NONCOMMUTATIVE GEOMETRY AND THE
RIEMANN ZETA FUNCTION

Alain Connes

According to my first teacher Gustave Choquet one does, by openly
facing a well known unsolved problem, run the risk of being remembered
more by one’s failure than anything else. After reaching a certain age, I
realized that waiting “safely” until one reaches the end-point of one’s life is
an equally selfdefeating alternative.

In this paper I shall first look back at my early work on the classification
of von Neumann algebras and cast it in the unusual light of André Weil’s
Basic Number Theory.

I shall then explain that this leads to a natural spectral interpretation of
the zeros of the Riemann zeta function and a geometric framework in which
the Frobenius, its eigenvalues and the Lefschetz formula interpretation of
the explicit formulas continue to hold even for number fields. We shall then
prove the positivity of the Weil distribution assuming the validity of the
analogue of the Selberg trace formula. The latter remains unproved and is
equivalent to RH for all L-functions with Grossencharakter.

1 Local class field theory and the classification of
factors

Let K be a local field, i.e. a nondiscrete locally compact field. The action
of K* = GL1(K) on the additive group K by multiplication,

(1) (A z) = Az VAEK" z€ K,

together with the uniqueness, up to scale, of the Haar measure of the additive
group K, yield a homomorphism,

(2) a€ K*—|al €RY,
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from K* to R’ , called the module of K. Its range
(3) Mod(K) ={|\ € R} ; A€ K*}

is a closed subgroup of R .

The fields R, C and H (of quaternions) are the only ones with Mod(K) =
R’ , they are called Archimedian local fields.

Let K be a non Archimedian local field, then

(4) R={z€eK; |z| <1},

is the unique maximal compact subring of K and the quotient R/P of R
by its unique maximal ideal is a finite field F, (with ¢ = p¢ a prime power).
One has,

(5) Mod(K) = ¢* C R}, .

Let K be commutative. An extension K C K' of finite degree of K is
called unramified iff the dimension of K’ over K is the order of Mod(K")
as a subgroup of Mod(K). When this is so, the field K’ is commutative,
is generated over K by roots of unity of order prime to ¢, and is a cyclic
Galois extension of K with Galois group generated by the automorphism
0 € Autg(K') such that,

(6) O(p) = p?,

for any root of unity of order prime to ¢ in K'.
The unramified extensions of finite degree of K are classified by the
subgroups,

(7) T C Mod(K), T # {1}.

Let then K be an algebraic closure of K, Kgep C K the separable algebraic
closure, K,;, C Kgep the maximal abelian extension of K and Ky, C Ky
the maximal unramified extension of K, i.e. the union of all unramified
extensions of finite degree. One has,

(8) K C Kuyn C Koy C Kgep C K,

and the Galois group Gal(Ky, : K) is topologically generated by 6 called
the Frobenius automorphism.



The correspondence (7) is given by,
(9) K'={z € Kyn; O\(z) =z VAeTY},

with rather obvious notations so that 6, is the 6 of (6). Let then Wx be the
subgroup of Gal(Kj;, : K) whose elements induce on Ky, an integral power
of the Frobenius automorphism. One endows Wy with the locally compact
topology dictated by the exact sequence of groups,

(10) 1 — Gal(K,p : Kyn) > Wk — Mod(K) — 1,

and the main result of local class field theory asserts the existence of a
canonical isomorphism,

(11) Wi = K*,

compatible with the module.

The basic step in the construction of the isomorphism (11) is the clas-
sification of finite dimensional central simple algebras A over K. Any such
algebra is of the form,

(12) A= My (D),

where D is a (central) division algebra over K and the symbol M,, stands
for n X n matrices.

Moreover D is the crossed product of an unramified extension K’ of K
by a 2-cocycle on its cyclic Galois group. Elementary group cohomology
then yields the isomorphism,

(13) Br(K) 5 0/,

of the Brauer group of classes of central simple algebras over K (with tensor
product as the group law), with the group Q/Z of roots of 1 in C.

All the above discussion was under the assumption that K is non Archi-
median. For Archimedian fields R and C the same questions have an idioti-
cally simple answer. Since C is algebraically closed one has K = K and the
whole picture collapses. For K = R the only non trivial value of the Hasse
invariant 7 is

(14) n(H) = 1.

A Galois group G is by construction totally disconnected so that a morphism
from K* to G is necessarily trivial on the connected component of 1 € K*.



