Let A be an infinite dimensional K- algebra, where K is a field and let B be a
basis for A. In this talk we explore a property of the basis B that guarantees
that (the direct product of copies indexed by B of the field K) can be made
into an A-module in a natural way. We call bases satisfying that property
"amenable" and we show that not all amenable bases yield isomorphic A-modules.
Then we consider a relation (which we name congeniality) that guarantees that
two different bases yield isomorphic A-module structures on
. We will look at
several examples in the familiar setting of the algebra
of polynomials with
coefficients in K. If time allows it, we will discuss some results regarding
these notions in the context of Leavitt Path Algebras.
(joint work with Sergio R. López-Permouth and Najat Muthana)
ATHENS, OU
La165005 at ohio.edu
Let be an associative ring(algebra) with center
. For every
associative ring
can be turned into a Lie ring(algebra) by introducing a new
product
, known as Lie product. So we may regard
simultaneously as an associative ring(algebra) and as a Lie ring(algebra). An
additive mapping
is called a derivation on
if
holds for all
. A function
is said to
be a centralizing on
if
holds for all
. In
the special case where
for all
,
is said to be
commuting on
. The study of such mappings were initiated by E.C. Posner [
Proc. Amer. Math. Soc. 8(1957), 1093-1100]. In 1957, he proved that if a prime
ring
has a nonzero commuting derivation on
, then
is commutative. An
analogous result for centralizing automorphisms on prime rings was obtained by
J.H. Mayne [Canad. J. Math. 19 (1976), 113-115].
In this talk, we will discuss the recent progress made on centralizing and
commuting mappings in rings and algebras. Moreover, some examples and counter
examples will be discussed for questions raised naturally.
ALIGARH MUSLIM UNIVERSITY, ALIGARH
ALIGARH, U.P.
shakir.ali.mm at amu.ac.in
(Joint work with Sami Alabaid.)
We classify all constacyclic codes of finite length over
finite chain ring R of characteristic equal to any prime number p and obtain the
number of codewords in each of those cyclic codes.
References
[1] Y. Alkhamees, The determination of the group of automorphisms of a finite
chain
ring of characteristic P.
[2] S.D. Berman, Semisimple cyclic and Abelian codes. II, Kibernetika (Kiev) 3
(1967) 21-30 (in Russian); translated as Cybernetics 3 (1967) 17-23.
[3] G. Castagnoli, J.L. Massey, A.P. Schoeller, N. von Seemann, On repeated-root
cyclic
codes, IEEE Trans. Inform. Theory 37 (1991)337-342.
[4] W.E. Clark, A coefficient ring of finite commutative chain rings, Proc.
Amer. Math. Soc.
[5] H.Q. Dinh, Constacyclic codes of length over
.
Journal of Algebra 324
(2010) 940-950.
[6] H.Q.Dinh, Negacyclic codes of length
over Galois rings, IEEE Trans.
Inform. Theory 51 (2005) 4252-4262.
[7] H.Q. Dinh, On the linear ordering of some classes of negacyclic and cyclic
codes and thier distance distribution, Finite Fields Appl. 14 (2008) 22-40.
[8] H.Q. Dinh, S.R. Lopez-permuth, Cyclic and negacyclic codes over finite chain
rings, IEEE Trans. Inform. Theory 50 (2004) 1728- 1744.
[9] W.C. Human, V. Pless, Fundamental of Error-Correcting codes, Cambridge
University Press, Cambridge 2003.
[10] F.J. MacWilliams, N.J.A Sloane, The Theory of Error-Correcting Codes 10th
Impression, North-Holland, Amsterdam, 1998.
[11] J.L. Massey, D.J. Castello, J. Justesen, Polynomial weights and code
construction IEEE Trans. Inform. Theory 19 (1973) 101- 110.
[12] V. Pless, W.C. Human, Handbook of Coding Theory, Elsevier, Amsterdam,
1998.
[13] R.M. Roth, G. Seroussi, On cyclic MDS codes of length q over GR(q), IEEE
Trans. Inform. Theory 32 (1986) 284- 285.
[14] A. Salagean, Repeated-root cyclic and negacyclic codes over finite chain
ring. Discrete Appl. Math. 154 (2006) 413-285.
[15] G. Norton, A. Salagean-Mandache, On the structure of linear cyclic codes
over finite chain rings, Appl. Algebra Engrg. Comm. Comput 10 (2000) 489-506.
