
An Implicit Surface Prototype for Evolving Human Figure Geometry
Technical Report OSU-ACCAD-11/00-TR2

Matthew Lewis
∗

Advanced Computing Center for the Arts and Design

The Ohio State University

Richard Parent
†

Department of Computer and Information Science

The Ohio State University

Abstract

This paper describes one method of constructing a para-
metric human model for use in evolving humanoid character
geometry. Interactive aesthetic selection is employed as a fit-
ness function for producing successive populations of human
models from an initial parametric human model constructed
from a hierarchy of implicit surfaces. The parameters con-
trolling the size, position, and orientation of groups of im-
plicit surfaces are discussed, as well as the usage of a genetic
algorithm within a 3D animation authoring package.

1 INTRODUCTION

1.1 Overview

Given the rising popularity of online games and avatar-based
3D virtual environments, the need is increasing for soft-
ware that enables individuals with little or no experience
in 3D modeling to generate custom content such as build-
ings, characters, materials, and objects for personal use in
these spaces. In contrast to the usual constructive meth-
ods of design, aesthetic evolutionary design (AED) is a pro-
cess in which a designer is presented with a population of
dissimilar computer-generated objects and asked to judge
them. The computer then combines members of the cur-
rent population, taking the user’s preferences into account,
and generates a new population of design solutions. Evolu-
tion occurs as traits selected as desirable by the designer are
passed on from ancestors to descendants in further rounds
of selection. Images, human figures, architecture, consumer
products, and motion have all been evolved by aesthetic evo-
lutionary design (see section 1.2.2).

Constructing a parametric description of an object as a
basis for evolution implies the building of a “prototype”
model with adjustable parameters. A simple desk prototype,
for example, might have parameters such as color, material,
height, shape, number of drawers, drawer positions, and so
forth. The parameters defined for this prototype would form
an N-dimensional space of possible desks, i.e., each point in
this space maps to a specific desk model. Instead of search-
ing for a desired model by making small adjustments, slowly
tweaking each attribute in turn, AED software gives the de-
signer the ability to browse several regions of the implicitly
defined “desk space” simultaneously. This is implemented
by displaying a population of possible desk designs, and al-
lowing the user to judge them by specifying which are the
most (and/or perhaps the least) interesting. Given the user’s
critique, the system can then generate a new population of

∗ACCAD, 1224 Kinnear Road, Columbus, OH 43212 USA,
mlewis@cgrg.ohio-state.edu

†CIS, 395 Dreese Lab, 2015 Neal Avenue, Columbus, OH 43210
USA, parent@cis.ohio-state.edu

desk design proposals. The designer of the desk prototype
does not so much attempt to craft a well made desk, as to
select parameter ranges and weights that define a space con-
taining all desks that the designer would like users of the
prototype to be able to discover.

For this work, Side Effects Software Inc.’s Houdini [35]
was used as a 3D software development environment to pro-
duce a high-level interactive evolution interface [26]. Hou-
dini’s embedded scripting languages and data flow networks
provide a development environment flexible enough to en-
able the rapid construction of arbitrarily complex geometry
manipulation interfaces and tools, such as the one presented
in this paper.

1.2 Background

1.2.1 Human Figure Modeling

Human figures for animation and computer games are typ-
ically modeled by expert users of animation software pack-
ages such as Maya [2] or 3D Studio MAX [4]. Ergonomic
simulation products such as Jack [41], BMD-HMS [13], and
the Safework VirtualMan [34] have all provided the ability
to represent humans with highly realistic, percentile-based
proportions. These ergonomics packages are generally fo-
cused on functional representation and animation and do
not usually provide a great deal of aesthetic flexibility.

Avatar modeling software has specifically been created to
allow users to create custom, low polygon human figures for
use in online multi-user environments such as Blaxxun [9]
and Active Worlds [1]. Many avatar creation systems allow
for the replacement of individual body part segments with
arbitrary geometric objects, individual part scaling, part col-
oring, and selection from a discrete set of textures [30] [38].

