
Overview of Low energy nuclear physics and FRIB 

• Low energy physics:
– not JLAB or RHIC

• How has the field evolved?
• What are some of the new scientific objectives?

– Will not discuss everything.
– More focus will be on topics that have some 

reaction dynamics component.

William Lynch 
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John was my thesis advisor and gets the “credit” for 
getting me started in nuclear physics
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In 1975-1980, one frontier was physics with HI beams

New Physics
• Heavy Ion reactions
• Nuclear mean field at high density.
• Nuclear structure at high spin.

New Instruments
• Heavy Ion accelerators

Superconducting Linacs and 
Cyclotrons: (Ex. UW booster)
HI stripping and transport

• 4π  γ and charged particle arrays
• Fragmentation studies motivated 

new use for these accelerators

NPL Booster Linac
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“Low Energy” Frontier 2009: 
Physics with rare isotope beams

New Physics
• Structure of very neutron-rich 

nuclei.
• Mean field potential for neutron-

rich matter.
• Nuclear Astrophysics in explosive 

environments and neutron stars.

New Instruments
• Rare isotope beam “factories” to 

produce neutron-rich systems for 
study: 
Examples: FAIR (Darmstadt), 
RIBF (Wakoshi), FRIB (East 
Lansing) 

• Highly efficient detection systems 
to overcome low RI intensities.
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FRIB General Features
• Driver linac with 400 kW and greater than 200 MeV/u for all 

ions. 

• High power makes requirements of stripper, target, beam dump 
and other beam handling  components very challenging. 

• Ions of all elements from protons to uranium accelerated

• Space included for upgrade to 400 MeV/u, ISOL and multiple 
production targets
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ReA12 and Experimental Areas
• A full suite of experimental equipment will be available for fast, stopped 

and reaccelerated beams
• New equipment

– Stopped beam area (LASERS)
– ISLA Recoil Separator
– Solenoid spectrometer
– Active Target  TPC
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What new capabilities will be enabled by the 
driver linac specifications?

• FRIB with 400 kW for all beams and minimum energy of 200 MeV/u will 
have secondary beam rates for some isotopes of up to 100 times higher than 
other world leading facilities

• FRIB intensity will allow the key benchmark nuclei 54Ca (reaccelerated 
beams) and 60Ca (fast beams) to be studied, for example, as well as many of 
the important nuclei along the r-process. 

 Beam intensity 
estimates from the 
ISF facility should 
be similar to those 
for FRIB
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Some selected topics
(I will skip much more than I discuss.)

• Will discuss selected topics related to:
– Mean field potential for neutron-rich matter.
– Nuclear Astrophysics in explosive environments and 

neutron stars.
– Structure of nuclei far from stability.

• Will not discuss:
– Fundamental symmetries  studies
– Applications
– Many exciting scientific opportunities will not be 

discussed
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Mean field potential and EOS for neutron-rich matter.

• Structure and astrophysics issue: How does the mean field 
potential and EOS vary with density and isospin? 

• Reactions issue: How does one probe the mean field at 
supra-saturation density.

Thursday, September 17, 2009



1975-1980 John Cramer: HI Optical potential

• Strong absorption limits sensitivity to 
mean field a high density in the center 
of nucleus.

• Lighter ions, higher energies exhibit 
rainbow scattering and provide 
sensitivity to interior.

• “Notch” sensitivity tests indicate that 
sensitivity to the interior can be 
achieved with lighter nuclei.

• Subsequent measurements place 
constraint on the mean field at ρ≈2ρ0, 
“consistent with Knm≈250 MeV.”

projectile

projectile

target

target

θ
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Higher densities 

• To probe higher densities, one must collide complex nuclei.
• Higher densities are momentarily achieved by inertial confinement.
• Idea initially generated some skepticism
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Constraining the EOS at ρ>2ρ0 by nuclear collisions

• Two observable consequences of the high pressures that are formed:
– Nucleons deflected sideways in the reaction plane.
– Nucleons are “squeezed out” above and below the reaction plane. . 

pressure 
contours

density 
contours

Au+Au collisions E/A = 1 GeV)
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D
anielew

icz et al., 
S

cien
ce 298,1592 (2002). 

