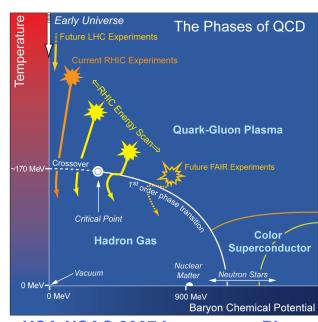
Experimental Approach to the QCD Phase Diagram & Search for the Critical Point

Grazyna Odyniec / LBNL, Berkeley

The John Cramer Symposium University of Washington, Seattle, September 10-11, 2009


Outline:

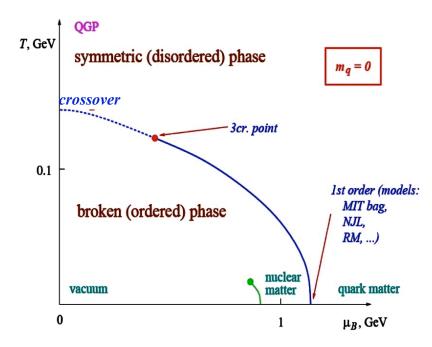
QCD phase diagram

Heavy Ion Collisions – the only experimental tool

BES @ RHIC: Physics goals and observables:

- search for the CP and 1st order phase transition
- demonstrate the onset of deconfinement (QGP)

USA-NSAC 2007 Long-range Plan


QCD phase diagram - Theory

M.Stephanov, hep-ph/0402115v1 (March 2006)

Theory at the "edges" is believed to be well understood:

- 1. Lattice QCD finds a rapid, but smooth, crossover at large T and m_B~0
- 2. Various models find a strong 1st order transition at large m_B

So, there must be a critical point, but where?

Lattice at $m_B = 0$: serious problems, several methods on lattice, no agreement so far:

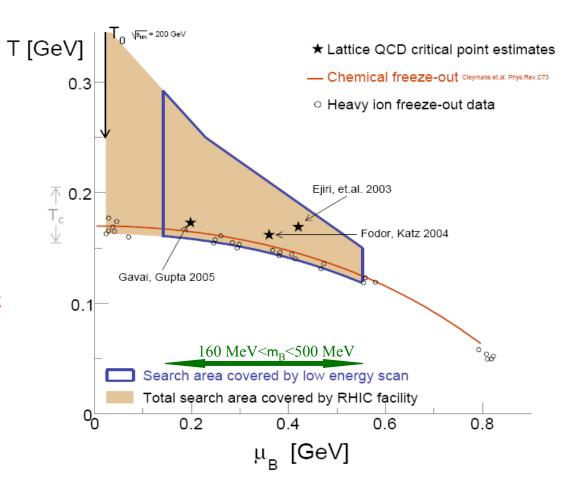
 \rightarrow CP range: 160<m_B<500 MeV

Given the significant theoretical difficulties, data may lead the study of QCD phase diagram

