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Abstract

A common criticism of many visual interactive evolutionary
design systems is that most of what they generate “all looks
the same”. For any given system’s output, formal visual
characteristics can frequently be identified that are shared
by a majority of designs produced by the system. These
visual traits can either be expressed in terms of shared de-
sign features (e.g., all corners are sharp) or a near complete
absence of traits (e.g., no curved edges on any individuals).
Several simple shape representations are presented here to
illustrate and explore the relationship between the use of var-
ious approaches for constructing design spaces and the visual
traits which result. It is argued that the relative signature of
a system is determined by the amount that the design space
representation biases both the possibility and probability of
the emergence of specific visual design attributes.

1 INTRODUCTION

Evolutionary Design (in a computational context) is a
paradigm in which a computer generates designs to be eval-
uated according to some measure of quality. Those that are
found to have the highest fitness are combined in some fash-
ion to produce new designs which hopefully inherit some of
the better attributes of their predecessors. When this pro-
cess is repeated, high quality novel designs can be evolved.

When the quality (or fitness) of individual designs is de-
termined interactively by a human, the program can be re-
ferred to as an Interactive Evolutionary Design (IED) sys-
tem. Having a human “in the loop” enables the evaluation of
very complex and subjective designs such as images, music,
sculpture, and motion, but it also places many practical lim-
itations on the system in terms of the number of designs that
can be compared at one time, and how many generations of
design populations must be produced before an acceptable
design is found.

IED systems often create populations of individuals which
share similar visual formal traits (e.g., shape, color, curva-
ture, size, patterns, etc.). For example, if high frequency
noise [12] is used as the primary basis of the representa-
tion, then the generation of any sort of regular patterns will
be extremely infrequent. Likewise, the output of a system
which constructs objects out of boxes of various sizes is very
unlikely to contain any curved surfaces, and will likely have
lots of sharp corners.
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This paper is an initial attempt to examine some of the
issues involved when evaluating the visual properties of dif-
ferent methods for constructing design space representations
for use in IED systems. The eventual goal of this project is
to find methods for comparing and reducing the similarity
of output (or signature) of IED systems by increasing the
variety of designs that they are likely to produce.

1.1 Overview

The term “signature” was used by Andrew Rowbottom in
his criticism of evolutionary art systems [13]. He pointed out
that most IED systems produce output with qualities that
“identify the program far more than the artist.” To inves-
tigate some of the reasons behind this, this paper presents
several different parametric contour shape spaces and exam-
ines the sources of their visual properties to find methods
of comparing and reducing signature in the visual design
domain.

Using combinations of a few simple techniques, random
populations were created in the interactive evolutionary de-
sign system, Metavolve [7], which is implemented within the
environment of Houdini [14]. For each shape representation,
a description, images illustrating the contour’s parameteri-
zation, shape populations, and observations about the repre-
sentation’s visual properties will be presented. There is also
a movie file showing random walks through each representa-
tion’s design space available on the project’s web site [8].

The examples presented are of course just a few of the
many possible contour representations and are not intended
to be a comprehensive study in shape representation tech-
niques. This research is also not attempting to enable the
biasing of IED systems to create individuals that individual
users will be more likely to find interesting (i.e., highly fit).
Rather, the intent is to investigate the possibility of biasing
IED systems to generate populations with more diverse vi-
sual traits in the hope of reducing signature. That is to say,
the focus is on improving relevant diversity rather than fit-
ness. The use of the word “relevant” here refers to the fact
that while it is simple to increase randomness and complex-
ity, if done naively, the distinguishing visual traits tend to
become deemphasized and increased signature results (e.g.,
Figure 4(d)).

1.2 Background

Interactive evolutionary design has been demonstrated in
many domains including the design of images [15], sculp-
ture [17], and motion [18]. Several systems which specifically
evolve simple shapes have been created [2][3][4][11]. There
are several surveys of IED work which can be consulted for
further examples [9][13][16].



