Overview of Low energy nuclear physics and FRIB

William Lynch

- Low energy physics:
 - not JLAB or RHIC
- How has the field evolved?
- What are some of the new scientific objectives?
 - Will not discuss everything.
 - More focus will be on topics that have some reaction dynamics component.

John was my thesis advisor and gets the "credit" for getting me started in nuclear physics

John was my thesis advisor and gets the "credit" for getting me started in nuclear physics

In 1975-1980, one frontier was physics with HI beams

NPL Booster Linac

New Physics

- Heavy Ion reactions
- Nuclear mean field at high density.
- Nuclear structure at high spin.

- Heavy Ion accelerators
 Superconducting Linacs and Cyclotrons: (Ex. UW booster)
 HI stripping and transport
- $4\pi \gamma$ and charged particle arrays
- Fragmentation studies motivated new use for these accelerators

In 1975-1980, one frontier was physics with HI beams

- Heavy Ion reactions
- Nuclear mean field at high density.
- Nuclear structure at high spin.

- Heavy Ion accelerators
 Superconducting Linacs and Cyclotrons: (Ex. UW booster)
 HI stripping and transport
- $4\pi \gamma$ and charged particle arrays
- Fragmentation studies motivated new use for these accelerators

In 1975-1980, one frontier was physics with HI beams

NPL Booster Linac

New Physics

- Heavy Ion reactions
- Nuclear mean field at high density.
- Nuclear structure at high spin.

- Heavy Ion accelerators
 Superconducting Linacs and Cyclotrons: (Ex. UW booster)
 HI stripping and transport
- $4\pi \gamma$ and charged particle arrays
- Fragmentation studies motivated new use for these accelerators

"Low Energy" Frontier 2009: Physics with rare isotope beams

New Physics

- Structure of very neutron-rich nuclei.
- Mean field potential for neutronrich matter.
- Nuclear Astrophysics in explosive environments and neutron stars.

- Rare isotope beam "factories" to produce neutron-rich systems for study:
 - Examples: FAIR (Darmstadt), RIBF (Wakoshi), FRIB (East Lansing)
- Highly efficient detection systems to overcome low RI intensities.

FRIB General Features

Up to 3 ECR Ion Sources

- Driver linac with 400 kW and greater than 200 MeV/u for all ions.
- High power makes requirements of stripper, target, beam dump and other beam handling components very challenging.
- Ions of all elements from protons to uranium accelerated
- Space included for upgrade to 400 MeV/u, ISOL and multiple production targets

ReA12 and Experimental Areas

- A full suite of experimental equipment will be available for fast, stopped and reaccelerated beams
- New equipment
 - Stopped beam area (LASERS)
 - ISLA Recoil Separator
 - Solenoid spectrometer
 - Active Target TPC

Thursday, September 17, 2009

What new capabilities will be enabled by the driver linac specifications?

- FRIB with 400 kW for all beams and minimum energy of 200 MeV/u will have secondary beam rates for some isotopes of up to 100 times higher than other world leading facilities
- FRIB intensity will allow the key benchmark nuclei ⁵⁴Ca (reaccelerated beams) and ⁶⁰Ca (fast beams) to be studied, for example, as well as many of the important nuclei along the r-process.

Beam intensity estimates from the ISF facility should be similar to those for FRIB

Some selected topics

(I will skip much more than I discuss.)

- Will discuss selected topics related to:
 - Mean field potential for neutron-rich matter.
 - Nuclear Astrophysics in explosive environments and neutron stars.
 - Structure of nuclei far from stability.
- Will not discuss:
 - Fundamental symmetries studies
 - Applications
 - Many exciting scientific opportunities will not be discussed

Mean field potential and EOS for neutron-rich matter.

- Structure and astrophysics issue: How does the mean field potential and EOS vary with density and isospin?
- Reactions issue: How does one probe the mean field at supra-saturation density.

1975-1980 John Cramer: HI Optical potential

- Strong absorption limits sensitivity to mean field a high density in the center of nucleus.
- Lighter ions, higher energies exhibit rainbow scattering and provide sensitivity to interior.
- "Notch" sensitivity tests indicate that sensitivity to the interior can be achieved with lighter nuclei.
- Subsequent measurements place constraint on the mean field at $\rho \approx 2\rho_0$, "consistent with $K_{nm} \approx 250$ MeV."

Higher densities

- To probe higher densities, one must collide complex nuclei.
- Higher densities are momentarily achieved by inertial confinement.
- Idea initially generated some skepticism

"Sure been a heap more work for ME around here since those Biologists got granted research time on the ol' Supercollider..."

Constraining the EOS at $\rho > 2\rho_0$ by nuclear collisions

- Two observable consequences of the high pressures that are formed:
 - Nucleons deflected sideways in the reaction plane.
 - Nucleons are "squeezed out" above and below the reaction plane. .