Beam Energy Scan Program at RHIC will cover this range

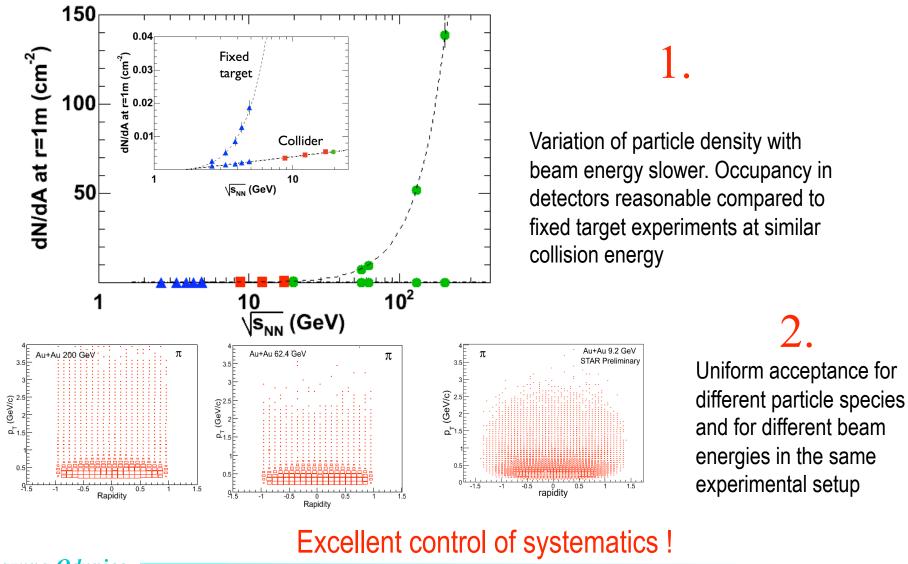
Grazyna Odyniec

Beam Energy Scan at RHIC: Ws_{NN} ~ 5-50 GeV

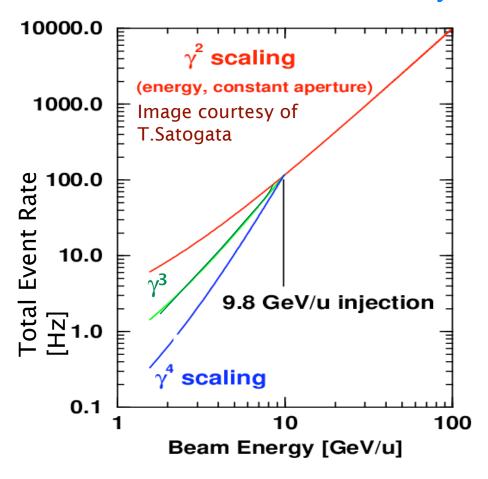

experimental window to QCD phenomenology at finite temperature and baryon number density

at RHIC: indications of sQGP but remain <u>unknown</u>:

- boundary between hadronic and partonic phases
- critical point


HOW to investigate it? BES @ RHIC also: SPS, FAIR (fixed target)

INT Program "The QCD Critical Point" Univ. of Washington, Seattle, 2008



Why RHIC is such an excellent choice? - Collider

Luminosity is the key issue

Determined collision rate for 2008 9.2 GeV Au+Au test to be ~1Hz.

Rate can be increased by:

- factor 2 by adding more bunches, only 56 used for tests (max 120).
- factor 3-6 by operating with higher charge in bunches.
- factor few by running in continuous injection mode
- electron cooling in RHIC (in 2012)

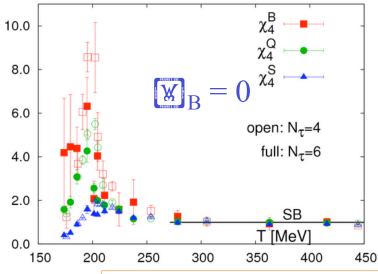
Expect to reach y^3 rate even at lowest energies

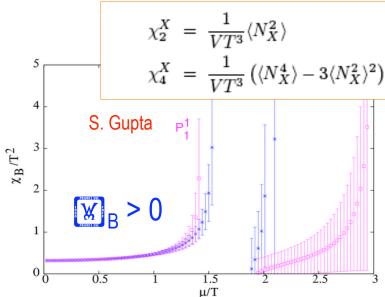
BES: Experimental Program

Search for:

- (1) indications of the existence of Critical Point & phase transition
- fluctuation measures
 - higher moments of net proton distribution (kurtosis)

- azimuthally-sensitive femtoscopy
- elliptic & directed flow
- ...
- (2) disappearance of signals of partonic activities seen at 200 GeV
- disappearance of constituent-quark-number scaling of v_2




- disappearance of hadron suppression in central collisions
- disappearance of ridge
- local parity violation
- •

http://drupal.star.bnl.gov/STAR/starnotes/public/sn0493

Search for the QCD Critical Point : Higher Moments

Grazyna Vayniec

Thermodynamics: Divergence of susceptibilities for conserved quantities (B,Q,S) at critical point.

Hatta, Stephanov, PRL. 91, 102003 (03)

Lattice QCD: Spikes for both W_B and W_S

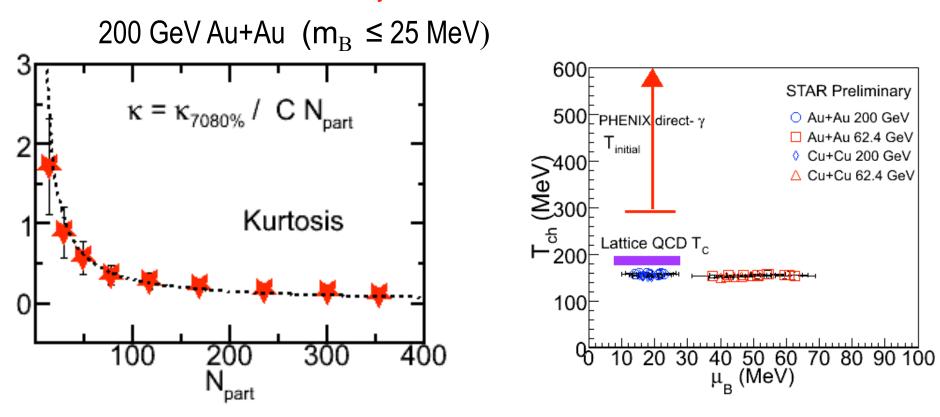
Berdnikov, Rajagopal, PRD61, 105017 (00)