Poser provides a collection of human bodies with high
polygon counts as well as an interface for smoothly scal-
ing individual body parts [18]. ANTHROPOS is a NURBS
based 3D Studio MAX plug-in which allows body segment
scaling and includes some high level parameters for adjusting
attributes like race and weight [16]. Metaballs [11] have been
used for modeling humans for quite some time [10]. Boulic’s
system, like the work described in this paper, also used meta-
balls as modeling primitives and provided several parameters
for controlling the relative proportions of the body [14].

While most of the above at minimum allow for the in-
dividual sizing of body parts (e.g., make the left forearm
longer or the right thigh thicker), games such as the many
Quake [25] and Unreal [21] variants typically only allow play-
ers to select from a set of models, with little support for
avatar customization beyond texture selection.

(a) Default Prototype Body (b) Transformed Segments

Figure 1: Metaballs

1.2.2 Aesthetic Evolutionary Design

For many formal visual design problem spaces, it is very dif-
ficult to produce a fitness function to allow the computer to
automatically judge the quality of procedurally generated
designs. In domains where a human designer must make
aesthetic judgments, this is particularly difficult. One so-
lution is to introduce interactive human evaluation into the
assignment of fitness. This has been referred to as aesthetic
evolutionary design (AED) [7]. AED can provide a very
worthwhile design exploration tool for many design domains,
as can be seen by the numerous systems which have made
use of the technique.

Following Dawkins’ biologically inspired Biomorphs pro-
gram [19] which evolved 2D insect-like drawings, Todd,
Latham [40], and Sims [36] were the first to evolve computer
graphics objects via aesthetic selection. Images [22] [43] [24],
sculpture [39], architecture [12] [17] [32], image process-
ing [31], consumer products [8] [20] [37] [23], human bod-
ies [27] and faces [15] [5], and character motion [3] [42] [29]
have all been evolved by aesthetic selection.

Many others have made systems for evolving images and
form using variations on the techniques employed by Sims,
Todd, and Latham. Links to a number of these can be found
at [28]. Rowbottom provides a detailed overview of the func-
tionality of many of these as well [33].

2 Parametric Human Figures

Modifying the parameters of a generic prototype human
model with a large number of continuous numeric attributes
can produce a nearly infinite number of human figure de-
signs. The model’s parameters control the relative size and
orientation of body parts, as well as localized deformation
of the parts. For this implementation, the body part seg-
ments are constructed from a hierarchy of metaballs [11] as

described below.

2.1 Prototype Geometry

The prototype body shown (Figure 1) consists of 35 meta-
balls. Body segments (mostly corresponding to bones be-
tween joints) are represented by one to three metaballs and
are placed in a hierarchy rooted at the pelvis. The hierarchy
used for this example corresponds roughly to LOA1 of the
H-Anim standard with a few minor deviations [6].

Lateral symmetry is maintained when resizing segments.
Segment placement is adjusted as segments are scaled in
order to maintain relative joint positions. For example, if
the thighs are uniformly scaled down, they are translated
toward the pelvis to keep the hip joints at the top of the thigh
segments. The calf segments are also translated upward to
maintain knee joint placement. (Figure 3(a)). Each segment
in the hierarchy is transformed1 as follows:

TG =

n
∏

k=0

(TPk
· Rk · TOk

) (1)

TG is a given segment’s global transform, n is the number
of ancestors the segment has in the figure hierarchy, and k
identifies an ancestor, with k = 0 referring to the segment
itself. TP is a segment’s pivot translation matrix, which
positions the segment relative to its parent joint:

TP = TPd
· S (2)

A segment’s pivot translation TP is always the initial de-
fault value of the pivot translation TPd

multiplied by the
segment’s current scale S. So as a segment’s size changes, so
too does the distance between the segment and its parent, as

1The vertices represented as column vectors are pre-multiplied
by the tranform matrices.