• Flow confirms the softening of the EOS 
at high density.  

• Constraints from kaon production are 
consistent with the flow constraints and 
bridge gap to GMR constraints. 

• Note: analysis requires additional 
constraints on m* and  σNN.  

Example: Constraints on symmetric matter EOS at  ρ>2 ρ0.

E/A (ρ, δ) = E/A (ρ,0) + δ2⋅S(ρ)        δ = (ρn- ρp)/ (ρn+ ρp) = (N-Z)/A≈1

• The symmetry energy dominates the 
uncertainty in the n-matter EOS.

• Both laboratory and astronomical 
constraints on the density dependence 
of the symmetry energy are urgently 
needed.

Boundary determined by 
comparing  transverse and 
elliptical flow data to 
transport  calculations 
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• Collide projectiles and targets of 
differing isospin asymmetry 

• Probe the asymmetry δ=(N-Z)/(N+Z) 
of the projectile spectator during the 
collision. 

• The use of the isospin transport ratio 
Ri(δ) isolates the diffusion effects 
caused by multi-nucleon transfer 
between projectile and target:

• Useful limits for Ri for 124Sn+112Sn 
collisions:
– Ri =±1: no diffusion

– Ri ≈0:  Isospin equilibrium

Probe: Isospin diffusion in peripheral collisions

P

N

mixed 124Sn+112Sn
n-rich 124Sn+124Sn
p-rich 112Sn+112Sn

δ

Systems{
Example:

neutron-rich 
projectile

proton-rich     
target

measure 
asymmetry after 
collision
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Sensitivity to symmetry energy

Tsang et al., PRL92(2004)

Stronger density dependence

Weaker  density dependence

Lijun Shi, thesis

• The asymmetry of 
the spectators can 
change due to 
diffusion, but it also 
can changed due to 
pre-equilibrium 
emission. 

• The use of the 
isospin transport 
ratio Ri(δ) isolates 
the diffusion 
effects:

Thursday, September 17, 2009



Expansion around ρ0:                                                          
Symmetry slope L & curvature Ksym Symmetry pressure Psym

Diffusion is sensitive to S(0.4ρ), which corresponds to a 

fits to IAS
masses

fits to 

ImQMD
CONSTRAINTS

ImQMD fits for
variable S0

ImQMD fits for 
S0=30.1 MeV

Tsang et al., PRL 102, 122701 (2009).
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Diffusion is sensitive to S(0.4ρ), which corresponds to a 

fits to IAS
masses

fits to 

ImQMD
CONSTRAINTS

ImQMD fits for
variable S0

Bao-An Li et al., Phys. 
Rep. 464, 113 (2008). 

PDR: A. Klimkiewicz, 
PRC 76, 051603 (2007).

Danielewicz, Lee,

 NPA 818, 36 (2009)

GDR: Trippa,  
PRC77, 061304

ImQMD fits for 
S0=30.1 MeV

Tsang et al., PRL 102, 122701 (2009).
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Results from Fopi and Future Prospects

• Calculations suggest that the π-/ 
π+ ratios for Au+Au Fopi data 
are consistent with very soft 
symmetry energy at ρ>2ρ0

• To separate effects of Coulomb 
and symmetry energies, 
measurements with rare isotope 
beams would be useful.

Can be probed at RIKEN or at 
MSU/FRIB with AT-TPC

Zhigang Xiao et al., LANL arXiv:0808.0186 

super soft symmetry energy

“stiffer” symmetry energy
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Nuclear Astrophysics in explosive environments and 

• Astrophysics questions :
– What are the masses, radii and internal structures of selected 

neutron stars.
– What are the conditions required for supernovae and neutron star 

formation?
– What is the site (or sites) of the r-process?
– What causes x-ray bursts or super-bursts?