Stephanov, Rajagopal, Shuryak, PRD 60, 114028 (99)

Observable:

Kurtosis of net-proton & net-C

- connect to lattice calculations!
- sensitive to long range fluctuations

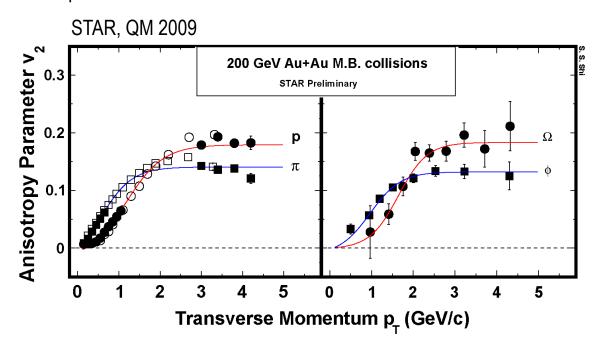

Caveats: dynamical effects in collisions

- finite time and size
- critical slowing

Centrality dependence of net-proton Kurtosis

STAR Preliminary:

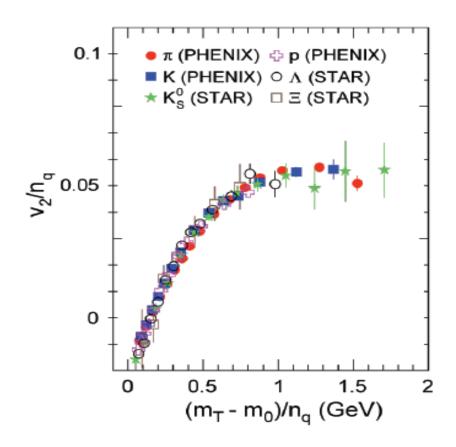
First Kurtosis measurement for net-protons in high-energy nuclear collisions Monotonic behavior observed at relatively small m_B region → <u>baseline</u>



Disappearance of partonic activities (I)

(Onset of sQGP)

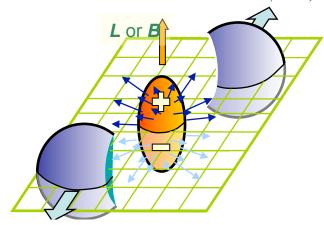
disappearance of n_q scaling, disappearance of hadron suppression at high pt, ... (a long list)

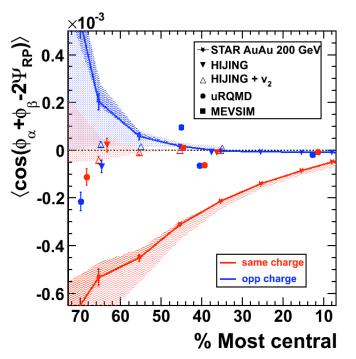

n_q scaling observed at RHIC:

- (1) Mass separation at low p_⊤
- (2) Light and heavy quarks have similar magnitude of flow
- (3) In intermediate p_T: separation between baryon and meson band

Disappearance of partonic activities (II)

Scaling flow parameters by quark content n_q (baryons=3, mesons=2) resolves meson-baryon separation of final state hadrons


flow developed in pre-hadronic stage DECONFINEMENT at RHIC


With lowering energy, disappearance of n_q scaling would suggest that we <u>exit partonic dof world</u>

Local Parity Violations in Deconfined Medium

D.E. Kharzeev et al, NPA 803, 227 (2008) K. Fukushima et al, PRD 78, 074033 (2008)

- (1) Under strong magnetic field, when the system is in the state of deconfinement and chiral symmetry restoration is reached, local fluctuation may lead to parity violation.
- (2) Experimentally one would observe the separation of the charges in high-energy nuclear collisions.
- (3) In RHIC Beam Energy Scan program:
 - test the model prediction
 - the energy when the charge separation disappear => phase boundary