2

6

-
r�����r�

�
�

�
��

r

0
1/sm

1

S(p)

sm

0 0.5
p

1

Figure 2: S(p)

well as the distance between each of the segment’s children
and the segment. R is the rotation of the parent joint of
the segment. TO is the offset translation which positions the
segment relative to its parent segment.

Note that while the representation used for this imple-
mentation of a parametric resizeable humanoid is a hierar-
chy of metaballs, any number of other representations could
also have been used for the geometry. The first implemen-
tation of this approach used a single fixed polyhedral “skin”
deformed by an internal hierarchical skeleton [27]. Either
a simpler body consisting of separate polyhedral segments
for each body part or a more complicated body built from
many NURBS patches or subdivision surfaces could be used,
so long as modifications to the body can be controlled by a
set of parameters. The implicit surface technique was used
this time to improve the smoothness of the skin under ex-
treme deformation. A further improvement would be to use
subdivision surfaces with localized crease control to allow for
hard creases where necessary.

2.2 Segment Sizing Parameters

Each body segment has five sizing parameters controlling
its scale. These are length, width, depth, thickness, and
size. The length parameter controls scaling for most seg-
ments along the global Y-axis. The exceptions are the arm
and hand segments, whose length aligns with the X-axis, and
the feet, whose length aligns with the Z-axis. Depth controls
scaling along the global Z-axis for all segments except the
hands and feet, whose depth aligns with the Y-axis (hands
are out at the sides, palm down). Width controls scaling
orthogonally to depth and length. The thickness parameter
is provided to permit simultaneous scaling in both the depth
and width directions, while the size parameter allows simul-
taneous scaling of depth, width, and length (i.e., uniform
scale).

All of the parameters controlling the adjustable proper-
ties of the body (and which will be referred to as genes
later in the paper) have values in the [0..1] range, with their
default set to 0.5. Most of these parameters need to be
mapped from their normalized value domain into an appro-
priate parameter-specific range. Given a normalized param-
eter p controlling size and a maximum scale value sm, the
appropriate scaling value is determined by:

S(p) =

{

1

sm
+ 2p(1− 1

sm
) if p < 0.5

1 + (2p− 1)(sm − 1) otherwise
(3)

(a) Scaling the Thighs

(b) Scaling the Torso

Figure 3: Part Sizing

3

Therefore, when a parameter controlling the scale of some
body part is set to its default value of 0.5, the body part’s
scale is set to one (i.e., no change in size). If the parameter
controlling the length of the thigh were to increase from
its default value of 0.5 to its maximum normalized value
of 1, then the left thigh would be scaled to sm times its
default length. If the parameter is decreased to zero, the
thigh length is scaled by 1/sm (figure 2).

The five parameters (i.e., width, length, depth, thickness,
and size) discussed above which directly affect a segment’s
scale will by referred to as: 〈pw, pl, pd, pt, ps〉. These are
used to find the amount to scale along the width, length, and
depth axes using equation 3 as follows:

scale =

[

sw

sl

sd

]

=

[

S((pw + pt + ps)/3)
S((pl + ps)/2)
S((pd + pt + ps)/3)

]

(4)

2.3 Hierarchical Sizing Parameters

In the previous section, parameters were described which
control the size of individual segments in various dimensions.
Similar parameters are also used to allow segments related
by proximity and function to be sized simultaneously. For
example, one might want to make the legs thicker, by scaling
the width and depth of thighs and calves, using a single “leg
thickness” parameter. The higher level body parts imple-
mented include the legs, arms, trunk, upper trunk, and lower
trunk.

For each of these parts, the same five sizing parameters
discussed above are created (i.e., width, length, depth, thick-
ness, and size). These five parameters are first decomposed
into the primary three orthogonal parameters, width, length
and depth, in much the same manner as in equation 4 above,
only now the results are mapped into a [−1..1] range:

[

pw

pl

pd

]

=

[

2(pw + pt + ps)/3− 1
pl + ps − 1
2(pd + pt + ps)/3− 1

]

(5)

The three resulting primary orthographic parameters,
taken collectively for each of the higher level body parts
(e.g. arms, legs) forms a 3 × np matrix P, where np is the
number of higher level parts. Additionally, for each part, a
segment mask vector is created of length ns, where ns is the
number of segments. Each element of the vector indicates
the degree to which a segment is a member of the higher
level body part, and is in the range [0..1]. For example, the
mask vector for an arm might contain a membership weight
for each segment as follows:

Marm =

0
0

0.5
1
1
...