[16] P. Udaya, M.U. Siddiqi, Optimal large linear complexity frequency hopping
patterns derived from polynomials residue class ring, IEEE Trans. Inform. Theory
44(1998) 1492-1503.
[17] J.H. Van Lint, Repeated-root cyclic codes, IEEE Trans. Inform. Theory 37
(1991) 343- 345.
[18] B.R. Writ, Finite non-commutative local rings, Ph.D. Theses, University of
Oklahoma, (1972).
KING SAUD UNIVERSITY
RIYADH, SAUDI ARABIA
ykhamees at gmail.com
Binary array pairs with optimal/ideal correlation values and their algebraic counterparts "difference set pairs" (DSPs) in abelian groups are studied. In addition to generalizing known 1-dimensional (sequences) examples, we provide four new recursive constructions, unifying previously obtained ones. Any further advancements in the construction of binary sequences/arrays with optimal/ideal correlation values (equivalently cyclic/abelian dfference sets) would give rise to richer classes of DSPs (and hence binary perfect array pairs). Discrete signals arising from DSPs find applications in cryptography, radar and wireless communications and CDMA systems. Our methods would employ group rings. This is a joint work with Anika Goyal and Abhishek Puri.
WRIGHT STATE UNIVERSITY
DAYTON, OH
k.arasu at wright.edu
Let be a zero-symmetric near-ring. A map
is said to be permuting if the equation
holds for all
and for every permutation
, where
is
the permutation group on
. A permuting
-additive(i.e.,
additive in each argument) mapping
is called a permuting
-derivation if
holds for all
. Of course, a permuting
- derivation is a
derivation and permuting
-derivation is a symmetric bi-derivation.The
concepts of symmetric bi-derivation and permuting
-derivation have already
been introduced in rings by G. Maksa, [C. R. Math. Rep. Sci. Canada,9(1987),
303-307] and
Park, K.H. and Jung, Y.S., [Commun. Korean Math. Soc. 25 , (2010), 1-9]
respectively. Motivated by these concepts, we introduce generalized permuting
-derivations in near-rings as follows: A permuting
-additive mapping
is called a right generalized permuting
-derivation
(resp. a left generalized permuting
-derivation) if there exists a permuting
-derivation
such that
holds for all
(resp.
holds for all
). If
is both left as well as right generalized permuting
-derivation then it
is called a generalized permuting
-derivation. Several results obtained
earlier in the setting of symmetric bi-derivations, permuting tri-derivations,
and permuting
-derivations have been generalized for permuting generalized
-derivations in
. Further, several necessary and sufficient conditions
have been obtained which yield additive and multiplicative commutativity of
.
ALIGARH MUSLIM UNIVERSITY
ALIGARH, U.P.
mashraf80 at hotmail.com
For an arbitrary ring R, the largest strong left quotient ring Q(R) of R and the strong left localization radical are introduced and their properties are studied in detail. A criterion is given for the ring Q(R) to be a semisimple ring. There is a canonical homomorphism from the classical left quotient ring to Q(R) which is not an isomorphism, in general.
UNIVERSITY OF SHEFFIELD/SCHOOL OF MATHEMATICS
SHEFFIELD,
v.bavula at sheffield.ac.uk
We extend the definition of a piecewise Noetherian ring to the noncommutative case, and investigate various properties of such rings. In particular, we show that the Gabriel correspondence between prime ideals and indecomposable injective modules holds for (noncommutative) piecewise Noetherian rings satisfying Gabriel's condition H. (Joint work with Abigail C. Bailey)
NORTHERN ILLINOIS UNIVERSITY
DEKALB, ILLINOIS
beachy at math.niu.edu
Abstract: : If and
are two commutative rings with identity,
and
is an injective ring homomorphism, then we can consider
as a subring of
, and we say that
is a ring
extension. An extension of rings
is a
-extension if
for all
,
nonzero implies that
is nonzero and
principally generated; that is, the contraction of a principal ideal in
is
principal in
.
Let be a commutative ring and
. If for every
and nonzero
,
, then
is an absorbing subset of
.
In this talk the speaker will discuss -extensions of commutative
rings with identity, and its relation to absorbing subsets of rings.
PENN STATE ERIE
ERIE, PA
pxb39 at psu.edu
In this talk, certain types of idempotents are investigated which determine specific classes of generalized matrix rings. Some of these classes properly contain the class of generalized triangular matrix rings. This is a preliminary report on joint work with Pham Ngoc Anh and Leon Van Wyk.