• Structure  questions: 
– What are the electron-capture rates relevant for core-collapse 

supernovae?
– What are the nuclear masses, lifetimes and reaction rates that are 

relevant for explosive r-process and rp-process.
• Reactions question: 

– How does one probe the mean field at supra-saturation density?
– How does one determine the relevant electron-capture rates?
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EOS, Symmetry Energy and Neutron Stars

• Influences neutron Star 
stability against gravitational 
collapse 

• Stellar density profile
• Internal structure: occurrence 

of various phases.
• Observational consequences:

– Cooling rates of proto-
neutron stars

– Cooling rates for X-ray 
bursters.

– Stellar masses, radii and 
moments of inertia.

• Possible study of  low 
mass X-ray binaries
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EOS, Symmetry Energy and Neutron Stars

• Influences neutron Star 
stability against gravitational 
collapse 

• Stellar density profile
• Internal structure: occurrence 

of various phases.
• Observational consequences:

– Cooling rates of proto-
neutron stars

– Cooling rates for X-ray 
bursters.

– Stellar masses, radii and 
moments of inertia.

• Possible study of  low 
mass X-ray binaries

• Beyond capabilities of Chandra or XMM.
• Requires “International X-ray  Observatory” 

– Cost ~ $2B RY: Possible launch date 2020.
• In the interim, observers will still focus on the EOS
⇒ It is important to obtain laboratory constraints.
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capture is pauli blocked

Weak interaction rates for supernova

• electron capture ⇔ β+ direction on 
neutron-rich nuclei decreases electron 
pressure and accelerates collapse

• Overall supernova dynamics and  
neutrino signal are modified.

• Pauli-blocking reduces capture rate 
• Possible charge exchange probes: 

– (t,3He) on stable nuclei
– (d,2p) on unstable nuclei:

•Zegers et al. PRL 99, 202501 (2007)
•Perdikakis et al. to be published
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Charge exchange with RI beams

• Large discrepancy to shell model
—  Quantitative picture of 

uncertainties 
—  Part of body of data needed to 

improve shell model

• Significant enhancement of 
electron capture rate over shell 
model calculations
Improvement is clearly needed.

•Thesis by G.W. Hitt (Jan ’09) & to be published
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rp-process / crust process questions:
— What governs X-ray burst light curves 

and recurrence?
—What are the important masses, 

lifetimes and reaction rates?
—  What causes superbursts?
—  What do X-ray bursts and cooling 

observations tell us about neutron stars?

Measurements  relevant to X-ray bursts

H. Shatz 2009

Thursday, September 17, 2009



Importance of waiting point masses

•After precision mass measurements 
at LEBIT of 64Ge, 65Ge, 68Se, 69Se
(plus ISOLTRAP data on 72Kr,73Kr)•X-ray bursts 

mass uncertainties
within AME95
•(Brown et al. 2002)

•After LEBIT mass measurements :

•Schury et al. Phys. Rev. C 75 (2007) 055801
•Savory et al. accepted for PRL

•Using AME95 mass estimates:

23

 ~100 keV
    systematic error

 4 new masses
     4 improved masses

 ready for broader
     application

Q=785±27 keV

•p decay of 69Br (Rogers, Famiano, Lynch) •TOF mass measurements (Matos, Estrade ,Shatz)
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•Using AME95 mass estimates:

23

 ~100 keV
    systematic error

 4 new masses
     4 improved masses

 ready for broader
     application

Q=785±27 keV

•p decay of 69Br (Rogers, Famiano, Lynch) •TOF mass measurements (Matos, Estrade ,Shatz)

• Not included yet
• Should constrain further
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Question:
•  What is the origin of the heavy elements in the cosmos?
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Question:
•  What is the origin of the heavy elements in the cosmos?
Questions:
•  What is the origin of the heavy elements in the cosmos?

–  Multiple processes?
–  Multiple sites?
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Question:
•  What is the origin of the heavy elements in the cosmos?
Questions:
•  What is the origin of the heavy elements in the cosmos?