//head
//torso
//shoulder
//upperarm
//lowerarm
...

(6)

An np×ns matrixM is then constructed with the segment
masks as rows. Finally, a 3 × ns matrix B, encoding the
amount to modify each segment’s width, length, and depth,
according to the current part sizing parameters, is found by:

B = P ·M (7)

Each element of B, bij , is at this point still in the range
[−1..1] and needs to be remapped using equation 4:

b′ij = S((bij/2) + 0.5) (8)

(a) (b)

Figure 4: Pelvic Tilt

The width, length and depth of each segment can then be
multiplied by the elements in the corresponding column of
B.

2.4 Resting Posture

Additional parameters were added to demonstrate control
of a few resting postural properties such as pelvic tilt and
the arch of the back. The tilt of the pelvis greatly affects
perception of gender (Figure 4), while the arch of the back
can yield a lazy slouch or a proud chest. Changing one of
these parameters modifies the base rotation of the affected
postural joints. The postural joints required for these exam-
ples were single degree of freedom, and included three spinal
joints and the hips.

Given the set of all joints J = {j0, j1, . . . , jnj−1} affected
by one or more posture parameters, the set of posture pa-
rameters P = {p0, p1, . . . , pnp−1}, a vector D of default joint
rotation values, and a pair of matrices Xmin and Xmax con-
taining the minimum and maximum rotations caused by
each postural parameter for each of the joints in J , a fig-
ure’s postural joint rotations can be determined as follows:

ji = Di +
∑

k

L(pk, Xminik
, Di, Xmaxik

) (9)

with,

L(p, lo, d, hi) =

{

(2p− 1)(d− lo) if p < 0.5
(2p− 1)(hi− d) otherwise

(10)

As was mentioned above, for this simple implementation,
postural joints only needed to rotate around the X-axis. If
arbitrary rotations were needed, then equation 9 would need
to become a product of rotation matrices instead of the sum
of joint angle changes, and the interpolation in equation 10
would be replaced by quaternion based spherical linear in-
terpolation. Note also that while L could employ a smoother
interpolation of the minimum default and extreme values if
desired, such smoothing would bias the parameters values
and is unnecessary for our purposes.

4

(a) (b)

Figure 5: Surface Deformation

2.5 Local Surface Deformations

Localized deformations of the surface geometry can be pa-
rameterized in a number of ways, depending on the desired
effect and the primitive geometry being manipulated. While
local deformations in the previous implementation of this
work employed lattice based deformers [27], the flexibility
granted by the blending of metaballs allows metaball siz-
ing, placement, and shaping (via exponent adjustment) to
be used to modify localized surface deformations. As an
example, to facilitate the implementation of a “gender” pa-
rameter (described below), several chest deformation param-
eters were created which control the size, depth, orientation,
and curvature of a pair of metaballs on the surface of the
chest. This simplification gives sufficient variety to produce
the suggestion of breasts or muscular pectorals of various
sizes and shapes (Figure 5).

The method by which the chest deformation parameters
are mapped into the scale, rotation, translation, and expo-
nents of the metaballs will now be described. The process
generalizes to any number of body attribute deformation
parameters mapping to specific transformation values of ge-
ometric primitives. Just as in equation 9, the low level de-
formation attributes d (e.g., the Z-axis translation of a chest
metaball) are found using a vector D of default values for d
and matrices Xmin and Xmax containing minimum and max-
imum values for each low level deformation attribute for each
deformation parameter. The weighted influence of each of
the deformation parameters p is summed:

di = Di +
∑

k

wik · L(pk, Xminik
, Di, Xmaxik

) (11)

The weight of influence of parameter pk on di is given by
wik, and L is from equation 10.