UNIVERSITY OF LOUISIANA AT LAFAYETTE
LAFAYETTE, LA
gfb1127 at louisiana.edu
How I found idempotents at a high school mathematics competition that I graded for.
UNIVERSITY OF IOWA
IOWA CITY, IOWA
Victor-camillo at uiowa.edu
A ring is called strongly clean if every element can be written as the sum of a
unit and an idempotent that commute with each other. Such rings can be viewed
as a generalization of the classical strongly -regular rings. In recent
years, many authors have worked toward constructing and describing examples of
strongly clean rings. In this talk, we will focus on the problem of determining
when a power series ring is strongly clean.
WELLESLEY COLLEGE
WELLESLEY, MA
adiesl at wellesley.edu
We define a class of modules satisfying a condition that Hom functors commute
with -products and examine its properties.
CUNY-CSI
NEW YORK, NEW YORK
rdimitric at juno.com
For any odd prime , the structures of all negacyclic codes of length
over the finite commutative chain ring
are established in term of their polynomial generators. When
,
is reducible as
, then any negacyclic code
of length
over
is represented as a direct sum of a
-constacyclic and an
-constacyclic codes of length
over
. In the remaining case, where
,
is irreducible, we proved that the ambient ring
is a local ring with maximal ideal
, but it is not a chain ring. Such negacyclic codes
were classified by categorizing the ideals of the local ring
into 4 distinct types. The detailed
structures of ideals in each type were provided. Among other results, the number
of codewords, and the dual of each
negacyclic code are obtained.
KENT STATE UNIVERSITY
WARREN, OH
hdinh at kent.edu
We review and discuss some left-right symmetry results which have been obtained in recent years.
DEPT OF MATHEMATICS, OHIO UNIVERSITY
ATHENS, OH
huynh at ohio.edu
The Gabriel-Roiter measure, introduced by C. M. Ringel in 2005, is an invariant
attached to finite length modules and has been studied extensively in recent
years, mainly in the context of Artin algebras. In this talk, we discuss some
applications of the Gabriel-Roiter measure in the study of left pure semisimple
rings, i.e. rings such that every left
-module is a direct sum of
finitely generated modules. In particular, when
is a hereditary left pure
semisimple ring with only two simple modules (the case where the pure
semisimplicity conjecture is reduced to), we obtain a complete description (by
recent joint work with José Luis García) of the Gabriel-Roiter measure
of indecomposable left
-modules.
OHIO UNIVERSITY, ZANESVILLE CAMPUS
ZANESVILLE, OHIO
nguyend2 at ohio.edu
In this work, we focus on the notions of regularity in semirings and many of their generalizations. Also we will determine several characterizations of them by their ideals or by their semimodules over them. Also, we examine some properties of right PπP-semirings, that is, semirings all of whose principal right ideal (for some positive integer ) are projective. It is shown that this class is a proper subclass of π-regular semirings.
AL-AZHAR UNIVERSITY
EGYPT,
fatema_azmy at hotmail.com
The harmonic oscillator problem in quantum mechanics is to find operators
and
acting on a Hilbert space satisfying the relation
. This is one
of the physical motivations behind studying the Weyl algebra and the enveloping
algebra of the Heisenberg Lie algebra. In this talk, I will present a
two-parameter version of this problem and discuss some of the subtleties in
looking for simple, primitive factor rings in quantum enveloping algebras.
UNIVERSITY OF CALIFORNIA, SAN DIEGO
LA JOLLA, CA
jgaddis at ucsd.edu
Automorphism invariant modules.
UNIVERSITY OF MURCIA
MURCIA, SPAIN
paguil at um.es
This a joint work with Mike Prest [LP2].
In the paper [H], Herzog investigated the ring of definable scalars of the finite-dimensional representations of the Lie algebra sl(2) of the 2x2 traceless matrices over the complex field. This is the ring of definable actions on the category of finite-dimensional sl(2)-modules that is, the ring to which the action of the universal enveloping algebra, U = U(sl(2)) on these modules extends in a definable way. Herzog showed, that this ring, denoted by U, is von Neumann regular and is a universal localisation of U. This work inspired further investigations, on rings of definable scalars of Verma modules [LP], on U(q)-modules (where q is not a root of unity) [HL].
It is natural to ask what happens when sl(2) is replaced by other simple Lie algebras, in particular by sl(3). We are able to obtain the similar results described by [H] if we restrict to the representations which are contained in, or whose dual is contained in, the natural representation of sl(3) on the polynomial ring on three generators.