Many interactive evolution (IE) systems rely on genetic
programming (GP) approaches similar to those introduced
by Sims [15] and Latham and Todd [17]. These systems
gradually evolve hierarchical expressions in a similar fashion
to the evolution of computer programs of Koza [5]. These ex-
pressions are evaluated to produce visual phenotypes for user
selection. While this approach has produced a great deal of
beautiful, complex images, it has not been demonstrated to
be very general. Most implementations of expression-based
images and form produce an extremely distinctive style, re-
gardless of user. GP approaches are often preferred to the
fixed length genotype methods of genetic algorithms (GAs)
in systems with computable fitness functions because of their
greater potential for flexible, emergent complexity. On the
other hand, GP-based IE systems are generally much more
challenging to implement and study, and the genotypes of-
ten take much longer to evaluate, which affects convergence
time and can require very significant resources to maintain
interactivity.

GAs on the other hand tend towards much simpler repre-
sentations, often evaluate in a fixed time, and most impor-
tantly for IED systems, they often (depending on epistasis,
the interaction between individual genes) allow for individ-
ual parameters in genotypes to be manually refined with
predictable results. IED design representations using fixed-
length genotypes have often yielded poor results in IED sys-
tems however because of their limited representational flex-
ibility. As stated above, this work is focused on examining
the properties of form producing representations in an at-
tempt to discover some of the factors and limitations which
determine the degree of signature in a GA-based IED sys-
tem, in order to find ways to construct better representations
which avoid pitfalls and encourage visual diversity, high fit-
ness, and fast satisfactory convergence in IE form design
domains.

2 Contour Representations

It is hypothesized that the low-level techniques used to con-
struct complex IE design space representations significantly
restrict the visual properties of the resulting evolved designs.
By examining the relationships between the selected build-
ing blocks and the resulting visual traits it is hoped that
low-level functions can be developed which result in reduced
signature.

This section presents a number of simple methods for pro-
ducing functions which are then used for generating popula-
tions of shapes. Each contour technique is used to define two
different types of shape design space: one class of shapes is
produced by reflecting the contour function, the other class
of shape translates the function into polar coordinates.

While it is extremely difficult to make aesthetic compar-
isons of simple 2D function graphs, if we reflect the shape
function across a line and connect the endpoints to cre-
ate a shape (e.g., figures 1(a) and 3(a)), then comparisons
based on shape, proportion, associations, and volume be-
come much easier. While it is very difficult to state any
aesthetic preference between two individual curves, it is of-
ten much easier to choose which of two vase-like like shapes
are more “interesting”.

In addition to reflecting the functions each was also
“wrapped” around a center point, with blending at the seam
for continuity. The functions are in effect used to displace the
vertices of a circle to form shapes (e.g., figures 2(a) and 3(b)).

In each example, a shape contour is formed from the
values of the individual’s genes by displacing a number of

smoothly interpolated vertices. The different representa-
tions differ in the number of vertices (and thus genes) and
the technique used to displace the vertices.

2.1 Visual Traits

The visual signature of a given representation is a function
of the presence or absence of visual design traits found in
the individuals represented by the design space. Many of
these properties can be expressed in terms of the features
along the contour. The term “feature” is used to refer to
discrete regions of the surface with distinguishable qualities.
A perfectly smooth surface might be said to be “featureless”,
whereas each individual bump or point of inflection on a
changing surface could be considered an individual feature.

The term “visual frequencies” is used for convenience to
refer to the frequency of changes in visual traits across the
surface of an individual contour. For example, a contour
containing 100 small sharp spikes of random heights could
be said to contain “high visual frequencies” as opposed to a
contour with only a few points of inflection with low curva-
ture which could be said to have “low visual frequencies”.

Here is a short list of some of the formal design traits that
are applicable in a shape contour line domain:

repetition: Recognizable features may or may not repeat
through the contour.

rhythm: The properties of repeating features and changes
in these properties may have a specific frequency or
pattern.

proximity: Features may be clustered together on the con-
tour, or they may be widely separated.

size: The scale of features can be compared to the total
contour size as well as the magnitude of other features.

rectilinear/curvilinear: The direction of the contour
might change gradually or instantly.

positive/negative shapes (or figure/ground):
Features might be perceived as part of a convex
portion of the shape, or they may be viewed relative
to a concavity on the profile.

variety: The properties (and changes in properties) of the
features might be similar throughout the contour or
may vary.

Further discussion of these common design terms can be
found in most introductory design texts [6][10]. The follow-
ing subsections will present a number of simple representa-
tions for contour shapes and discuss their differences.