2.6 High-level Parameters

So far, low-level parameters have been described that allow
individual body parts to be resized (e.g., “make the left fore-
arm thicker”) and it has been shown how localized regions
can be reshaped parametrically. Mid-level parameters have
been presented for sizing related groups of segments (e.g.,
“make the legs longer”) as well as for reorienting certain
groups. The implementation of higher level parameters such
as weight, height, muscle, age, and gender, which modify

(a) thin (b) heavy

(c) weak (d) strong

(e) young (f) old

(g) short (h) tall

(i) female (j) male

Figure 6: High Level Parameters

5

subsets of the previously described parameters will now be
described. Effects of such parameters are shown in figure 6.

Each of these high level parameters has affiliated with
it a list of parameters to be affected. As was seen before
with deformation and posture parameters, there are once
again matrices Xmin and Xmax containing the minimum and
maximum values by which each affected parameter should
be modified when each high-level parameter changes. These
limits represent aesthetic choices made by the designer of the
prototype human body. These numbers are easily adjusted,
as designers will no doubt have very different opinions about
what ratio of hip-to-shoulder proportion is appropriate for
perception of gender, for example.

The change in each parameter (∆pi) based on the value
of each high level parameter hk is as follows:

∆pi =
∑

k

wik · L(hk, Xminik
, 0, Xmaxik

) (12)

The weight of the influence of parameter hk on ∆pi is
again specified by a matrix W of weights wik, and L is from
equation 10. Note that the X matrices need not really con-
tain a “minimum” or “maximum”. Rather they are just
the amount by which the parameter in question should be
modified, as the hk changes from 0.5 to either extreme.

Like the limits specified in Xmin and Xmax, the weights in
W are again chosen by the designer of the human prototype
model. Although the lack of parameter clamping can poten-
tially push parameters out of their normalized ranges, this
is not a problem in practice, and it might even be seen as a
benefit in this evolutionary design context since it ultimately
broadens the low level parameter ranges and thus the scope
of the potential search space. If it were to become an is-
sue for a given prototype implementation, parameters could
be clamped when the changes calculated in equation 12 are
added.

3 Evolving Parameter Values

3.1 Concept

The total set of parameters defined for the prototype figure
described in the previous section forms an N-dimensional,
continuous parametric space C of possible human figures.
Each point in this space maps to a specific (though not nec-
essarily visually unique) human figure. Instead of searching
for an interesting model by making small, single axis ad-
justments in C by adjusting one parameter at a time, several
regions of C are browsed simultaneously. This is done by dis-
playing a population of possible designs (each corresponding
to a point in C) and allowing the user to judge them by se-
lecting those deemed the most interesting. Given the user’s
critique, the system can then generate a new population of
design proposals.

To produce the next generation, members of the previ-
ous generation are “mated” with preference given to those
marked attractive by the user. The mating process discussed
below tends to endow children with many of their parents’
parameters (e.g., if short, fat parents are selected, short, fat
offspring are likely). This process allows the user to travel
through parameter space in the direction of greatest aes-
thetic preference.

3.2 Algorithm and Interface

When the system is started, an initial population of human
models is generated by creating the desired number of copies

of the prototype and generating random normalized values
for each copy’s parameters. The copies are each displayed
in a grid (Figure 8). The list of parameter values controlling
the shape of each figure is called the genotype. Each individ-
ual parameter is referred to as a gene, and each gene’s value
is called an allele. The human figure model produced by ap-
plying the parameter values to the prototype model is called
a phenotype. In this implementation of the human proto-
type, each figure’s genotype contains ninety-six genes2, each
of which corresponds to one of the normalized parameters
discussed in section 2.