References:
[H] I. Herzog, The pseudo-finite dimensional representations of ,
Selecta Mathematica, 7 (2001), 241-290
[HL] I. Herzog, S. L'Innocente, The Nonstandard quantum plane, Annals of Pure and Applied Logic, 156 (2008), no. 1, 78-85
[LP] S. L'Innocente, M. Prest, Rings of definable scalars of Verma modules, Journal of Algebra and its Applications, 6 (2007), no. 5, 779-787
LP2] S. L'Innocente, M. Prest, Rings of definable scalars of some
-modules, In preparation
UNIVERSITY OF CAMERINO
CAMERINO, MACERATA
sonia.linnocente at unicam.it
Row reduced matrices are one of the basic structures that are of unquestionable
importance and have applications in many places outside of mathematics. It is
perhaps less known (or used) that they are also closed under multiplication, and
form a monoid. We show that the row reduced matrices are in fact characterized
almost entirely by being set of representatives for the action, and
closed under multiplication. We determine all such monoid structures - that we
call annihilator semigroups, and show they are ``simultaneously echelonizable"
and very close to row reduced matrices. This also allows one to view the total
Grassmaniann G(n) on an n dimensional space as an algebraic semigroup, that is
graded by a certain semigroup
whose
elements are Young tableaux, and
the graded components of G(n) are exactly the Schubert cells. Time permitting,
we present other results on the structure of these annihilator semigroups, their
classification up to isomorphism, the structure of their semigroup rings,
and relations to other important mathematical objects as the plactic monoid and
Young diagrams.
This is joint work with Victor Camillo.
UNIVERSITY OF IOWA
IOWA CITY, IA
miodrag-iovanov at uiowa.edu
We generalize HNP ring to M-HNP module, P-Bezout ring to P-Bezout module and 2-Bezout ring to 2-Bezout module. We also observe some properties of the generalization.
INSTITUT TEKNOLOGI BANDUNG
BANDUNG, WEST JAVA
irawati at math.itb.ac.id
An element of a ring
is called clean if
for some idempotent
and some unit
in
. A ring is called clean if each of its elements
is clean. It is known that the polynomial ring
over a ring
is
never clean and that the clean elements in a ring need not form a subring.
We obtain set of clean elements in a polynomial ring and give conditions
under which clean elements in a polynomial ring form a subring. Among other
things it is shown that for a ring
, the set
of clean elements
of
forms a subring of
if and only if
is a subring of
and
(where
is the upper nil radical) and
that a positive solution to the Köthe's problem is equivalent to for any
clean ring
, the set
of clean elements of
forms a
subring of
if and only if
is a reduced ring. (This is a
joint work with Andre Leroy and Jerzy Matczuk.)
OHIO UNIVERSITY - ZANESVILLE
ZANESVILLE, OHIO
kanwar at ohio.edu
Lambek extended the usual commutative ideal theory to ideals in noncommutative
rings, calling an ideal of a ring
symmetric if
implies
for
.
is usually called symmetric if 0 is a
symmetric
ideal. This naturally gives rise to extending the study of symmetric ring
property to the lattice of ideals. In the process we introduce the concept of an
ideal-symmetric ring. We first characterize the class of ideal-symmetric
rings and show that this
ideal-symmetric property is Morita invariant. We provide a method of
constructing an ideal-symmetric ring (but not semiprime) from any given
semiprime ring, noting that semiprime rings are ideal-symmetric. We
investigate the structure of minimal
ideal-symmetric rings completely, finding two kinds of basic forms
of finite ideal-symmetric rings. It is also shown that the ideal-symmetric
property can go up to right quotient rings in relation with regular elements.
The polynomial ring
over an ideal-symmetric ring
need not be
ideal-symmetric, but it is
shown that the factor ring
is ideal-symmetric over a semiprime
ring
.
DEWPARTMENT OF MATHEMATICS/DAEJIN UNIVERSITY
POCHEON,
tkkwak at daejin.ac.kr
If is a left ideal in a ring
and
is
such that
, can we find an idempotent
such that
? The consideration of this important
problem of ``lifting idempotents" has led to Nicholson's definition
of ``suitable elements" and ``suitable rings". How about lifting
(von Neumann) regular elements? That is, if
for some
, can we find a regular element
such that
? In this talk, we'll report on some recent
results in this direction. (This is joint work with Dinesh Khurana.)