Let k be a global field, i.e. a discrete cocompact subfield of a (non
discrete) locally compact semi-simple commutative ring A. (Cf. Iwasawa
Ann. of Math. 57 (1953).) The topological ring A is canonically associated
to k and called the Adele ring of k, one has,

(15) A=k
res
where the product is the restricted product of the local fields k, labelled by
the places of k.
When the characteristic of k is p > 1 so that k is a function field over
Fy, one has

(16) k C kun C kab C ksep C K,

where, as above k is an algebraic closure of k, ksep the separable algebraic
closure, k,;, the maximal abelian extension and kyy is obtained by adjoining
to k all roots of unity of order prime to p.

One defines the Weil group Wy, as above as the subgroup of Gal(kyy, : k)
of those automorphisms which induce on k,, an integral power of 8,

(17) O(u) = p? Y p root of 1 of order prime to p.

The main theorem of global class field theory asserts the existence of a
canonical isomorphism,

(18) Wk =~ Ck = GLl(A)/GLl (k‘) y

of locally compact groups.
When £ is of characteristic 0, i.e. is a number field, one has a canonical
isomorphism,

(19) Ga,l(kab : k) >~ Ck/Dk,

where Dy, is the connected component of identity in the Idele class group
Cr = GL1(A)/GL1(k), but because of the Archimedian places of k there
is no interpretation of Cj analogous to the Galois group interpretation for
function fields. According to A. Weil [28], “La recherche d’une interprétation
pour Cj si k est un corps de nombres, analogue en quelque maniére a
Pinterprétation par un groupe de Galois quand k est un corps de fonctions,
me semble constituer 'un des problémes fondamentaux de la théorie des



nombres & ’heure actuelle ; il se peut qu’une telle interprétation renferme
la clef de ’hypotheése de Riemann ...”.

Galois groups are by construction projective limits of the finite groups
attached to finite extensions. To get connected groups one clearly needs to
relax this finiteness condition which is the same as the finite dimensionality
of the central simple algebras. Since Archimedian places of k are responsible
for the non triviality of Dy it is natural to ask the following preliminary
question,

“Is there a non trivial Brauer theory of central simple algebras over C.”

As we shall see shortly the approximately finite dimensional simple central
algebras over C provide a satisfactory answer to this question. They are
classified by their module,

(20) Mod(M) C R,

~

which is a virtual closed subgroup of R .

Let us now explain this statement with more care. First we exclude
the trivial case M = M,,(C) of matrix algebras. Next Mod(M) is a virtual
subgroup of R , in the sense of G. Mackey, i.e. an ergodic action of RY . All
ergodic flows appear and M) is isomorphic to My iff Mod(M;) = Mod(M3).

The birth place of central simple algebras is as the commutant of isotypic
representations. When one works over C it is natural to consider unitary
representations in Hilbert space so that we shall restrict our attention to
algebras M which appear as commutants of unitary representations. They
are called von Neumann algebras. The terms central and simple keep their
usual algebraic meaning.

The classification involves three independent parts,

(A) The definition of the invariant Mod(M) for arbitrary factors (central
von Neumann algebras).

(B) The equivalence of all possible notions of approximate finite dimen-
sionality.

(C) The proof that Mod is a complete invariant and that all virtual sub-
groups are obtained.

The module of a factor M was first defined ([6]) as a closed subgroup of R,
by the equality

(21) S(M) =) Spec(A,) C Ry
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where ¢ varies among (faithful, normal) states on M, i.e. linear forms
¢ : M — C such that,

(22) p(a*z) >0 Vs eM, (1) =1,
while the operator A, is the modular operator ([24])
(23) A, =878,

which is the module of the involution x — z* in the Hilbert space attached
to the sesquilinear form,

(24) (z,y) = p(y*z), T,y € M.

In the case of local fields the module was a group homomorphism ((2)) from
K* to R, . The counterpart for factors is the group homomorphism, ([6])

(25) 0:R— Out(M) = Aut(M)/Int(M),
from the additive group R viewed as the dual of R’ for the pairing,
(26) (At =X VAER: , teR,

to the group of automorphism classes of M modulo inner automorphisms.
The virtual subgroup,
(27) Mod(M) C R ,

is the flow of weights ([25] [15] [8]) of M. It is obtained from the module ¢
as the dual action of R on the abelian algebra,

(28) C = Center of M >i5 R,

where M >3 R is the crossed product of M by the modular automorphism
group d.

This takes care of (A), to describe (B) let us simply state the equivalence
([5]) of the following conditions

M is the closure of the union of an increasing sequence of

(29) finite dimensional algebras.

M is complemented as a subspace of the normed space of

(30) all operators in a Hilbert space.