Given that the initial default prototype body was created
to be fairly “realistic” in terms of proportion and scale, the
degree of deviation from the default parameter settings that
is permitted will determine the realism of the resulting pop-
ulation as can be seen by comparing Figures 8(a) and 8(b).
This deviation can be globally adjusted by mapping the al-
leles into a [−1..1] range and then scaling them as desired.

Additional control over the realism of the initial popu-
lations can be gained in general by controlling the amount
that the body segments’ relative sizes are constrained. The
different subsets of genes discussed in the subsections 2.2
through 2.6 can be weighted to modify their relative influ-
ence. If more weight is given to the higher level parameters,
and less to the low level segment sizing, then changes will
largely be made in more realistic ways: bodies will be overall
taller, thinner, stronger, etc., while maintaining more real-
istic proportions. If, on the other hand, low-level segment
sizing is given more weight than the high level genes, then
a much wider variety of large and small segments may re-
sult, yielding perhaps more potentially interesting character
designs. The tuning of these additional weights gives yet
another aesthetic choice to the designer of the human pro-
totype.

Once the initial population has been generated and dis-
played, the user selects the members of the population found
to be most pleasing by selecting them with the mouse. Each
figure has a time-based expression in its Y rotation field
(($F − 1) ∗ 6) so that moving the animation time bar for-
ward and backward will cause each figure to rotate in place,
allowing for examination of the figures from all sides (Fig-
ure 8(c), selected figures are highlighted). For large pop-
ulations, it may be desirable to move the camera through
the space to examine subsets of the population more closely,
from arbitrary viewing positions (Figure 8(e)).

Custom interface components were assembled to control
the rate of evolution (Figure 7). The mutation amount and
frequency, crossover frequency, and population size can all
be adjusted. Mutation refers to random changes made to the
genes of the population. Crossover is the means by which
the genotypes of two selected parents are combined to form
a child genotype. This is implemented by copying a subse-
quence of genes from one parent, then “crossing over” to the
corresponding position in the other parent’s genotype and
continuing to copy the second parent’s genes into the off-
spring’s genotype. The “Crossover Frequency” controls the
number of times that the copying process switches between
the two genotypes when generating an offspring. Further de-
tails of the implementation of this process in Houdini’s data
flow networks are discussed in [26].

When the user presses the Make Next Generation button,

2The ninety-six parameters used here include sixty for segment
sizing (i.e., five parameters for each of twelve unique segments),
twenty-five for higher level part sizing (i.e., five parameters for
each of five higher level parts), two posture, four deformation,
and five high level parameters.

6

Figure 7: Evolution Interface

the genotypes of the selected figures are stored as the mating
pool for generating offspring for the next population. Mating
is conducted by iteratively selecting random pairs of geno-
types from the mating pool and performing crossover on the
pair to generate an offspring to add to the next generation.
Once the requested number of offspring are produced, some
percentage of their genes may optionally be mutated, intro-
ducing small random changes to some of the genes. If the
elitism option is activated, the figures chosen to be parents
will survive into the next generation (i.e., they are copied
unchanged).

As this process is repeated, the user typically reduces the
mutation and crossover rates to slow movement through de-
sign space from generation to generation. The search is grad-
ually narrowed until it converges into a specific region of the
parametric space upon which the user’s interest is focused
(Figures 8(d) and 9). Any figure’s parameters can be man-
ually adjusted at any time if desired. Also any individual
figure model’s geometry can be saved.

4 Conclusions and Future Work

As can be seen in the examples, a wide range of body types
can be easily generated using relatively simple parameters
and selection-driven interaction. Arbitrarily complex fig-
ures can be produced with these techniques by increasing the
number, complexity, and accuracy of primitives and param-
eters built into the human prototype, producing any desired
degree of realism and flexibility of form, limited only by the
prototype author’s modeling skills and the computer’s abil-
ity to display a population interactively. An interface like
the one described can be used in an exploratory manner for
brainstorming, to generate a large number of similar yet dif-
ferent entities quickly, or for creating finished geometry. The
primary purpose of this work, however, was to further de-
velop and explore the infrastructure required to support 3D
interactive evolution problem domains such as this.

