retain the straightforward func-
tional mapping from syntactic types to semantic types standard in the categorial
grammar syntax-semantics interface.10 Moreover, such an approach may enable

10 But note that, though standard, it’s not clear whether this assumption is empirically
motivated. See for example Linear Grammar (Mihaliček and Pollard, 2012), which

16

us to do away with the empty operators that we posit as lexical assumptions in
the current system by letting the deductive rules for the product types do the
work that these operators undertake in the current fragment. Thus, this seems to
be a promising possibility to explore, which may elucidate the ‘logic’ underlying
‘respective’ and symmetrical predication even more. We do not see any obstacle
in principle for refining the analysis presented above along these lines, and would
like to explore this possibility in a future study.

Acknowledgments. We thank reviewers for FG 2014 for their comments. The
first author acknowledges the financial support from the Japan Society for the
Promotion of Science (Postdoctoral Fellowship for Research Abroad).

References

Barker, Chris. 2007. Parasitic scope. Linguistics and Philosophy 30:407–444.
Bekki, Daisuke. 2006. Heikooteki-kaishaku-niokeru yoosokan-junjo-to bunmyaku-izon-

sei (The order of elements and context dependence in the ’respective’ interpretation).
In Nihon Gengo-Gakkai Dai 132-kai Taikai Yokooshuu (Proceedings from the 132nd
Meeting of the Linguistic Society of Japan), 47–52.

de Groote, Philippe. 2001. Towards abstract categorial grammars. In Association
for Computational Linguistics, 39th Annual Meeting and 10th Conference of the
European Chapter, 148–155.

Gawron, Jean Mark and Andrew Kehler. 2004. The semantics of respective readings,
conjunction, and filler-gap dependencies. Linguistics and Philosophy 27(2):169–207.

Kubota, Yusuke. to appear. Nonconstituent coordination in Japanese as constituent
coordination: An analysis in Hybrid Type-Logical Categorial Grammar. Linguistic
Inquiry 46(1).

Kubota, Yusuke and Robert Levine. 2012. Gapping as like-category coordination. In
D. Béchet and A. Dikovsky, eds., Logical Aspects of Computational Linguistics 2012,
135–150. Heidelberg: Springer.

Kubota, Yusuke and Robert Levine. 2013. Determiner gapping as higher-order discon-
tinuous constituency. In G. Morrill and M.-J. Nederhof, eds., Proceedings of Formal
Grammar 2012 and 2013, 225–241. Heidelberg: Springer.

Kubota, Yusuke and Robert Levine. 2014. Pseudogapping as pseudo-VP ellipsis. In
N. Asher and S. Soloviev, eds., Logical Aspects of Computational Linguistics 2014,
122–137. Heidelberg: Springer.

Mihaliček, Vedrana and Carl Pollard. 2012. Distinguishing phenogrammar from tec-
togrammar simplifies the analysis of interrogatives. In P. de Groote and M.-J. Neder-
hof, eds., Formal Grammar 2010/2011, 130–145. Heidelberg: Springer.

Muskens, Reinhard. 2003. Language, lambdas, and logic. In G.-J. Kruijff and R. Oehrle,
eds., Resource Sensitivity in Binding and Anaphora, 23–54. Dordrecht: Kluwer.

Oehrle, Richard T. 1994. Term-labeled categorial type systems. Linguistics and Phi-
losophy 17(6):633–678.

Worth, Chris. 2014. The phenogrammar of coordination. In Proceedings of the EACL
2014 Workshop on Type Theory and Natural Language Semantics (TTNLS), 28–36.
Gothenburg, Sweden: Association for Computational Linguistics.

explicitly rejects the functional mapping from syntactic types to semantic types (see
in particular Worth (2014, section 1.1) for an explicit statement of this point).

17

Appendix

Lemma: For any arbitrary complex structure S licensed by the G&K fragment
with semantic translation Γ and which contains exactly one occurrence of a term
t whose semantic translation is x, we obtain a structure S′ by replacing t in S
with a term whose translation is 〈a1, . . . , al〉. Then for the semantic translation
of S′ Ψ , the following holds:

(?) Ψ = 〈Γ [x/a1], . . . , Γ [x/al]〉

Proof: The proof is by induction.

Base case: Since Γ = x and Ψ = 〈a1, . . . , al〉, it trivially follows that (?) holds.

Inductive step: We have two cases to consider: (i) S consists of a function f
and a structure T (with translation Ω, which is an argument of f) that satisfies
(?); (ii) S consists of a structure T (with translation Ω) that satisfies (?) and a
term c that is an argument of Ω. We consider (i) first.

(i)

ϕ2; f ; X/Y

...
...

...

...
...

...

ϕ0; x; A

...
...

...
...

...

...
...

...
ϕ1;
Ω; Y

ϕ2 ◦ϕ1; f(Ω); X

Since T satisfies (?), there is a structure T ′ in which x in T is replaced by
〈a1, ..., al〉 such that the following holds between Ω and Ω′, the translations of
T and T ′: Ω′ = 〈Ω[x/a1], ..., Ω[x/an]〉.

We are interested in the translation Γ ′ of a structure S′, which can be ob-
tained by replacing t with a term whose translation is 〈a1, ..., al〉. By replacing
T in S with T ′, we obtain just such a structure:

(i’)

ϕ2; f ; X/Y

...
...

...

...
...

...

ϕ′0; 〈a1, ..., al〉; A

...
...

...
...

...

...
...

...

ϕ′1;
Ω′; Y

Rule 1
ϕ2 ◦ϕ′1; Γ ′; X

Thus,
Γ ′ = 〈f(Ω[x/a1]), ..., f(Ω[x/an])〉 (via Rule 1)

= 〈(f(Ω))[x/a1], ..., (f(Ω))[x/an]〉 (since x is fresh in f)
= 〈Γ [x/a1], ..., Γ [x/an]〉 (since Γ = f(Ω))

Case (ii) can be proven similarly to case (i).