UNIVERSITY OF CALIFORNIA
BERKELEY, CA
lam at math.berkeley.edu
In this talk, we present module theoretic definitions of the Baer and related ring concepts. We say a module is scalar Baer (Rickart), or s.Baer (s.Rickart), if the right annihilator of a nonempty subset (nonzero element) of the module is generated by an idempotent in the ring. We show that s.Baer and s.Rickart modules satisfy a number of closure properties such as submodules, extensions, and direct sums. Under certain conditions, a torsion theory is established for the class of s.Baer modules, and we provide examples of s.Baer torsion modules and modules with a nonzero s.Baer radical. The other principal interest of this presentation is to provide explicit connections between s.Baer and projective modules. Among other results, we show that every s.Baer module is an essential extension of a projective module. Additionally, we prove, with limited and natural assumptions, that in a generalized triangular matrix ring every s.Baer submodule of the ring is projective. Numerous examples are provided to illustrate, motivate, and delimit the theory.
UNIVERSITY OF LOUISIANA AT LAFAYETTE
LAFAYETTE, LA
rll1509 at louisiana.edu
Gangyong Lee and Xiaoxiang Zhang
(Sungkyunkwan University
, Southeast University)
The notion of unit-regular rings was introduced by Ehrlich in 1968. Since then unit-regular rings have attracted wide interests and have been related to many other rings such as regular rings, morphic rings, clean rings, directly finite rings, rings having stable range 1, and rings having the internal cancellation property. In 2013, Lee, Rizvi, and Roman systematically investigated modules whose endomorphism rings are (von Neumann) regular. Recently, Lee, Roman, and Zhang considered the case in which the endomorphism ring of a module is a division ring. In between these two cases lies the study of modules whose endomorphism rings are unit-regular.
In this talk, we introduce the notion of a unit endoregular module as a module
theoretic analogue for a unit-regular ring. A right -module
is called
unit endoregular if its endomorphism ring is unit-regular. We discuss
this notion and provide a number of characterizations and properties.
For instance, unit endoregular modules satisfy the following basic properties:
the substitution property,
the cancellation property, the internal cancellation property, the directly
finite property, the finite exchange property, the
condition, the
condition, and so on.
In addition, every unit endoregular module is a morphic, (d-)Rickart, and clean
module.
SUNGKYUNKWAN UNIVERSITY
SUWON, REPUBLIC OF KOREA, N/A
lgy999 at hanmail.net
Let
be an extension of commutative rings with identity,
be a
nonzero proper ideal of
,
be a strictly totally ordered monoid such that
for all
and
. Let
and
the coefficients of nonconstant terms of
belong to
.
In this talk, we give some conditions for the rings
and
to
be Noetherian or to satisfy the ascending chain condition on principal ideals.
KYUNGPOOK NATIONAL UNIVERSITY
DAEGU,
jwlim at knu.ac.kr
All this work is developed in the context of the full subcategory of
-Mod.
will be progenerator in
, except otherwise stated. In
this talk will be considered modules with finite uniform dimension which
satisfies ACC on annihilators and they will be called Goldie modules. Using the
concept of semiprime module, it will be given the next characterization of
semiprime Goldie modules:
INSTITUTO DE MATEMáTICAS, UNIVERSIDAD NACIONAL AUTóNOMA DE
MéXICO
MéXICO, DISTRITO FEDERAL
mauricio_g_mb at yahoo.com.mx
The trace on matrix rings, along with the augmentation map and Kaplansky trace on group rings, are some of the many examples of linear functions on algebras that vanish on all commutators. These examples can be generalized and unified by studying traces on (contracted) semigroup rings over commutative rings. It turns out that every such ring admits a minimal trace (i.e., one that vanishes only on sums of commutators), and the minimal traces on these rings can be completely classified. I will also discuss applications of this theory to various classes of semigroup rings and quotients thereof, including Leavitt path algebras.
This work was done jointly with Lia Vas.
UNIVERSITY OF COLORADO
COLORADO SPRINGS, CO
zmesyan at uccs.edu
E. Armendariz asked whether, in a general ring , elements of minimal prime
ideals were zero-divisors, in some sense. An example shows that the answer is
``no'' for left or right zero-divisors. An element
is a weak
zero-divisor if there are
with
and
. It is shown
that each element of a minimal prime ideal is a weak zero-divisor. Related
questions are examined, in particular in rings where the set of nilpotent
elements forms an ideal.
This is a joint work with W.D. Burgess and A. Lashgari.