For future work, using techniques such as those intro-
duced by Sims to evolve surface textures would be feasi-
ble [36]. Evolving character animation is also an interesting
area [3]. There is also a great need to study ways to fa-
cilitate fast visual review of larger numbers of individuals.
While it is possible to quickly create a very large population,
examining the members of the population for fitness using
the standard camera control interface is sometimes unwieldy.
Finally, learning a user’s aesthetic preferences by analyzing
selections is a fascinating area for future work.

5 Acknowledgments

Thanks to Wayne Carlson for supporting this work. Also
thanks to John Josephson, Beth Lewis, Flip Phillips, Side
Effects Software, and Lawson Wade for valuable discussions
and support.

Permission to display elements of the Houdini interface in
figure 7 courtesy of Side Effects Software Inc. All product
names mentioned are trademarks or registered trademarks
of their respective holders.

References

[1] ActiveWorlds.com, Inc. Active worlds.
http://www.activeworlds.com, 2000.

[2] Alias|Wavefront. Maya.
http://www.aliaswavefront.com, 2000.

[3] Riccardo Antonini. Implementing an avatar gesture de-
velopment tool as a creative evolutionary collaborative
system. In P. J. Bentley and D. Corne, editors, Pro-
ceedings of the AISB’99 Symposium on Creative Evolu-
tionary Systems (CES). Morgan Kaufmann, 1999.

[4] Autodesk, Inc. 3d Studio MAX.
http://www.discreet.com, 2000.

[5] Ellie Baker. Evolving line drawings. In Proceedings
of the Fifth International Conference on Genetic Algo-
rithms. Morgan Kaufmann, 1993.

[6] Matthew Beitler. H-Anim: Humanoid Animation
Working Group. http://www.h-anim.org, 2000.

[7] Peter J. Bentley. Evolutionary Design by Computers.
Morgan Kaufmann, 1999.

[8] Peter J. Bentley. From coffee tables to hospitals:
Generic evolutionary design. In Peter J. Bentley, editor,
Evolutionary Design by Computers, chapter 18, pages
405–423. Morgan Kaufmann, 1999.

[9] Blaxxun Interactive. Blaxxun community platform.
http://www.blaxxun.com, 2000.

[10] Jim Blinn. Nested transformations and blobby man.
IEEE Computer Graphics And Applications, pages 59–
65, October 1987.

[11] Jules Bloomenthal, editor. Introduction to Implicit Sur-
faces. Morgan Kaufmann, 1997.

[12] Beth Blostein. Procedural generation of alternative for-
mal and spatial configurations for use in architecture
and design. Technical Report OSU-ACCAD-5/95/TR1,
Advanced Computing Center for the Arts and Design,
The Ohio State University, 1995.

7

[13] The Boeing Company. Boeing Hu-
man Modeling System: BMD-HMS.
http://www.boeing.com/assocproducts/hms, 2000.

[14] R. Boulic et al. The HUMANOID environment for in-
teractive animation of multiple deformable human char-
acters. In Proceedings of Eurographics ‘95, Maastricht,
pages 337–348, August 1995.

[15] Craig Caldwell and Victor S. Johnston. Tracking crim-
inal suspect through “face-space” with a genetic algo-
rithm. In Proceedings of the Fourth International Con-
ference on Genetic Algorithms, pages 416–421, 1991.

[16] Cebas Computer, Inc. ANTHROPOS.
http://www.cebas.com, 2000.

[17] Paul Coates. Using genetic programming and L-systems
to explore 3d design worlds. In R. Junge, editor, CAAD-
Futures ’97. Kluwer Academic, Munich, 1997.

[18] Curious Labs, Inc. Poser. http://www.curiouslabs.com,
2000.

[19] Richard Dawkins. The Blind Watchmaker. Penguin
Books, 1986.

[20] Emergent Design. Chair farm. http://www.emergent-
design.com/dyn/chair.html, 2000.