2.2 Few Vertices, Single Direction Displacement

In the first design space representation, a contour function
was created with a few equally spaced vertices. One gene
per vertex controlled the distance the vertex was translated.
The vertices were used as control points for a B-spline. Five
vertices were translated horizontally to generate vertical, re-
flected “vase” contours (figures 1(a) and 3(a)) while eight
vertices were used to produce simple polar shapes, with the
vertices translated towards or away from the center of a cir-
cle (figures 2(a) and 3(b)). More vertices were used in the
polar mapping because of the increased circumference.
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In terms of the above mentioned design traits, this repre-
sentation results in almost no potential for repetition of fea-
tures along the contour, because of the low number of control
vertices. There are generally only one or two features per
contour (e.g., turns or bulges). Rhythm is therefore also not
a factor. Because of the low number of well spaced vertices,
the features are for the most part uniformly “large”, rela-
tive to the contour. Since the vertices are equally spaced,
there is little opportunity for “pinching” of the spline and so
the change in curvature remains necessarily low. The gently
curving, large features of the contours seem equally likely to
be positive or negative through the population. Because of
the low number of features and the regularly spaced vertices,
feature proximity varies little.

Finally, regarding the question of “variety”, it is inter-
esting to note that while the diversity of shape and feature
properties seems somewhat limited in these first two popu-
lations, the perceived variety is significantly higher in the re-
flected contour populations than in the polar contour popu-
lations. The vertical height of the feature on the shape seems
a very relevant property when comparing two reflected con-
tours for similarity. However in the polar populations, the
angular position of a feature on the contour (e.g., left side
vs. right side, or left vs. top) seems much less relevant. This
basic difference substantially differentiates the perceived va-
riety (and thus signature) of the representations, indicating
that the means used to translate the contour function into a
shape is an important factor in signature determination as
well.

It is also interesting to note that it seems much easier to
determine preference in the reflected contour population in
figure 3(a) than it is in the polar population of figure 3(b).
It is likely that the wider range of fitness in the population
in figure 3(a) is the result of the combination of symmetry
as well as the stronger association with recognizable shapes.
It is possible that they are more differentiable because their
symmetry gives them a greater potential for “order” relative
to their complexity [1].

2.3 Many Vertices, Single Direction Displacement

In this representation the contours are created from a rel-
atively large number of equally spaced vertices which are
again translated (either horizontally as in figure 1(b), or
away from the circle center, as in figure 2(b)) according to
the value of a gene, using one gene per vertex. A spline is
again passed through the displaced vertices.

Since the populations in figures 3(c) and 3(d)) have many
more vertices, the existence of repetition and rhythm be-
come more of a potential factor. Given the large number of
vertices however, the chance of random creation of regularly
repeating forms or patterns is slim. Given the low epistasis,
it is certainly possible that such traits could be meticulously
bred. Their emergent nature in this representation however
would make that a very slow process.

The large number of vertices creates a relatively small
space between neighboring vertices, causing neighboring fea-
tures to occasionally merge into wider features. This in-
creased variability of feature width can sometimes create
much larger features, but this property is extremely unsta-
ble when breeding.

The spline-based construction of the shapes means that
the contour is still primarily curvilinear, however there is a
greater chance for sharp corners with more vertices, as one
control point placed at a distance from its neighbors can
create a fairly high curvature region on the spline.

The high-frequency detail mostly yields “positive shapes”,
probably due to the lack of low frequency concavities in the
contour. Most of the features appear to be regions that were
“pulled” from the main shape rather than being “pushed in”.
On the circular shapes this is likely caused by the pinching
that occurs when control points are pulled inward toward the
center, as opposed to the spreading that happens when they
are pulled away from the center. In the reflected shapes it
may be related to the figure/ground continuity, i.e., convex
features appear to be a part of the figure, while concave
features seem to be a property of the background.

The question of variety is a most interesting one when con-
tours are created with high visual frequencies. Although the
representational potential of the design space increases dra-
matically, the degree of signature also increases rapidly and
individuals all start to look similar (figures 3(c) and 3(d))
. While it is certainly possible to distinguish between any
two individuals, at high frequencies the differences become
secondary to the similarities when visually comparing forms.
The proximity of similar forms in parameter space becomes
more dependent on the nature of the similarity. If a per-
ceived feature is the result of the combination of several
genes, the more genes that are involved, the more unlikely
it is that that feature can be modified in any high level way
without dissolving.