SAINT XAVIER UNIVERSITY
CHICAGO, IL
mojiri at sxu.edu
We briefly review some results about Invertible Algebras (algebras having bases
that consist entirely of units) and other related notions. Then we consider the
existence of an augmentation map as a possible way in which results about group
rings, the archetypical invertible algebras, may be extended to more general
settings. We also deal with the property that sets of inverses of linearly
independent invertible elements be also linearly independent. We refer to
algebras with this property as fluid algebras. We establish when finite field
extensions are fluid algebras. Also we will show infinite field extensions are
never fluid algebras. For any ring ,
is fluid. However, this does
not extend to larger matrices. We define the
of an
-algebra
to be
the largest number of linearly independent units in
, and denote this
cardinal as
. We then define the fluidity of an
-algebra
to be
the integer
, such that for every set of
or less linearly
independent invertible elements, their inverses are also linearly independent.
The fluidity of various families of algebras such as matrix rings and field
extensions will be explored.
(This is joint work with Sergio López-Permouth.)
OTTERBEIN UNIVERSITY
PICKERINGTON, OHIO
jmoore at otterbein.edu
In the present paper we establish some results on (regular) generalized left derivation in a BCI-algebra X and study related properties. Furthermore, we investigate the concept of a F-invariant generalized left derivation and discuss some examples. Using this concept a condition for a generalized left derivation to be regular is provided. Finally, some results on p-semisimple BCI-algebra are established.
UNIVERSITY OF TABUK, TABUK 71491, SAUDI ARABIA
TABUK, TABUK
chishtygm at gmail.com
We define and study a new dimension, which we call uniserial dimension, to
measure how far away modules are form being uniserial.
It is shown that for a ring and an ordinal number
, there exists an
-module of uniserial dimension
.
We show that a commutative ring
is Noetherian (resp. Artinian)
if and only if every finitely generated
-module has (resp. finite)
uniserial dimension if and only if
the right module
has (resp. finite) uniserial dimension.
Rings whose modules have uniserial dimension are characterised. In fact,
it is shown that every right
-module has uniserial dimension if
and only if the free right
-module
has uniserial dimension if and only if
is a semisimple Artinian ring.
ISFAHAN UNIVERSITY OF TECHNOLOGY
ISFAHAN, IRAN
z.nazemian at math.iut.ac.ir
The rings of the title are studied. It is shown that, every finitely generated left ideal is a principal left annihilator, and the only one with zero right annihilator is the ring itself. With this the semiprime examples are characterized (all semisimple), and those with the ACC on principal left annihilators are investigated.
UNIVERSITY OF CALGARY
CALGARY, ALBERTA
wknichol at ucalgary.ca
Several results in the literature focused on lifting idempotents are improved, by either removing the lifting hypothesis or weakening other assumptions. For instance we prove that countable sets of idempotents, which are orthogonal modulo an enabling ideal, lift to orthogonal idempotents. Left associates of liftable idempotents also lift modulo the Jacobson radical. Additionally, we exhibit situations when half-orthogonal sets of idempotents can be orthogonalized by multiplying by a unit. These results have implications on the structure of Harada modules.
BRIGHAM YOUNG UNIVERSITY
PROVO, UT
pace at math.byu.edu
Let be a commutative ring. For any positive integer
, the power function
defined by
is easily seen to be an endomorphism
of the multiplicative semigroup
. In this talk, we characterize the
commutative rings
with identity for which every multiplicative endomorphism of
is
equal to a
power function. Open questions will also be presented.
UNIVERSITY OF COLORADO, COLORADO SPRINGS
COLORADO SPRINGS, COLORADO
goman at uccs.edu
In my paper Compatible Ring Structures on Injective
Hulls of Finitely Embedded Rings, Contemporary Mathematics 609 (2014) pages
245-266, I characterized when an appropriate submodule of the
injective hull
of a finitely embedded ring
has a ring structure
extending ring multiplication on
to a ring structure on
. I show that
has such a compatible
ring structure iff every simple right
-module has a simple right
-socle.
In this talk I restrict my rings to be artinian (where ) to be able to use
standard
techniques of qF rings and Morita duality instead of having to make some not
so familiar definitions to obtain the characterization. I sketch a proof by
analyzing exactly how and why the proof in the above paper works, and
observing a restatement of the classification to get Theorem: Let
be a
right artinian ring,
,
,
. Then
has a ring structure compatible with
-module
multiplication on
iff for every simple factor ring
of
,
is a rational extension of its
-socle.