[21] Epic Games, Inc. Unreal tournament.
http://www.unrealtournament.com, 1999.

[22] Janine Graf and Wolfgang Banzhaf. Interactive evo-
lution of images. In D. B. Fogel, editor, Proceedings
of the Fourth Annual Conference on Evolutionary Pro-
gramming, pages 53–65, 1995.

[23] I. J. Graham, R. L. Wood, and K. Case. Evolution-
ary form design: The application of genetic algorithmic
techniques to computer aided product design. In Pro-
ceedings of the 15th National Conference on Manufac-
turing Research (NCMR), ”Advances in Manufacturing
Technology Vol.13”, September 1999.

[24] Jano van Hemert. Mondriaan art by evolution.
http://www.wi.leidenuniv.nl/∼jvhemert/mondriaan,
2000.

[25] id Software, Inc. Quake III Arena.
http://www.idsoftware.com, 1999.

[26] Matthew Lewis. Aesthetic evolutionary design with
data flow networks (to appear). In Proceedings of Gen-
erative Art 2000, Milan, Italy, 2000.

[27] Matthew Lewis. Evolving human figure geometry. May
OSU-ACCAD-5/00-TR1, ACCAD, The Ohio State
University, 2000.

[28] Matthew Lewis. Visual aesthetic evolutionary
design links. http://www.cgrg.ohio-state.edu/
∼mlewis/aed.html, 2000.

[29] Ik Soo Lim and Daniel Thalmann. Pro-actively interac-
tive evolution for computer animation. In Proceedings
of Eurographics Workshop on Animation and Simula-
tion ’99 (CAS ’99), Milan, Italy, pages 45–52. Springer,
1999.

[30] MEET Factory. Avatar builder.
http://angels.kiasma.fng.fi/avatarbuilder, 2000.

[31] Riccardo Poli and Stefano Cagnoni. Evolution of
psuedo-colouring algorithms for image enhancement
with interactive genetic programming. In Proceedings
of the Second International Conference on Genetic Pro-
gramming, GP’97, pages 269–277. Morgan Kaufmann,
1997.

[32] M. A. Rosenman. An exploration into evolutionary
models for non-routine design. In D. Dasgupta and
Z. Michalewicz, editors, Evolutionary Algorithms in En-
gineering Applications, pages 69–86. Springer-Verlag,
1997.

[33] Andrew Rowbottom. Evolutionary art and form. In
Peter J. Bentley, editor, Evolutionary Design by Com-
puters, chapter 11, pages 261–277. Morgan Kaufmann,
1999.

[34] Safework, Inc. Virtual man.
http://www.safework.com/ contents.html, 2000.

[35] Side Effects Software, Inc. Houdini.
http://www.sidefx.com, 2000.

[36] Karl Sims. Artificial evolution for computer graphics.
ACM Computer Graphics, 25(4):319–328, 1991.

[37] Celestino Soddu. Argenic design: Chairs.
http://soddu2.dst.polimi.it/stoc sed.htm, 1999.

[38] Sven Technologies. Avatarmaker. http://www.sven-
tech.com, 2000.

[39] P. Tabuada, P. Alves, J. Gomes, and A. Rosa. 3d ar-
tificial art by genetic algorithms. In Proceedings of the
Workshop on Evolutionary Design at Artificial Intelli-
gence in Design - AID’ 98, pages 18–21, 1998.

[40] Stephen Todd and William Latham. Evolutionary Art
and Computers. Academic Press, 1992.

[41] Transom Technologies, Inc. Jack.
http://www.transom.com, 2000.

[42] Jeffrey Ventrella. Disney meets Darwin: The evolution
of funny animated figures. In Computer Animation ’95
Proceedings, Geneva, Switzerland, 1995.

[43] Jeffrey Ventrella. Tweaks. http://www.ventrella.com,
2000.

8

(a) (b)

(c) (d)

(e) (f)

Figure 8: Populations

9

(a) (b) (c)

(d) (e) (f)

Figure 9: Evolved Bodies

10