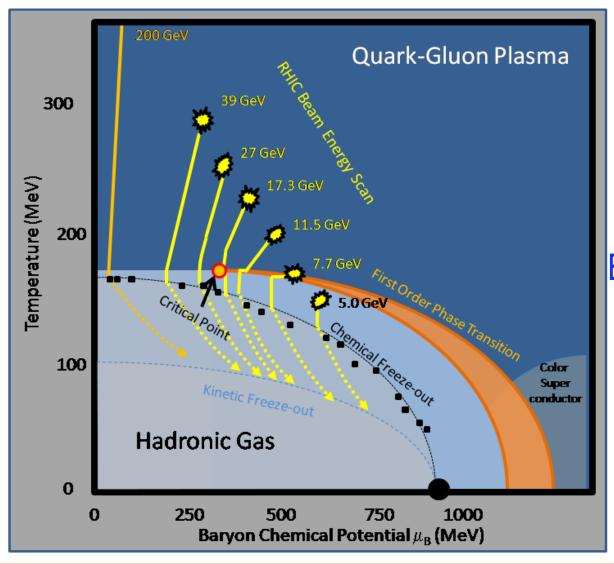
Collision Energies	L		44 F	172	27	20
(GeV)	5	/./	11.5	1/.3	27	39
Observables	Millions of Events Needed					
v_2 (up to ~1.5 GeV/c)	0.3	0.2	0.1	0.1	0.1	0.1
V_1	0.5	0.5	0.5	0.5	0.5	0.5
Azimuthally sensitive HBT	4	4	3.5	3.5	3	3
PID fluctuations (K/p)	1	1	1	1	1	1
net-proton kurtosis	5	5	5	5	5	5
differential corr & fluct vs. centrality	4	5	5	5	5	5
n_q scaling p/K/p/L $(m_T$ - m_o)/n<2GeV	8.5	6	5	5	4.5	4.5
f/W up to p_T/n_a =2 GeV/c		56	25	18	13	12
f/W up to p_T/n_q =2 GeV/c R_{CP} up to $p_T \sim 4.5$ GeV/c (at 17.3) 5.5 (at 27) & 6 GeV/c (at 39)				15	33	24
untriggered ridge correlations		27	13	8	6	6
parity violation		5	5	5	5	5

Grazyna Odyniec

Critical Point Signatures

Deconfinement Signatures

Requested Beam Energies and # of Days Running (from STAR BUR)

