Doc. MATH. J. DMV 119

THE WORK OF MAXIM KONTSEVICH

CLIFFORD HENRY TAUBES

Maxim Kontsevich is known principally for his work on four major problems in
geometry. In each case, it is fair to say that Kontsevich’s work and his view of the
issues has been tremendously influential to subsequent developments. These four
problems are:

e Kontsevich presented a proof of a conjecture of Witten to the effect that a cer-
tain, natural formal power series whose coefficients are intersection numbers
of moduli spaces of complex curves satisfies the Korteweg-de Vries hierarchy
of ordinary, differential equations.

e Kontsevich gave a construction for the universal Vassiliev invariant for knots
in 3-space, and generalized this construction to give a definition of pertuba-
tive Chern-Simons invariants for three dimensional manifolds. In so doing,
he introduced the notion of Graph Cohomology which succinctly summarizes
the algebraic side of the invariants. His constructions also vastly simplified
the analytic aspects of the definitions.

o Kontsevich used the notion of stable maps of complex curves with marked
points to compute the number of rational, algebraic curves of a given degree
in various complex projective varieties. Moreover, Kontsevich’s techniques
here have greatly affected this branch of algebraic geometry. Kontsevich’s
formulation with Manin of the related Mirror Conjecture about Calabi-Yau
3-folds has also proved to be highly influential.

e Kontsevich proved that every Poisson structure can be formally quantized
by exhibiting an explicit formula for the quantization.

What follows is a brief introduction for the non-expert to these four areas of
Kontsevich’s work. Here, I focus almost solely on the contributions of Kontsevich
to the essential exclusion of many others; and I ask to be pardonned for my many
and glaring omissions.

1 INTERSECTION THEORY ON THE MODULI SPACE OF CURVES AND THE MA-
TRIX AIRY FUNCTION [1]

To start the story, fix integers ¢ > 0 and n > 0 which are constrained so
2g +n > 2. That is, the compact surface of genus g with n punctures has neg-
ative Euler characteristic. Introduce the moduli space M, ,, of smooth, compact,
complex curves of genus g with n distinct marked points. This is to say that a
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point in M, , consists of an equivalence class of tuple consisting of a complex
structure j on a compact surface C' of genus g, together with an ordered set
A = {z1,...,2,} C C of n points. The equivalence is under the action of the
diffeomorphism group of the surface. This M, , has a natural compactification
(known as the Deligne-Mumford compactification) which will not be notationally
distinguished. Suffice it to say that the compactification has a natural fundamen-
tal class, as well as an n-tuple of distinguished, complex line bundles. Here, the
i’th such line bundle, L;, at the point (j,A) € My, is the holomorphic cotangent
space at z; € A.

With the preceding understood, note that when {d, ... ,d,} are non-negative
integers which sum to the dimension of M, ,, (which is 3¢ —3+n). Then, a number
is obtained by pairing the cohomology class

H C,’(Lz’)di

1<i<n

with the afore-mentioned fundamental class of M, ,,. (Think of representing these
Chern classes by closed 2-forms and then integrating the appropriate wedge prod-
uct over the smooth part of My ,.) Using Poincaré duality, such numbers can be
viewed as intersection numbers of varieties on M, , and hence the use of this term
in the title of Kontsevich’s article.

As g,n and the integers {di, ... ,d,} vary, one obtains in this way a slew of
intersection numbers from the set of spaces {M, ,}. In this regard, it proved con-
venient to keep track of all these numbers with a generating functional. The latter

is a formal power series in indeterminants ¢g, ¢1,... which is written schematically
as
ko, k ty
F(toatla---)=Z<7'007'11“‘)Hkz_!a (1)
(k) i>0 ¢

where, (k) signifies the multi-index (ko, k1, - - . ) consisting of non-negative integers
where only finitely many are non-zero. Here, the expression (7h07F1 ...} is the
number which is obtained as follows: Let

n=k +k+..., and g=3(2(ki +2ko+3ks+...) —n)+1.

If g is not a positive integer, set (Té“o lel -+-) = 0. If g is a positive integer, construct
on M, the product of ¢;(L;) for 1 < j < ky times the product of ¢;(L;)? for
k1+1<j <k +ky times ... etc.; and thus construct a form whose dimension is
39 — 3 +n, which is that of My ,. Finally, pair this class on the fundamental class
of M, ,, to obtain (rforfr...).

By comparing formal properties of two hypothetical quantum field theories,
E. Witten was led to conjecture that the formal series U = §?F/0t% obeys the
classical KdV equation,

ou oUu 1 9%U

—=U——+—=—F7. 2
oty U6t0+12 ot} @
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(As U is a formal power series, this last formula can be viewed as a conjectural
set of relations among the intersection numbers which appear in the definition of
Fin (1).)