A copy of my Contemporary Math paper can be found at
https://www.dropbox.com/s/j3d0vfx190xts3o/conm12128.pdf
A preliminary version of my presentation slides can be found at
https://www.dropbox.com/s/3wpo5tqy0w38bkn/comp-ring-structures-Columbus2014.pdf
RUTGERS UNIVERSITY (EMERITA)
NEW BRUNSWICK/PISCATAWAY, NEW JERSEY
osofskyb at member.ams.org
Since the discovery of the existence of the injective hull of an abitrary module
, the notion of ``hull" of
or a unique smallest essential overmodule with
some specific properties has been of interest. Kaplansky introduced the notions
of Baer and Rickart rings in 1950's. Thsese classes of rings, which happen to
have their roots in Functional Analysis, were extensively studied by Kaplansky,
Berberian and many others. In recent years, by Lee, Rizvi, and Roman, the
notions of a Baer and a Rickart rings were extended to analogous module
theoretic notions using the endomorphism ring of the module under consideration.
While some work has been done on the existence of the quasi-Baer ``ring hull" of
a ring for certain classes of rings by Birkenmeier, Park, and Rizvi, there
is almost nothing known about a Baer or a Rickart ``module hull" of a module
. In this work, for a given module
and a fixed injective hull
, we
investigate the existence of a Baer hull and a Ricaket hull over commutative
rings. It is shown that a Baer module hull (or Rickart module hull) may not
exist in general. We obtain certain classes of modules for which Baer modules
hulls or Ricakrt module hulls do exist. Explicit descriptions of each type of
hulls of
are described for these classes of modules. We exhibit differences
between a Baer module hull from that of a Rickart module hull by providing
explicit examples and related results. We also compare Baer hulls and extending
hulls of certain classes of modules.
It is well-known that direct sum of Baer (or Rickart) modules do not always inherit the repective property. As an application, we construct Baer and Rickart module hulls of some direct sums which are not Baer (or Rickart) themselves.
(This is joint work with S. Tariq Rizvi.)
DEPARTMENT OF MATHEMATICS, PUSAN NATIONAL UNIVERSITY
BUSAN 609-735,
jkp1128 at yahoo.com
Following López-Permouth, Moore and Szabo, given a ring an
-algebra
is called an invertible algebra if it has an
-basis of units in
Leavitt path algebras are generalizations of the classical Leavitt
algebras, the universal examples of algebras without the Invariant Basis Number
property. In this talk, we report on the search for a condition on the graph
which is equivalent to the Leavitt path algebra
being an invertible
algebra for any field
Leavitt path algebras with
coefficients in
and other commutative rings are also considered.
(This is a joint work with Sergio López-Permouth.)
OHIO UNIVERSITY
ATHENS, OH
np338697 at ohio.edu
Given an arbitrary graph E and a field K, we indicate new methods of constructing simple left modules over the Leavitt path algebra L(E). The corresponding primitive ideals are described. The cardinality of single isomorphism class of simple modules isomorphic to a given simple L-module is computed. Other consequent results are outlined.
UNIVERSITY OF COLORADO, COLORADO SPRINGS
COLORADO SPRINGS, CO
ranga at uccs.edu
An affine tropical variety can be defined as the intersection of the simultaneous root set of a finite number of tropical polynomials. We consider the tropical dimension and related invariants in terms of the algebraic structure, bearing in mind that the underlying algebraic structure is a semifield rather than a field. Special attention is paid to ``nonstandard'' tropical varieties.
BAR-ILAN UNIVERSITY
RAMAT-GAN,
rowen at math.biu.ac.il
In this talk, we will consider aspects of the big lattice of preradicals, related to pseudocomplements and supplements. Also, we will consider essential preradicals and superfluous preradicals, and we will characterize the situation in which all nonzero preradicals are essential as well as the one in which all proper preradicals are superfluous.
FACULTAD DE CIENCIAS, UNAM
MEXICO CITY, MEXICO D.F.
marlisha at gmail.com
We consider a family of double-infinite posets of width at most three such that the module categories of their incidence algebras are naturally contained in each other and grow slowly in complexity.
Symmetries of the posets give rise to endofunctors for the module categories: The reflection at the center to the duality; the rotation to the square of the Auslander-Reiten translation; and the shift to the graded shift.
The categories are equivalent to lattices over tiled orders studied by W. Rump and -- modulo the projectives on one orbit under the graded shift -- to invariant subspaces of nilpotent linear operators.