The condition (29) is obviously what one would expect for an approximately
finite dimensional algebra. Condition (30) is similar to amenability for dis-
crete groups and the implication (30) = (29) is a very powerful tool.

We refer to [5] [15] [12] for (C) and we just describe the actual construc-
tion of the central simple algebra M associated to a given virtual subgroup,

(31) TCR; .

Among the approximately finite dimensional factors (central von Neumann
algebras), only two are not simple. The first is the algebra

of all operators in Hilbert space. The second factor is the unique approxi-
mately finite dimensional factor of type Il. It is

(33) R()’l = R® M ((C) ,

where R is the unique approximately finite dimensional factor with a finite
trace 79, i.e. a state such that,

(34) To(zy) = 7o(yz)  Vz,y €ER.

The tensor product of 7y by the standard semifinite trace on My, (C) yields
a semi-finite trace 7 on Ry ;. There exists, up to conjugacy, a unique one
parameter group of automorphisms 6, € Aut(Rp,1), A € R} such that,

(35) T(0x(a)) = A1(a) Va € DomainT, A € R} .

Let first I' C R be an ordinary closed subgroup of R} . Then the corre-
sponding factor Rr with modulo I' is given by the equality:

(36) Rr={z € Ry,1; Or(z) =z VAeT},

in perfect analogy with (9).
A virtual subgroup I'C R’ is by definition an ergodic action o of R on

an abelian von Neumann algebra A, and the formula (36) easily extends to,
(37) Rr={z€Ry;1®4A; h@ay)z==x V)\ERj_}.

(This reduces to (36) for the action of R’ on the algebra A = L*°(X) where
X is the homogeneous space X = R} /T".)
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The pair (Ro,1,6)) arises very naturally in geometry from the geodesic
flow of a compact Riemann surface (of genus > 1). Let V' = S*X be the
unit cosphere bundle of such a surface X, and F be the stable foliation of
the geodesic flow. The latter defines a one parameter group of automor-
phisms of the foliated manifold (V, F) and thus a one parameter group of
automorphisms @) of the von Neumann algebra L*(V, F).

This algebra is easy to describe, its elements are random operators T =
(Ty), i.e. bounded measurable families of operators Ty parametrized by the
leaves f of the foliation. For each leaf f the operator T acts in the Hilbert
space L%(f) of square integrable densities on the manifold f. Two random
operators are identified if they are equal for almost all leaves f (i.e. a set of
leaves whose union in V' is negligible). The algebraic operations of sum and
product are given by,

(38) (Ti+ D)= T+ (T2)y, (iTe)r = (T1)r (o),

i.e. are effected pointwise.
One proves that,

(39) L*(V,F) ~ Ry,

and that the geodesic flow 0 satisfies (35). Indeed the foliation (V,F)
admits up to scale a unique transverse measure A and the trace 7 is given
(cf. [4]) by the formal expression,

(40) H(T) = / Trace(Ty) dA(f),

since the geodesic flow satisfies ) (A) = AA are obtains (35) from simple ge-
ometric considerations. The formula (37) shows that most approximately fi-
nite dimensional factors already arise from foliations, for instance the unique
approximately finite dimensional factor R., such that,

(41) Mod(Rec) = K,

arises from the codimension 1 foliation of V' = §*3 generated by F' and the
geodesic flow.

In fact this relation between the classification of central simple algebras
over C and the geometry of foliations goes much deeper. For instance using
cyclic cohomology together with the following simple fact,

“A connected group can only act trivially on a homotopy

42 . .
(42) invariant cohomology theory”,



one proves (cf. [4]) that for any codimension one foliation F' of a compact
manifold V' with non vanishing Godbillon-Vey class one has,

(43) Mod(M) has finite covolume in R}, ,

where M = L*°(V,F) and a virtual subgroup of finite covolume is a flow
with a finite invariant measure.

2 Global class field theory and spontaneous sym-
metry breaking

In the above discussion of approximately finite dimensional central simple
algebras, we have been working locally over C. We shall now describe a
particularly interesting example (cf. [3]) of Hecke algebra intimately related
to arithmetic, and defined over Q.

Let Ty C T" be an almost normal subgroup of a discrete group I, i.e. one
assumes,

(1) TN sTys ! has finite index in Ty~ Vse€T.

Equivalently the orbits of the left action of I'y on I'/T'y are all finite. One
defines the Hecke algebra,

(2) H(T,To),

as the convolution algebra of integer valued I'g biinvariant functions with
finite support. For any field £ one lets,

(3) Hk(r, Fo) = H(F, FO) ®Z k‘,

be obtained by extending the coefficient ring from Z to k. We let T’ = P@'
be the group of 2 x 2 rational matrices,

(®) r={|y o]iacat veal.

and Ty = P, be the subgroup of integral matrices,

(5) FOZ{[(l] ?];nez}.