–  Multiple processes?
–  Multiple sites?

•Supernovae ?
•E0102-72.2

Neutron star mergers ?
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r-process nucleo-synthesis

• Large nucleon flux dictates n-γ equilibrium centered at large neutron excess.
• Mass determines the most probable isotope.
• Beta decay allow increase in Z.
• At end of r-process, nuclei beta decay back to stability. 
• Masses and Beta decay lifetimes are necessary properties to measure.
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r-process abundance peak: Evidence for reduced shell 

• Calculations predict abundance peaks near A≈130 and A≈190 to 
originate from enhancements of hot r-process nuclei near N=82 and 
N=126 close shells. 

• Observed abundances are better fitted by reducing the size of the shell 
effects (enhanced binding). 
– Mass measurements needed to verify this.
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27

Another important issue: lifetimes of r-process elements

• 107Zr

• 105Y

• 111Mo

•r-process

•E
ne

rg
y 

lo
ss

•velocity

• 107Zr

•Half life fits

•RI beam particles stop in silicon 
telescope and subsequently decay
•Detectors:

• Beta Counting Station BCS
• Neutron detector NERO

•136Xe beam on Be target

•Neutron emission ratios

•104Y discrepancy
could be 
resolved with
•smaller 
deformation
than expected

•J. Pereira et al. Phys. Rev. C 79 (2009) 035806 Figure from H. Schatz
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Structure of nuclei far from stability.

• New closed shells and disappearance of conventional magic numbers.
• New regions of deformation
• New correlations

– neutron-proton pairing
– neutron halos and skins
– cluster states

Thursday, September 17, 2009



Evolution of Shell structure with asymmetry

• Intruder orbits lower and 
become valence.

• New cluster structures 
become relevant.

• Shell change as one approaches 
the neutron drip-line.
• Some shell gaps decrease.
• New shell gaps emerge.

Figures from C/K/Gelbke
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Spectroscopic factor puzzle

• Spectroscopic factors (SF’s) reveal 
the dominant valence orbits.

• Residual interactions reduce SF’s 
below unity near the Fermi Surface.

– Short-range nucleon-nucleon 
repulsion

– Long-range  particle-vibration 
coupling, etc.

• (e,e’p) reactions indicate a 30% 
reduction for valence orbits.

• n and p knockout reactions suggest a 
strong dependence  on the separation 
energy of the removed nucleon.

•Gade, Lee
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Results from other probes

Dispersive optical potential
• The interactions that reduce SF’s are 

the source of the imaginary  potential 
in nucleon optical potentials. 
Fits elastic scattering data enable 
predictions for the SF reduction
Line show two predictions; both show 
much weaker trends than that of the 
knock-out data.

(p,d) reactions
• New (p,d) transfer data for 34Ar, 36Ar 

and 46Ar do not show strong depend on 
asymmetry or  neutron separation 
energy.

• Sensitivity tests should be done to 
reveal the relative contributions of the 
surface and the interior.

• Discrepancy between knockout and 
other probes presents a puzzle
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Another tool: isobaric analog resonances

• Isobaric analog resonances in 
proton elastic scattering on a 
exotic nucleus (Z,A) can provide 
information about the analog 
states in the nucleus (Z-1,A).

• Experiment can be performed in 
inverse kinematics using low 
intensity rare isotope beams 
(>100 p/s) incident on an active 
hydrogen target. 

(W. Mittig 2008)
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Summary and outlook

• Next generation rare isotope facilities such FRIB, FAIR and RIBF (at 
RIKEN) will address a broad array of scientific objectives.

• Some of which were discussed:
– The structure and excitations of neutron –rich and neutron 

deficientnuclei
• new shell structures
• new regions of deformation.
• new correlations.

– The EOS of asymmetric matter.
– The creation of the heavy elements.
– Explosive astrophysical environments.

• Some were not discussed:
– Tests of fundamental symmetries

• Future work will undoubtedly advance greatly our perspectives of these 
matters, which are somewhat limited at present.
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