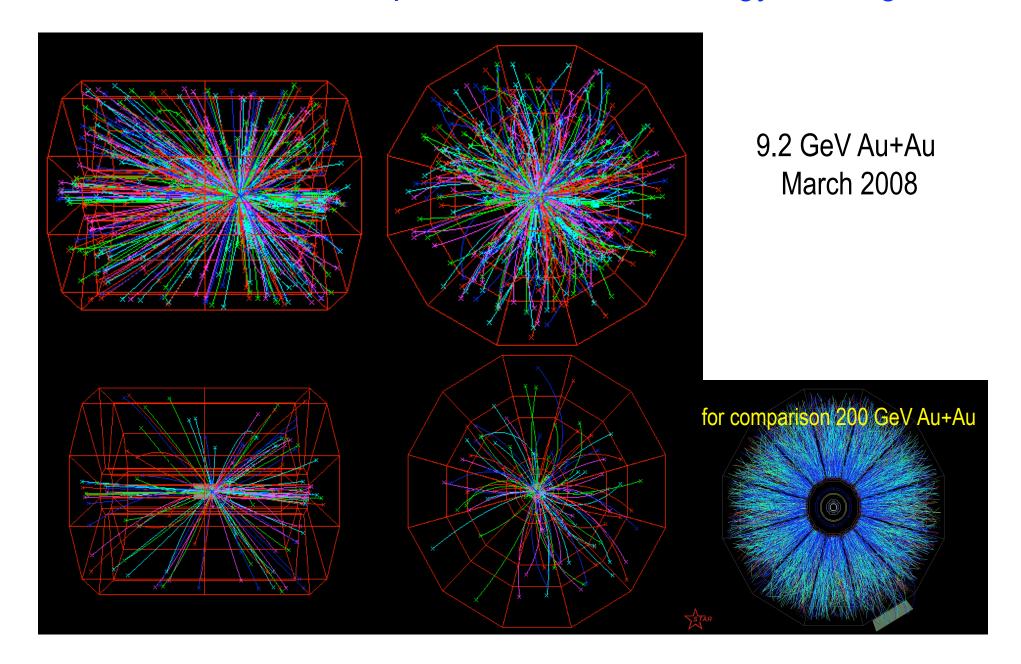

Beam						
Energy						
sqrt(s)	$\mathbf{m}_{\mathtt{B}}$	Rate	Days/1M Events		8-hr days	
(GeV)	(MeV)	(Hz)	Events	proposed	proposed	
5	550	0.8	45	200 k	9	
7.7	410	3	11	5M	56	
11.5	300	10	3.7	5M	19	
17.3	230	33	1.1	15M	16	
27	150	92	0.4	33M	12	
39	110	190	0.2	24M	5	

Sufficient rates for the initial physics program at all energies

"binary" experiment: YES/NO (no "maybe's" & more statistics needed)

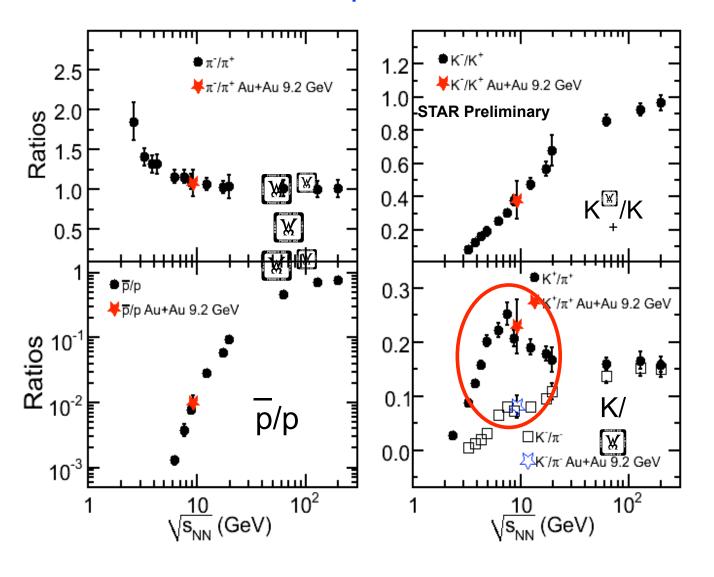
Grazyna Odyniec

BES @ RHIC: run 10 and 11


PAC recommendations, May 2008:

"The search for the QCD Critical Point is a "must do" experiment"

Grazyna Odyniec



STAR has experience with low energy running

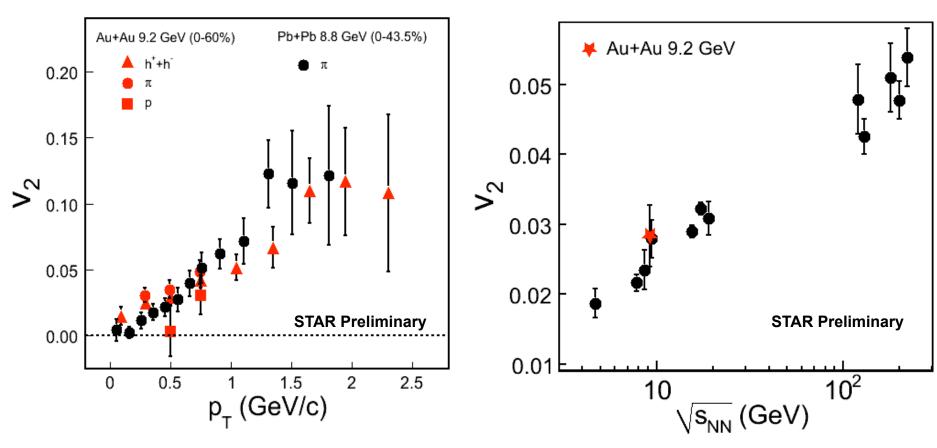
STAR experiment demonstrated capabilities