One checks that I'g is almost normal in T'.



To obtain a central simple algebra over C in the sense of the previous
section we just take the commutant of the right regular representation of I'
on [o\I', i.e. the weak closure of H¢(I',T'y) in the Hilbert space,

(6) #(To\D)

of T'y left invariant function on I' with norm square,

(7) el = lEmP.

v E€To\T

This central simple algebra over C is approximately finite dimensional and
its module is R’ so that it is the same as R, of (41).

In particular its modular automorphism group is highly non trivial and
one can compute it explicitly for the state ¢ associated to the vector & €
?2(Ty\I') corresponding to the left coset T'g.

The modular automorphism group of leaves the dense subalgebra Hc
(T',Ty) C Roo globally invariant and is given by the formula,

(8) af (f)(7) =L RM™ f(y) Y7 €Lo\l/To
for any f € Hc(T,T). Here we let,

) L(vy) = Cardinality of the image of oy g in I'/T
R(v) = Cardinality of the image of T'gyT'g in To\T.

This is enough to make contact with the formalism of quantum statistical
mechanics which we now briefly describe. As many of the mathematical
frameworks legated to us by physicists it is characterized “not by this short
lived novelty which can too often only influence the mathematician left to
his own devices, but this infinitely fecund novelty which springs from the
nature of things” (J. Hadamard).

A quantum statistical system is given by,
1) The C* algebra of observables A,
2) The time evolution (o¢)tcg which is a one parameter group of automor-
phisms of A.

An equilibrium or KMS (for Kubo-Martin and Schwinger) state, at in-
verse temperature [ is a state ¢ on A which fulfills the following condition,

(10) For any z,y € A there exists a bounded holomorphic function (contin-
uous on the closed strip), Fy 4(2), 0 < Imz < 8 such that

Fry(t) = p(z 0r(y)) VteR
Fry(t+iB) = p(oi(y)z) VteR.
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For fixed 3 the KMSg states form a Choquet simplex and thus decompose
uniquely as a statistical superposition from the pure phases given by the
extreme points. For interesting systems with nontrivial interaction, one
expects in general that for large temperature 7', (i.e. small 8 since § = %
up to a conversion factor) the disorder will be predominant so that there will
exist only one KMSg state. For low enough temperatures some order should
set in and allow for the coexistence of distinct thermodynamical phases so
that the simplex K3 of KMSg states should be non trivial. A given symmetry
group G of the system will necessarily act trivially on Kz for large T' since
Kpg is a point, but acts in general non trivially on Kz for small T so that
it is no longer a symmetry of a given pure phase. This phenomenon of
spontaneous symmetry breaking as well as the very particular properties of
the critical temperature T, at the boundary of the two regions are corner
stones of statistical mechanics.

In our case we just let A be the C* algebra which is the norm closure of
Hc(T,T) in the algebra of operators in £2(Tg\I'). We let 0; € Aut(A) be
the unique extension of the automorphisms of of (8).

For 8 = 1 it is tautological that ¢ is a KMSg state since we obtained
of precisely this way ([24]). One proves ([3]) that for any 8 < 1 (i.e. for
T = 1) there exists one and only one KMSg state.

The compact group G,

(11) G = Cy/Dg,

quotient of the Idele class group Cg by the connected component of identity
Dy ~ R, acts in a very simple and natural manner as symmetries of the
system (A,o0¢). (To see this one notes that the right action of I' on ['g\I'
extends to the action of P4 on the restricted product of the trees of SL(2,Qy)
where A is the ring of finite Adeles (cf. [3]).

For 8 > 1 this symmetry group G of our system, is spontaneously broken,
the compact convex sets Kz are non trivial and have the same structure as
K, which we now describe. First some terminology, a KMSy state for
B = oo is called a ground state and the KMS,, condition is equivalent to
positivity of energy in the corresponding Hilbert space representation.

Remember that Hc(T, Tg) contains He(T, T') so,

(12) HQ(F,P()) CA.
By [3] theorem 5 and proposition 24 one has,

Theorem. Let E(K) be the set of extremal KMSn, states.
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a) The group G acts freely and transitively on £(Koo) by composition, ¢ —
pog !, Vged.
b) For any ¢ € £(K) one has,

QO(HQ) = @ab )

and for any element a € Gal(Qup : Q) there exists a unique extension of
a o @, by continuity, as a state of A. One has ao p € E(K).

c¢) The map a — (a o p)p~! € G = Cy/Dy, defined for a € Gal(Qyp, : Q) is
the isomorphism of global class field theory (1.19).