- Flow confirms the softening of the EOS at high density.
- Constraints from kaon production are consistent with the flow constraints and bridge gap to GMR constraints.
- Note: analysis requires additional constraints on m* and σ_{NN} .

- The symmetry energy dominates the uncertainty in the n-matter EOS.
- Both laboratory and astronomical constraints on the density dependence of the symmetry energy are urgently needed.

- Flow confirms the softening of the EOS at high density.
- Constraints from kaon production are consistent with the flow constraints and bridge gap to GMR constraints.
- Note: analysis requires additional constraints on m* and σ_{NN} .

- The symmetry energy dominates the uncertainty in the n-matter EOS.
- Both laboratory and astronomical constraints on the density dependence of the symmetry energy are urgently needed.

- Flow confirms the softening of the EOS at high density.
- Constraints from kaon production are consistent with the flow constraints and bridge gap to GMR constraints.
- Note: analysis requires additional constraints on m* and σ_{NN} .

- The symmetry energy dominates the uncertainty in the n-matter EOS.
- Both laboratory and astronomical constraints on the density dependence of the symmetry energy are urgently needed.

- Flow confirms the softening of the EOS at high density.
- Constraints from kaon production are consistent with the flow constraints and bridge gap to GMR constraints.
- Note: analysis requires additional constraints on m* and σ_{NN} .

- The symmetry energy dominates the uncertainty in the n-matter EOS.
- Both laboratory and astronomical constraints on the density dependence of the symmetry energy are urgently needed.

Probe: Isospin diffusion in peripheral collisions

Sensitivity to symmetry energy

$$R_{i}(\delta) = 2 \times \frac{\delta - (\delta_{Neutron-rich} + \delta_{Proton-rich})/2}{\delta_{Neutron-rich} - \delta_{Proton-rich}}$$

- The asymmetry of the spectators can change due to diffusion, but it also can changed due to pre-equilibrium emission.
- The use of the isospin transport ratio R_i(δ) isolates the diffusion effects:

Lijun Shi, thesis

Tsang et al., PRL92(2004)

Diffusion is sensitive to $S(0.4\rho)$, which corresponds to a

Results from Fopi and Future Prospects

- Calculations suggest that the π^-/π^+ ratios for Au+Au Fopi data are consistent with very soft symmetry energy at $\rho > 2\rho_0$
- To separate effects of Coulomb and symmetry energies, measurements with rare isotope beams would be useful.

Can be probed at RIKEN or at MSU/FRIB with AT-TPC

Nuclear Astrophysics in explosive environments and

- Astrophysics questions :
 - What are the masses, radii and internal structures of selected neutron stars.
 - What are the conditions required for supernovae and neutron star formation?
 - What is the site (or sites) of the r-process?
 - What causes x-ray bursts or super-bursts?
- Structure questions:
 - What are the electron-capture rates relevant for core-collapse supernovae?
 - What are the nuclear masses, lifetimes and reaction rates that are relevant for explosive r-process and rp-process.
- Reactions question:
 - How does one probe the mean field at supra-saturation density?
 - How does one determine the relevant electron-capture rates?

EOS, Symmetry Energy and Neutron Stars

- Influences neutron Star stability against gravitational collapse
- Stellar density profile
- Internal structure: occurrence of various phases.
- Observational consequences:
 - Cooling rates of protoneutron stars
 - Cooling rates for X-ray bursters.
 - Stellar masses, radii and moments of inertia.
 - Possible study of low mass X-ray binaries

EOS, Symmetry Energy and Neutron Stars

- Influences neutron Star stability against gravitational collapse
- Stellar density profile
- Internal structure: occurrence of various phases.
- Observational consequences:
 - Cooling rates of protoneutron stars
 - Cooling rates for X-ray bursters.
 - Stellar masses, radii and moments of inertia.
 - Possible study of low mass X-ray binaries

- Beyond capabilities of Chandra or XMM.
- Requires "International X-ray Observatory"
 - Cost ~ \$2B RY: Possible launch date 2020.

In the interim, observers will still focus on the EOS \Rightarrow It is important to obtain laboratory constraints.

Weak interaction rates for supernova

- electron capture ⇔ β⁺ direction on neutron-rich nuclei decreases electron pressure and accelerates collapse
- Overall supernova dynamics and neutrino signal are modified.
- Pauli-blocking reduces capture rate
- Possible charge exchange probes:
 - (t,³He) on stable nuclei
 - (d,2p) on unstable nuclei:

Charge exchange with RI beams

•Thesis by G.W. Hitt (Jan '09) & to be published

- Large discrepancy to shell model
 - Quantitative picture of uncertainties
 - Part of body of data needed to improve shell model
- Significant enhancement of electron capture rate over shell model calculations
 Improvement is clearly needed.