9.2 GeV results consistent with the published data

STAR: PRC 79 (2009) 034909,

arXiv: 0903.4702

NA49 : PRC 66 (2002) 054902, PRC 77 (2008) 024903,


PRC 73 (2006) 044910

E802(AGS) : PRC 58 (1998) 3523, PRC 60 (1999) 044904, PRC 62 (2000) 024901,

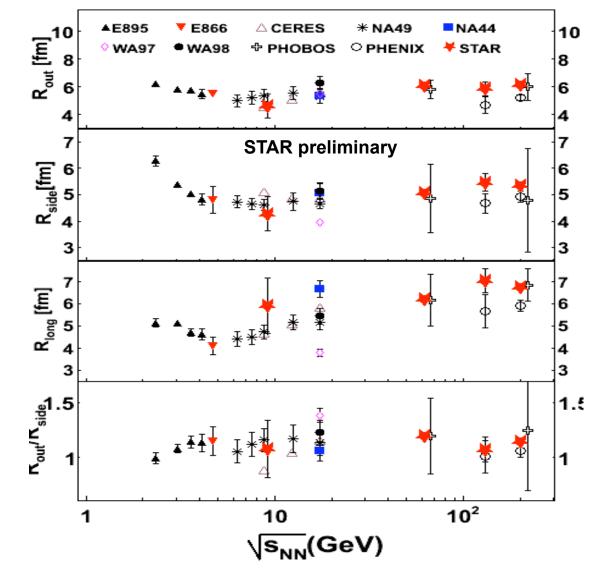
PRC 68 (2003) 054903

Elliptic Flow

STAR and NA49 results are consistent STAR 9.2GeV v₂ fits with the observed trends

NA49 : PRC 68 (2003) 034903 AGS : PLB 474 (2000) 27

STAR: PRC 77 (2008) 054901: PRC 75 (2007)


054906, PRC 72 (2005) 014904 PHOBOS: PRC 72 (2005) 051901:

PRL 98 (2007) 242302

PHENIX: PRL 98 (2007) 162301

Pion Interferometry

error bars for Au+Au 9.2 GeV are statistical systematic errors < 10 % for all radii

STAR: PRC 71 (2005) 044906, PRL 87 (2001) 082301 PHENIX: PRL 88 (2002) 192302, PRL 93(2004) 152302 E802: PRC 66 (2002) 054906 NA44: PRC 58 (1998) 1656 CERES: NPA 714 (2003) 124 E866: NPA 661 (1999) 439 E895: PRL 84 (2000) 2798 NA49: PRC 77 (2008) 64908 PHOBOS: PRC 73 (2006) 031901 WA97: JPG 27 (2001) 2325

9.2 GeV Au+Au paper in preparation (PRC)

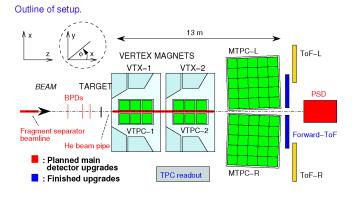
Results from the 9.2 GeV run demonstrate STAR readiness to take up the proposed Beam Energy Scan Program

Grazyna Odyniec

Summary – part I (BES@RHIC)

Main directions of Beam Energy Scan program at RHIC are established:

- Search for turn-off of sQGP signatures
- Search for the evidence of CP and/or 1st order phase transition
- + many other measurements

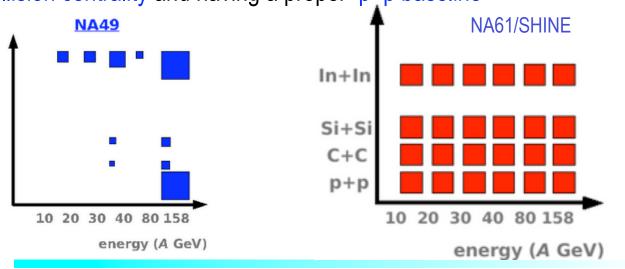

We propose to first scan available phase space with 6 equally spaced points between 5 and 39 GeV (we already have 62, 130, 200 data), and return to "interesting" regions for more detailed studies in the next year

STAR is ready:

- STAR BES program will be definite
- Demonstrated capabilities to complete program
- Perfect time: low interior mass, PID due to TOF, DAQ with DAQ1000