This last map is independent of the choice of . What is quite remarkable
in this result is that the existence of the subalgebra Hq C H¢ allows to bring
into action the Galois group of C on the wvalues of states. Since the Galois
group of C : Q is (except for z — Z) formed of discontinuous automorphisms
it is quite surprising that its action can actually be compatible with the
characteristic positivity of states. It is by no means clear how to extend the
above construction to arbitrary number fields k while preserving the three
results of the theorem. There is however an easy computation which relates
the above construction to an object which makes sense for any global field .
Indeed if we let as above Ry, be the weak closure of H¢(T',Tg) in £2(To\I),
we can compute the associated pair (Rp 1, 6)) of section I.

The C* algebra closure of H¢ is Morita equivalent (cf. M. Laca) to the
crossed product C* algebra,

where A is the locally compact space of finite Adeles. Tt follows immediately
that,

(14) Rp1 = L*(Qa) > Q"

i.e. the von Neumann algebra crossed product of the L*° functions on Adeles
of Q by the action of Q* by multiplication.

The one parameter group of automorphisms, 6 € Aut(Rp 1), is obtained
as the restriction to,

(15) Do=F,,
of the obvious action of the Idele class group Cy,

(16) (g,z) > gz  Vgelq, z € Ag/Q",
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on the space X = Ag/Q* of Adele classes.

Our next goal will be to show that the latter space is intimately related
to the zeros of the Hecke L-functions with Grossencharakter.

(We showed in [3] that the partition function of the above system is the
Riemann zeta function.)

3 Weil positivity and the Trace formula

Global fields k provide a natural context for the Riemann Hypothesis on the
zeros of the zeta function and its generalization to Hecke L-functions. When
the characteristic of k is non zero this conjecture was proved by A. Weil.
His proof relies on the following dictionary (put in modern language) which
provides a geometric meaning, in terms of algebraic geometry over finite
fields, to the function theoretic properties of the zeta functions. Recall that
k is a function field over a curve ¥ defined over F,,

Algebraic Geometry Function Theory

Eigenvalues of action of Zeros of
Frobenius on HX, (%, Q)

Poincaré duality in Functional equation
£-adic cohomology

Lefschetz formula for Explicit formulas
the Frobenius

Castelnuovo positivity Riemann Hypothesis

We shall describe a third column in this dictionary, which will make sense
for any global field. It is based on the geometry of the Adele class space,

(1) X =A/k*, A= Adeles of k.

This space is of the same nature as the space of leaves of the horocycle
foliation (section I) and the same geometry will be used to analyse it.

Our spectral interpretation of the zeros of zeta involves Hilbert space.
The reasons why Hilbert space (apparently invented by Hilbert for this pur-
pose) should be involved are manifold, let us mention three,
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(A) Let N(E) be the number of zeros of the Riemann zeta function satisfying
0 < Imp < E, then ([22])

(2) N(E) = (N(E)) + Nosc(E) ,

where the smooth function (N(E)) is given by

Q V(E) = o (log 5=~ 1) + £ +0(1),

while the oscillatory part is
1 1 .
(@) Nese(E) = - Tmlog( (5 + zE) .

The numbers z; = (N(p;)) where p,, is the imaginary part of the n'! zero are
of average density one and behave like the eigenvalues of a random Hermitian
matrix. This was discovered by H. Montgomery [18] who conjectured (and
proved for suitable test functions) that when M — oo, with «, 5 > 0,

5) #{G,5) € {L,..., MP; @i — e[a,ﬂ]}NM/jl— (Si““)Zdu

U

which is exactly what happens in the Gaussian Unitary Ensemble. Numer-
ical tests by A. Odlyzko [20] and further theoretical work by Katz-Sarnak
[17] and J. Keating give overwhelming evidence that zeros of zeta should be
the eigenvalues of a hermitian matrix.

(B) The equivalence between RH and the positivity of the Weil distribution
on the Idele class group Cj shows that Hilbert space is implicitly present.
(C) The deep arithmetic significance of the work of A. Selberg on the spectral
analysis of the Laplacian on L?(G/T) where T is an arithmetic subgroup of
a semi simple Lie group G.