2.4 Few Vertices, Two Direction Displacement

This is the same representation as in section 2.2 except that
the vertices are given an additional degree of freedom. In the
reflected contours, the vertices are now translated vertically
(figure 1(c)), and in the polar contours they can shift their
angle (figure 2(c)). This has the effect in both cases of al-
lowing vertices to change their proximity to their neighbors.
This additional degree of freedom for each vertex allows for
an increase in the possible range of curvature and frequencies
within an individual as can be seen in figures 4(a) and 4(b).
The low number of vertices again creates only a few fea-
tures, so repetition, rhythm, and proximity of features are
generally absent traits.

While the size of the features remains relatively large,
the ability of the vertices to move close to one another now
allows for the emergence of much smaller features as well.
Again, vertices moving close together creates the possibility
of higher curvature. The addition of these two properties
decreases the signature when compared to the single degree-
of-freedom populations in figures 3(a) and 3(b).

2.5 Many Vertices, Two Direction Displacement

When a high amount of detail is used, adding a degree of
freedom has a less significant effect than when only a few ver-
tices are used. Some limited variability in visual frequencies
can be seen in the populations in figures 4(c) and 4(d).

The design traits are much the same as in section 2.3, ex-
cept as in section 2.4, neighboring features can merge and
split forming a greater variety of sizes and curvatures. How-
ever, in general, the large number of vertices again makes it
unlikely that very large features can form, and remain sta-
ble. Regularity or organization is unlikely to appear spon-
taneously and will be difficult to maintain, if evolved.

This representation improves perceived diversity only
slightly over the method of section 2.3. While the in-
creased variety of potential curvature and frequency again
contributes to decreasing signature, the very high frequency
still minimizes the relevant differences between individuals
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in most cases. The average perceived fitness is low, partic-
ularly in the case of the polar shapes, though higher than
in the single axis representation. The potential maximum
fitness is the highest yet, given the increased flexibility of
form.

2.6 Variable Length, Two Direction Displacement

In this representation, a contour is created from a high num-
ber of equally spaced vertices. The vertices are displaced
in two directions in the exact same manner as Section 2.5.
Just as before, a spline is passed through the vertices. In
this representation however, an additional gene determines
what percentage of this spline is to actually be used for cre-
ating the contour, from roughly 15% to 100% of the spline
(figures 1(e) and 2(e)).

This representation expands the design space to include
qualities of the previous low and high vertex count spaces
as well as those spaces with intermediate frequencies (fig-
ures 5(a) and 5(b)). As such, the vastly increased range of
potential frequencies increases the visual diversity, reducing
the signature of the design space.

Most of the benefits of the previous representations can
be found in this space. Several of the disadvantages in-
volving limited frequency ranges are naturally greatly re-
duced. Previously discussed concerns remain about the dif-
ficulty of evolving high level design traits such as repetition
and rhythm which are emergent rather than explicitly rep-
resented in these examples.

2.7 Offset With Noise

For this representation, a contour is created from one hun-
dred equally spaced vertices. Five genes are then used to
control the frequency, amplitude, exponent, turbulence, and
roughness of a Perlin-based noise function [12] (specifically
Houdini’s “sparse noise” implementation). The noise func-
tion is then sampled to produce single-axis offset values for
the vertices (figures 1(f) and 2(f)).

With its combination of variable frequencies and feature
shapes, this representation produces a significantly greater
degree of visual diversity (figures 5(c) and 5(d)). The struc-
ture of the space is however extremely “fragile”, meaning
it is filled with very small local minima, as a result of the
high-level parameters. Visually similar forms are rarely close
in parameter space. The emergent nature of features con-
tributes to the difficulty of using this sort of purely high level
representation for IED.

Because of the nature of noise, and as the populations
illustrate, repetition and rhythm rarely emerge by chance.
Variety of feature proximity, size, and rectilinearity are much
greater however with this representation than in the other
simpler low-level ones.

3 Conclusions

For the visual traits that this paper references (e.g., fre-
quency, curvature, size, etc) it has been the case that with
population sizes greater than twenty-five (most examples
here show one hundred) the trait in question being evalu-
ated is equally evident in nearly every random population
generated. Note once again that the populations presented
are not evolved populations, but initial ones, with individu-
als’ gene values selected at random.

The question of obtaining sufficient coverage for evaluat-
ing the properties of a given representation is an interesting

one. The visual traits discussed here are sufficiently non-
subtle and are consistently observable in individuals in pop-
ulations of reasonable sizes [25-100]. If the population size is
too small (e.g., 4 or 9) then observations about a given repre-
sentation’s visual traits are likely to invalidated by viewing
another random population, which will most likely have a
totally different set of visual properties.