FLORIDA ATLANTIC UNIVERSITY
BOCA RATON, FL
markus at math.fau.edu
Dual Preserving Maps for Linear Codes over Finite Frobenius Rings.
EASTERN KENTUCKY UNIVERSITY
RICHMOND, KENTUCKY
steve.szabo at eku.edu
We adapt the direct finite condition (i.e implies
) for unital
rings to rings with local units and characterize directly finite Leavitt path
algebras as exactly those having the underlying graphs in which no cycle has an
exit. Our proof involves consideration of ``local'' Cohn-Leavitt subalgebras of
finite subgraphs and we illustrate that this idea transends the consideration of
direct finiteness alone.
UNIVERSITY OF THE SCIENCES
PHILADELPHIA, PA
l.vas at usciences.edu
We study Farrell Nil-groups associated to a finite order automorphism of a ring
.
We show that any such Farrell Nil-group is either trivial, or infinitely
generated (as an abelian
group). Building on this first result, we then show that any finite group that
occurs in such a Farrell Nil-group
occurs with infinite multiplicity.
If the original finite group is a direct summand, then the countably infinite
sum of the finite subgroup also appears
as a direct summand. We use this to deduce a structure theorem for countable
Farrell Nil-groups with finite exponent.
Finally, as an application, we show that if
is any virtually cyclic group,
then the associated Farrell or Waldhausen Nil-groups can always be expressed as
a countably infinite sum of
copies of a finite group, provided they have finite exponent (which is always
the case in dimension 0).This is joint work with Jean-François Lafont and
Stratos Prassidis.
THE OHIO STATE UNIVERSITY
COLUMBUS, OHIO
kwang at math.ohio-state.edu
Any finite non-cyclic group is equal to a union of its proper subgroups. The
covering number of
is the minimum number of subgroups necessary to cover
. Covering numbers are known for several classes of finite groups, and the
computation covering numbers is a problem of current interest.
In this talk, we discuss the analogous question for finite rings. In general,
not much is known. We say that a finite (associative, unital) ring is
coverable if it is equal to a union of its proper subrings, and the covering
number of
is the minimum number of subrings required to cover
. Not every
finite ring is coverable, and it is nontrivial to decide whether
is
coverable. We present a classification theorem for finite coverable semisimple
rings, and determine the covering number for
when
is coverable and equal
to a direct product of finite fields.
THE OHIO STATE UNIVERSITY-NEWARK
NEWARK, OH
nwerner at newark.osu.edu
An additive code over a finite field
is an additive subgroup
. Define the monomial group
to be all the monomial transformations of
that map
to
.
Define the Hamming isometry group
to be all the
additive isomorphisms of
that preserve Hamming weight. Any monomial
transformation of
preserves the Hamming weight on
. Thus, there is a natural restriction homomorphism
When the field
is a prime field, the restriction map is always
onto. However, when the field
is not a prime field, the two
groups
WESTERN MICHIGAN UNIVERSITY
KALAMAZOO, MI
jay.wood at wmich.edu
Abstract: Given a complete modular meet-continuous lattice , an inflator
over
is a monotone function
such that
for
all
. If
is the set of all inflators over
, then
is a
complete lattice. Motivated by preradical theory we introduce two operators,
the totalizer and the equalizer over
. In this talk we will obtain some
properties of these operators and see how are they related to the structure of
the lattice
.
IMATE-UNAM
MéXICO CITY, DISTRITO FEDERAL
angelus31415 at gmail.com
We talk about how to express a linear transformation as a sum of two commuting invertible linear transformations.
References
[1] D. Zelinsky, Every linear transformation is a sum of nonsingular ones, Proc. AMS. 5(1954), 627-630.
[2] G.Tang and Y. Zhou, When is every linear transformation a sum of two commuting invertible ones?, Linear Algebra Appl., 439(2013), 3615-3619.
MEMORIAL UNIVERSITY OF NEWFOUNDLAND
ST.JOHN'S,
zhou at mun.ca
At the 2011 conference held in Coimbra entitled ``Non-Associative Algebras and Related Topics'', I. P. Shestakov asked the following.
Question: Let be a locally nilpotent ring with a derivation
and
let
be the differential polynomial ring. Is the Jacobson radical
of
equal
to
?
We answer this question in the negative. This is a joint work with Agata Smoktunowicz.
POLITECHNIKA WARSZAWSKA
WARSAW, POLAND
m.ziembowski at mini.pw.edu.pl