Direct atempts (cf. [2]) to construct the Polya-Hilbert space giving a
spectral realization of the zeros of ( using quantum mechanics, meet the
following — sign problem: Let H be the Hamiltonian of the quantum me-
chanical system obtained by quantizing the classical system,

(6) (X, Fy)

where X is phase space and ¢t € R — F; the Hamiltonian flow. Let N(E) be
the number of eigenvalues A of H such that 0 < A < E. Then, as for (,

(7) N(E) = (N(E)) + Nosc(E),
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where (N(E)) is essentially a volume in phase space, while the oscillatory
part admits a heuristic asymptotic expansion (cf. [2]) of the form,

o

~ l l ; sin(T# m
®) Nosc(E) ~ ;mz::l e (T3 m E)

2

where the v are the periodic orbits of the flow F', the Tjﬁé are their periods
and the A\, the unstability exponents of these orbits.
One can compare ([2]) (8) with the equally heuristic asymptotic expan-
sion of (4) using the Euler product of ¢ which gives, using —log(1 — z) =
m

o0

xZ
m 7
m=1

9 sin((logp) m E) .

&
C
12
e
~1
NE
3|~
k]
3
N

Comparing (8) and (9) one gets precious information on the hypothetical
“Riemann flow” of M. Berry. The periodic orbits « should be labelled by the
primes p, the periods should be the logp as well as the unstability exponents
Ap- Also, in order to avoid duplication of orbits, the flow should not be “time
reversal symmetric”, i.e. non isomorphic to the time reversed:

(10) (X, F_).

There is however a fundamental mismatch between (8) and (9) which is
the overall — sign in front of (9) and no adjustment of Maslov phases can
account for it.

The very same — sign appears in the Riemann-Weil explicit formula,

W X ) - - =-% [ oy

L(x,p) =0

where h is a test function on the Idele class group Cj, h is its Fourier
transform,

~

(12) he,2) = [ () x)

and the finite values [’ are suitably normalized. If we use the above dictio-
nary when char(k) # 0, the geometric origin of this — sign becomes clear,
the formula (11) is the Lefschetz formula,

(13)  # of fixed points of ¢ = Trace p/H® — Trace ¢/H" + Trace p/H?
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in which the space HZ, (X, Q) which provides the spectral realization of the
zeros appears with a — sign. This indicates that the spectral realization of
zeros of zeta should be of cohomological nature or to be more specific, that
the Polya-Hilbert space should appear as the last term of an exact sequence
of Hilbert spaces,

(14) 0— Ho D Hy—H—0.

The example we have in mind for (14) is the assembled Euler complex for
a Riemann surface, where #; is the codimension 2 subspace of differential
forms of even degree orthogonal to harmonic forms, where #; is the space
of 1-forms and where T' = d + d* is the sum of the de Rham coboundary
with its adjoint d*.

Since we want to obtain the spectral interpretation not only for zeta
functions but for all L-functions with Gréssencharakter we do not expect to
have only an action of Z for char(k) > 0 corresponding to the Frobenius, or
of the group R if char(k) = 0, but to have the equivariance of (14) with
respect to a natural action of the Idele class group Cy = GL1(A)/k*.

Let X = A/k* be the Adele class space. Our basic idea is to take for Hg
a suitable completion of the codimension 2 subspace of functions on X such
that,

(15) §0) =0, [sdz=0,

while 71 = L%(Cy) and T is the restriction map coming from the inclusion
Cr — X, multiplied by |a|'/?,

(16) (Tf)(a) =|al'/? f(a).
The action of C, is then the obvious one, for H,
(17) U@)(@)=flg7'z) Vgely

using the action I1.15 of C} on X, and similarly the regular representation
V for 7‘[1.

This idea works but there are two subtle points; first since X is a delicate
quotient space the function spaces for X are naturally obtained by starting
with function spaces on A and moding out by the “gauge transformations”

(18) f—=Tq, fo@) = flzq), Vgek'.
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Here the natural function space is the Bruhat-Schwarz space S(A) and by
(15) the codimension 2 subspace,

19) st ={fesw; s =0, [ras=o}.

The restriction map T is then given by,

(20) T(f)(a) =a'® Y f(aq) Va€Ck.
geEk*

The corresponding function T'(f) belongs to S(Cj) and all functions f — f,
are in the kernel of T'.

The second subtle point is that since C} is abelian and non compact,
its regular representation does not contain any finite dimensional subrepre-
sentation so that the Polya-Hilbert space cannot be a subrepresentation (or
unitary quotient) of V. There is an easy way out (which we shall improve
shortly) which is to replace L?(Cy) by L3(Cy) using the polynomial weight
(log? |a|)%/?, i.e. the norm,

(21) l€]2 = /C 1€(a)[? (1 + log? |a])*/2 d*a.

Let char(k) = 0 so that Modk = R} and C; = K x R} where K is the
compact group Ci; = {a € Cy; |a| =1}.