3.1 Signature

Signature can be considered the inverse of “visual diversity”.
The wider the range of visual traits in the represented design
space, the lower the perceived signature of a given system
will be. For domains as simple as the shape contour repre-
sentations presented here, a fairly decent impression of the
predominant visual traits of a space can be obtained in prac-
tice by viewing one or more random populations of sufficient
size (i.e., sufficient in the sense that additional random pop-
ulations all yield the same visual traits.)

We observe in the above examples that signature increases
above a certain frequency threshold, when one high fre-
quency form becomes indistinguishable (or irrelevantly dif-
ferent) from another. Signature also increases below a cer-
tain frequency threshold, when low frequency forms become
irrelevantly different from one another, since there is not
enough information to cause preference. Note that in both
of these cases, there is likely to be a relatively low variation in
fitness (i.e., lack of preference), but a low variation in fitness
can not by itself imply a high signature. One can imagine
a system that generated equally fit solutions (of whatever
quality) with low signature.

In most nontrivial design space representations, if the rep-
resentation only creates variations of rounded shapes, then
no matter how well the interactive GA works, it is likely
that a square will never be evolved. Likewise, if the space is
theoretically capable of representing a square, but in prac-
tice contains 99.9% round things, then it’s probably unlikely
that a square can be evolved given interactive evolutions
limitations of less than twenty or so generations, and pop-
ulations sizes of under one hundred. Note that this is not
true in traditional GAs where larger regions can be auto-
matically searched via computable fitness functions. Most
interactive evolution generally requires a space with a much
greater density of high fitness solutions to yield satisfactory
convergence.

4 Future Work

A new contour representation called a trait function is cur-
rently being developed in an attempt to reduce some of the
primary sources of signature present in the above represen-
tations. It is hoped this will provide a building block for
constructing higher-level N-dimensional parametric design
spaces for more interesting interactive GA form generation
problems. These trait functions use knowledge of the rela-
tionship between representation techniques and identifiable
formal design traits like the ones discussed in this paper to
reduce the amount of visual signature.

Figure 6 shows a recent population of reflected contours
generated using the current implementation of trait func-
tions. As can be seen even at this early stage, there are a
variety of new and interesting visual traits not present in the
other contour representations shown. The success of trait
functions will ultimately be evaluated by identifying both
the variety of visual traits that a system using the func-
tions is capable of producing (the more the better) and also

4



Figure 6: Reflected Trait Functions: This representation
(under development) is capable of producing a much broader
range of visual properties.

by identifying the number of visual traits that the system
tends to always produce (the fewer the better).
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(a) Five control vertices are horizontally displaced. (b) Twenty control vertices are
horizontally displaced.

(c) Five control vertices are horizon-
tally and vertically displaced.

(d) Twenty control vertices are hor-
izontally and vertically displaced.

(e) Twenty control vertices are horizontally and vertically
displaced. A subsection of the spline is then used to form
the contour

(f) One hundred control vertices are
horizontally displaced using noise.

Figure 1: Reflected Contour Representations
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(a) Eight control vertices are displaced from
the center of a circle

(b) Thirty-two control vertices are displaced
from the center of a circle

(c) Eight control vertices are displaced both in
distance and angle

(d) Thirty-two control vertices are displaced both in dis-
tance and angle

(e) Thirty-two control vertices are horizontally and vertically
displaced. A subsection of the spline is then used to form
the contour which then wrapped around a circle. The ends
are blended.

(f) 100 control vertices are offset
with noise. They are then used to
displace the vertices of a circle, and
blended at the ends.

Figure 2: Polar Contour Representations
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(a) Five Vertices (b) Eight Vertices

(c) Twenty Vertices (d) Thirty-two Vertices

Figure 3: Single Axis Displacement
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(a) Five Vertices (b) Eight Vertices

(c) Twenty Vertices (d) Thirty-two Vertices

Figure 4: Two Axis Displacement
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(a) Variable Length, Vertical and Horizontal Vertex
Displacement

(b) Variable Length, Angle and Distance Vertex Dis-
placement

(c) Horizontal Offset With Noise (d) Distance Offset With Noise

Figure 5: Other Methods
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