Measurements relevant to X-ray bursts 0 (52)1 Sb (51) **rp-process** / **crust process questions**: Sn (50) In (49) Cd (48) — What governs X-ray burst light curves Ag (47) Pd (46) and recurrence? Rh (45 Ru (44) Tc (43) —What are the important masses, Mo (42) Nb(41) Zr (40) lifetimes and reaction rates? Y (39) Sr (38) Rb (37) — What causes superbursts? Kr (36) Br (35 — What do X-ray bursts and cooling Ge(32) observations tell us about neutron stars? H. Shatz 2009 Ga (31) Zn (30) Cr (24) V (23) Ti (22) K (19 CI (17 P (15) Si (14) No (10) E (9) 0.08 N (7) C (6 B (5 11(3

Importance of waiting point masses

Thursday, September 17, 2009

Importance of waiting point masses

Thursday, September 17, 2009

Question:

• What is the origin of the heavy elements in the cosmos?

Question:

• What is the origin of the heavy elements in the cosmos?

COSMOLOGY MARCHES ON

where the hell did it all come from?

UK Astrophysical Fluids Facility

Time 0.025 msec

100 3000 10000 30000 60000 100000

Temperature [millions of degrees]

Question:

• What is the origin of the heavy elements in the cosmos?

Questions:

- What is the origin of the heavy elements in the cosmos?
 - Multiple processes?
 - Multiple sites?

Questions:

- What is the origin of the heavy elements in the cosmos?
 - Multiple processes?
 - Multiple sites?

r-process nucleo-synthesis

- Large nucleon flux dictates n-γequilibrium centered at large neutron excess.
- Mass determines the most probable isotope.
- Beta decay allow increase in Z.
- At end of r-process, nuclei beta decay back to stability.
- Masses and Beta decay lifetimes are necessary properties to measure.

r-process abundance peak: Evidence for reduced shell

- Calculations predict abundance peaks near A≈130 and A≈190 to originate from enhancements of hot r-process nuclei near N=82 and N=126 close shells.
- Observed abundances are better fitted by reducing the size of the shell effects (enhanced binding).
 - Mass measurements needed to verify this.

Another important issue: lifetimes of r-process elements

Structure of nuclei far from stability.

- New closed shells and disappearance of conventional magic numbers.
- New regions of deformation
- New correlations
 - neutron-proton pairing
 - neutron halos and skins
 - cluster states

Evolution of Shell structure with asymmetry

- Shell change as one approaches the neutron drip-line.
 - Some shell gaps decrease.
 - New shell gaps emerge.

- Intruder orbits lower and become valence.
- New cluster structures become relevant.

Spectroscopic factor puzzle

- Spectroscopic factors (SF's) reveal the dominant valence orbits.
- Residual interactions reduce SF's below unity near the Fermi Surface.
 - Short-range nucleon-nucleon repulsion
 - Long-range particle-vibration coupling, etc.
- (e,e'p) reactions indicate a 30% reduction for valence orbits.
- n and p knockout reactions suggest a strong dependence on the separation energy of the removed nucleon.

Results from other probes

Dispersive optical potential

 The interactions that reduce SF's are the source of the imaginary potential in nucleon optical potentials.
 Fits elastic scattering data enable predictions for the SF reduction
 Line show two predictions; both show much weaker trends than that of the knock-out data.

(p,d) reactions

- New (p,d) transfer data for ³⁴Ar, ³⁶Ar and ⁴⁶Ar do not show strong depend on asymmetry or neutron separation energy.
- Sensitivity tests should be done to reveal the relative contributions of the surface and the interior.
- Discrepancy between knockout and other probes presents a puzzle

Another tool: isobaric analog resonances

- Isobaric analog resonances in proton elastic scattering on a exotic nucleus (Z,A) can provide information about the analog states in the nucleus (Z-1,A).
- Experiment can be performed in inverse kinematics using low intensity rare isotope beams (>100 p/s) incident on an active hydrogen target.

Summary and outlook

- Next generation rare isotope facilities such FRIB, FAIR and RIBF (at RIKEN) will address a broad array of scientific objectives.
- Some of which were discussed:
 - The structure and excitations of neutron –rich and neutron deficientnuclei
 - new shell structures
 - new regions of deformation.
 - new correlations.
 - The EOS of asymmetric matter.
 - The creation of the heavy elements.
 - Explosive astrophysical environments.
- Some were not discussed:
 - Tests of fundamental symmetries
- Future work will undoubtedly advance greatly our perspectives of these matters, which are somewhat limited at present.

• Future work will undoubtedly advance greatly our perspectives of these matters, which are somewhat limited at present.