Theorem. Let § > 1, H be the cokernel of T in Ls(Cy) and W the quotient
representation of Cy. Let x be a character of K, X = x X 1 the corre-
sponding character of Cy. Let H, = {{ € H; W(9)¢ = x(9)¢ Vg€ K}

and D, = liI% L (W(e) —1). Then Dy is an unbounded closed opera-
€E—r

tor with discrete spectrum, Sp D, C iR is the set of imaginary parts of
zeros of the L function with Grdssencharakter X which have real part 1/2.
Moreover the spectral multiplicity of p is the largest integer n < 10 in

2
{1,..., multiplicity as a zero of L}.

A similar result holds for char(k) > 0. This allows to compute the
character of the representation W as,

(22) Trace(W(h)) = 3. h(x:p)
L(x.3+0)=0
p€ir/NL

where N = Mod(k), W (k) = [ W(g) h(g)d*g, h € S(Cy), h is defined in
(12) and the multiplicity is counted as in the theorem.
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This result is only preliminary because of the unwanted parameter ¢
which artificially restricts the multiplicities. The restriction Rep = % in-
volves the same % as in (16), and this has a natural meaning. Indeed the
natural Hilbert space norm for L?(X), namely ||¢||> = [ |£(z)|? dz is natu-

rally given upstairs on S(A)q by:

(23) 712 = [ 1= f@a)R el '@, ¥ f € S(A).

where D is a fundamental domain for £* acting on Ideles. For a local field
one has indeed the equality

(24) dz = |z|d*z,

(up to normalization) between the additive Haar measure and the multi-
plicative one. In the global case one has,

(25) dz = lim ¢|z|'™¢d*z,
e—0

and (23) ignores the divergent normalization constant which plays no role in
the computation of traces or of adjoint operators. The exponent % in (16)
turns 7" into an isometry,

(26) T:L*(X)y — L*(Cy) .

The analogue of the Hodge * operation is given on Hy by the Fourier trans-
form,

21) (FN@) = [ 1w)alay)dy V] e S(A

which, because we take the quotient by (18), is independent of the choice of
additive character « of A such that @ #1 and a(q) =1 Vg € k. Note also
that F2 = 1 on the quotient. On #; the Hodge * is given by,

(28) (x&)(a) =€(a™")  VaeCy.

The Poisson formula means exactly that 7" commutes with the * operation.
This is just a reformulation of the work of Tate and Iwasawa on the proof
of the functional equation, but we shall now see that if we follow the proof
by Atiyah-Bott ([1]) of the Lefschetz formula we do obtain a clear geometric
meaning for the Weil distribution. One can of course as in [10] define inner
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products on function spaces on Cy using the Weil distribution, but as long
as the latter is put by hands and does not appear naturally one has very
little chance to understand why it should be positive. Now, let ¢ be a
diffeomorphism of a smooth manifold 3 and assume that the graph of ¢
is transverse to the diagonal, one can then easily define and compute (cf.
[1]) the distribution theoretic trace of the permutation U of functions on ¥
associated to ¢,

(29) U&)(z) = &(p(z)) VzeX.

One has “Trace” (U) = [ k(z,z) dz, where k(z,y) dy is the Schwarz kernel
associated to U, i.e. the distribution on ¥ x ¥ such that,

(30) U@ = [ k) €w)dy.

Now near the diagonal and in local coordinates one has,

(31) k(z,y) = 6(y — ¢(2)),
where § is the Dirac distribution. One then obtains,

1
(32) “Trace” (U) = Z IR

where ¢’ is the Jacobian of ¢ and | | stands for the absolute value of the
determinant.

With more work ([11]) one obtains a similar formula for the distributional
trace of the action of a flow,

(33) (U é)(x) = &(Fy(z)) Ve eX, teR.

It is given, under suitable transversality hypothesis, by

Uu

“Trace” = & *u
(34) Trace” (U(h) Z/I Ty

where U(h) = [h(t)U(t)dt, h is a test function on R, the v labels the
periodic orbits of the flow, including the fixed points, I, is the corresponding
isotropy subgroup, and (F,). is the tangent map to F, on the transverse
space to the orbits, and finally d*u is the unique Haar measure on I, which
is of covolume 1 in (R, dt).
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Now it is truly remarkable that when one analyzes the periodic orbits of
the action of C on X one finds that not only it qualifies as a Riemann flow
in the above sense, but that (34) becomes,

1
h(u") d*u.
|1 — ul

(35) “Trace” (U(h)) = 3 / *

Thus, the isotropy subgroups I, are parametrized by the places v of k and
coincide with the natural cocompact inclusion k) C Cj which relates local
to global in class field theory. The denominator |1 — u| is for the module of
the local field k, and the u~! in A(u~!) comes from the discrepancy between
notations (16) and (28). It turns out that if one normalizes the Haar measure
d*u of modulated groups as in Weil [27], by,

(36) / d*u ~logA  for A — o0,
1<]u/<A

one gets the same covolume 1 condition as in (34).