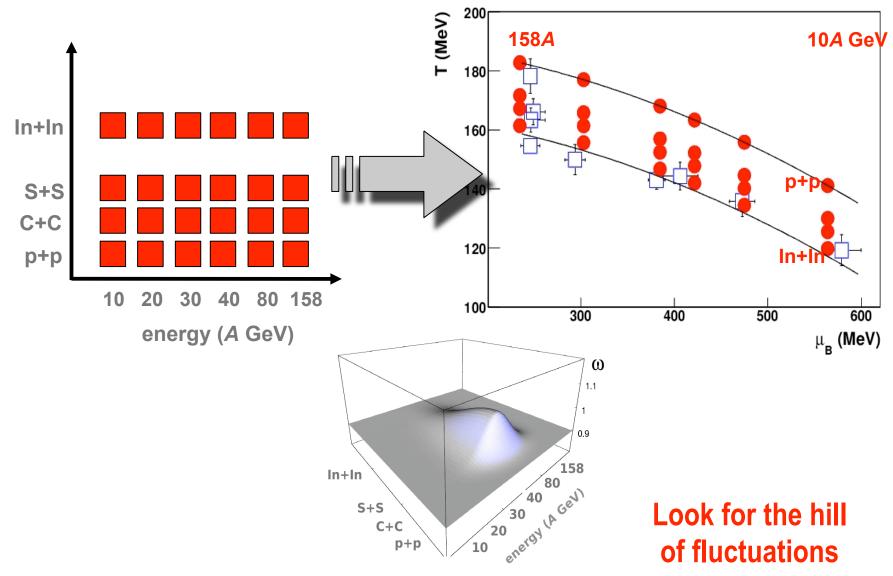
CERN Beam Energy Scan Program – NA61/ SHINE

What is the difference vs. NA49?


New spectator calorimeter for centrality selection Forward Time-Of-Flight Beam pipe

TPC readout

Detector upgrades are necessary.


Physics program:

Studying QCD Critical Point and Onset of various observations with varying colliding ion size, collision centrality and having a proper p+p baseline

NA61/Shine search for the critical point

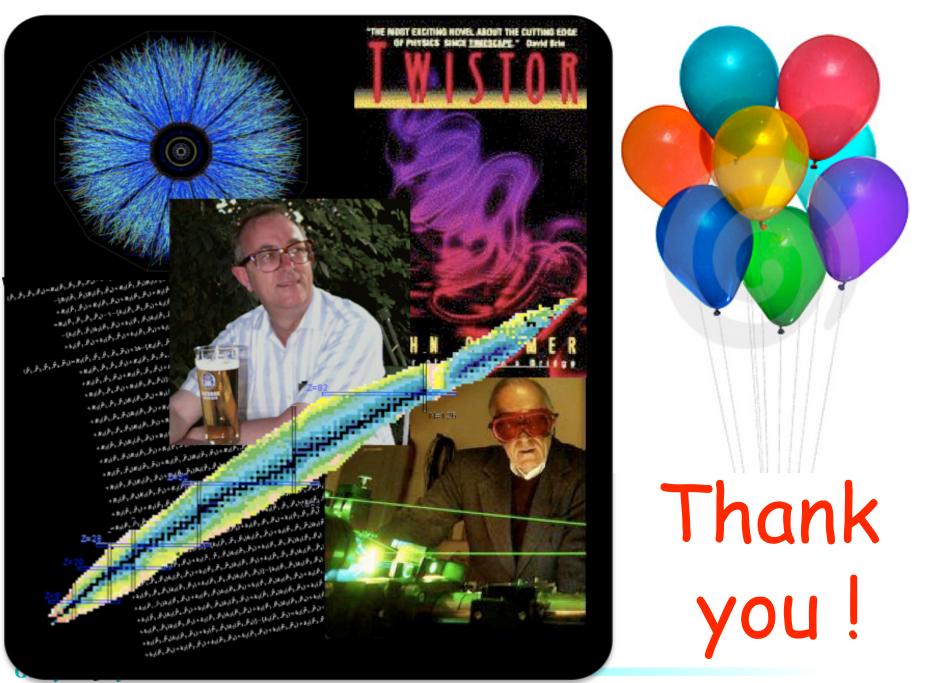
Train is leaving the station ...

BES at RHIC (STAR, PHENIX, collider exp.) starting date December 2009 (run 10) to continue in 2011 (run 11)

BES at CERN (NA61/Shine, fixed targ.exp.) starting date with ion data 2011 (A~30) to continue in 2012 and 2013 (with lighter and heavier ions)

Other facilities: FAIR/Darmstad, NICA/Dubna – much later (~ 2015)

The John Cramer Symposium, University of Washington, Seattle, Sept. 10-11, 2009


Grazyna Odyniec

The John Cramer Symposium, University of Washington, Seattle, Sept. 10-11, 2009

The John Cramer Symposium, University of Washington, Seattle, Sept. 10-11, 2009

The John Cramer Symposium, University of Washington, Seattle, Sept. 10-11, 2009