The transversality condition imposes the condition h(1) = 0. The dis-
tributional trace for the action of C; on Cj by translations vanishes under
the condition h(1) = 0.

Remembering that M, is the codimension 2 subspace of L?(X) deter-
mined by the condition (15) and computing the characters of the corre-
sponding 1-dimensional representations gives,

(37) h — h(0) + h(1).

Thus equating the alternate sum of traces on Hg, Hi with the trace on
the cohomology should thus provide the geometric understanding of the
Riemann-Weil explicit formula (11) and in fact of RH using (21) if it could
be justified for some value of §.

The trace of permutation matrices is positive and this explains the
Hadamard positivity,

(38)  “Trace” (U(h)) >0 Vh, h(1) =0, h(u) >0 VYueC

(not to be confused with Weil postivity).

To eliminate the artificial parameter § and give rigorous meaning, as
a Hilbert space trace, to the distribution “trace”, one proceeds as in the
Selberg trace formula [23] and introduces a cutoff. In physics terminology
the divergence of the trace is both infrared and ultraviolet as is seen in the
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simplest case of the action of K* on L?(K) for a local field K. In this local
case one lets,

(39) Ry=PyPy, A€ER,,
where P, is the orthogonal projection on the subspace,
(40) {6 e LX(K); &(x) =0 Va,|z] > A},

while ]31\ = F Py F~!, F the Fourier transform.
One proves ([9]) in this local case the following analogue of the Selberg
trace formula,

(41) Trace (Ry U(h)) = 2h(1)log'(A) + /, h(u__;)| d*u+ o(1)

1
where h € S(K*) has compact support, 2log’(A) = Ne ks, pea-1,a1 @A,
and the principal value [’ is uniquely determined by the pairing with the
unique distribution on K which agrees with |1‘ﬁ‘u‘ for 4 # 1 and whose
Fourier transform vanishes at 1.

As it turns out this principal value agrees with that of Weil for the choice
of F associated to the standard character of K.

Let k£ be a global field and let first S be a finite set of places of k
containing all the infinite places. To S corresponds the following localized
version of the action of C; on X. One replaces C} by

(42) Cs = [[ k/0%,

vES

where O C k™ is the group of S-units. One replaces X by

(43) Xs = H kv/qu :
vES

The Hilbert space L?(Xg), its Fourier transform F and the orthogonal pro-
jection P, P, = F Py, F~! continue to make sense, with

(44) ImPy ={¢ € [*(Xs); &(x) =0 Vz, |z| > A}.

As soon as S contains more than 3 elements, (e.g. {2,3,00} for kK = Q) the
space Xg is an extremely delicate quotient space. It is thus quite remarkable
that the trace formula holds,
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Theorem. For any h € S,(Cs) one has, with Ry = P PA,

Trace (Ra U(h)) = 2log' (A )+ > /
veS o

|1—u| *u+ o(1)

where the notations are as above and the finite values [’ depend on the addi-
tive character of I1k, defining the Fourier transform F. When Char (k) = 0
the projectors P, Py commute on L2 for A large enough so that one can

replace Rp by the orthogonal pI‘O_]eCthII Qx on Im Py NIm Py. The situ-
ation for Char (k) = 0 is more delicate since Py and Py do not commute
(for A large) even in the local Archimedian case. But fortunately [21] these
operators commute with a specific second order differential operator, whose
eigenfunctions, the Prolate Spheroidal Wave functions provide the right fil-
tration Qo. This allows to replace Ry by Qa and to state the global trace
formula

, h(u~t
(45)  Trace (QaU(R) = 2log'(A) h(1) + 3 / * +o(1).

s 1 —ul
Our final result is that the validity of this trace formula implies (in fact
is equivalent to) the positivity of the Weil distribution, i.e. RH for all L-
functions with Grossencharakter. Moreover the filtration by Qa allows to
define the Adelic cohomology and to complete the dictionary between the
function theory and the geometry of the Adele class space.

Function Theory Geometry

Zeros and poles of Zeta Eigenvalues of action of Cy
on Adelic cohomology

Functional Equation * operation
Explicit formula Lefschetz formula
RH Trace formula
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