Kontsevich gave the proof that U obeys this KdV equation. His proof of
Equation (2) is remarkable if nothing else then for the fact that he gives what is
essentially an explicit calculation of the intersection numbers {(r8o7f ---)}. To
this end, Kontsevich first introduces a model for M, , based on what he calls
ribbon graphs with metrics. (A ribbon graph is obtained from a 3-valent graph by
more or less thickening the edges to bands. They are related to Riemann surfaces
through the classical theory of quadratic differentials.) With an explicit, almost
combinatorial model for My , in hand, Kontsevich proceeds to identify the classes
c1(L;) directly in terms of his model. Moreover, this identification is sufficiently
direct to allow for the explicit computation of the integrals for {(rforFt ---)}. It
should be stressed here that this last step involves some extremely high powered
combinatorics. Indeed, many of the steps in this proof exhibit Kontsevich’s unique
talent for combinatorical calculations. In any event, once the coefficients of U are
obtained, the proof ends with an identification of the expression for U with a
novel expansion for certain functions which arises in the KdV story. (These are
the matrix Airy functions referred to at the very start of this section.)

2 FEYNMAN DIAGRAMS AND LOW DIMENSIONAL TOPOLOGY [2]

From formal quantum field theory arguments, E. Witten suggested that there
should exist a family of knot invariants and three manifolds invariants which can
be computed via multiple integrals over configuration spaces. Kontsevich gave an
essentially complete mathematical definition of these invariants, and his ideas have
profoundly affected subsequent developments.

In order to explain, it proves useful to first digress to introduce some basic
terminology. First of all, the three dimensional manifolds here will be all taken
to be smooth, compact and oriented, or else Euclidean space. A knot in a three
manifold is a connected, 1-dimensional submanifold, which is to say, the embedded
image of the circle. A link is a finite, disjoint collection of knots. A knot or link
invariant is an assignment of some algebraic data to each knot or link (for example,
a real number), where the assignments to a pair of knots (or links) agree when one
member of the pair is the image of the other under a diffeomorphism of the ambient
manifold. (One might also restrict to diffeomorphisms which can be connected by
a path of diffeomorphisms to the identity map.)

A simple example is provided by the Gauss linking number an invariant of
links with two components which can be computed as follows: Label the compo-
nents as K1 and Ks. A point in K; together with one in K5 provides the directed
vector from the former to the latter, and thus a point in the 2-sphere. Since both
K; and K> are copies of the circle, this construction provides a map from the
2-torus (the product of two circles) to the 2-sphere. The Gauss linking number is
the degree of this map. (The invariance of the degree under homotopies implies
that this number is an invariant of the link.) Alternately, one can introduce the
standard, oriented volume form w on the 2-sphere, and then the Gauss linking
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number is the integral over the K; x K5 of the pull-back of the form w.

Witten conjectured the existence of a vast number of knot, link and 3-manifold
invariants of a form which generalizes this last formula for the Gauss linking num-
ber. Independently of Kontsevich, significant work towards constructing these in-
variants for knots and links had been carried out by Bar-Natan, Birman, Garoufa-
lidis, Lin, and Guadagnini-Martinelli-Mintchev. Meanwhile, Axelrod and Singer
had developed a formulation of the three-manifold invariants.

In any event, what follows is a three step sketch of Kontsevich’s formulation
for an invariant of a three-manifold M with vanishing first Betti number.

Step 1: The invariants in question will land in a certain graded, abelian group
which is constructed from graphs. Kontsevich calls these groups “graph cohomol-
ogy groups.” To describe the groups, introduce the set G of pairs consisting of a
compact graph I' with only three-valent vertices and a certain kind of orientation
o for I'. To be precise, o is an orientation for

( p B eH(T).

edges(T")

Note that isomorphisms between such graphs pull back the given o. Thus, one can
think of Gy as a set of isomorphism classes. Next, think of the elements of G as
defining a basis for a vector space over Z where consistency forces the identification
of (T', —o) with —(T', 0).

One can make a similar definition for graphs where all vertices are three valent
save for one four valent vertex. The resulting Z-module is called G;. In fact, for
each n > 0 there is a Z-module G,, which is constructed from graphs with all
vertices being at least 3-valent, and with the sum over the vertices of (valence —3)
equal to n.

With the set {G}n>0 more or less understood, remark that there are nat-
ural homomorphisms 8: G, — G411 which obey 82 = 0. Indeed, 8 is defined
schematically as follows:

o, 0) = Z (T'/e, induced orientation from o) .
ecedges(T)

Here, I'/e is the graph which is obtained from I' by contracting e to a point. The
induced orientation is quite natural and left to the reader to work out. In any
event, with 0 in hand, the modules {G,} define a differential complex, whose
cohomology groups are

GC, = kernel(9: G4 — Gyy1)/ Image(0: Gu1 — Gi). (3)

This is ‘graph cohomology’. For the purpose of defining 3-manifold invariants,
only GCj is required.
Step 2: Fix a point p € M and introduce in M x M the subvariety

Y=(pxM)U(MxpUA,

where A denotes the diagonal. A simple Meyer-Vietoris argument finds closed
2-forms on M x M — ¥ which integrate to 1 on any linking 2-sphere of any of
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the three components of ¥. Moreover, there is such a form w with w Aw =0
near ¥. In fact, near ¥, this w can be specified almost canonically with the choice
of a framing for the tangent bundle of M. (The tangent bundle of an oriented
3-manifold can always be framed. Furthermore, Atiyah essentially determined a
canonical frame for TM.) Away from ¥, the precise details of w are immaterial.
In any event, fix w using the canonical framing for TM.

With w chosen, consider a pair (T,0) from Gy. Associate to each vertex of
I' a copy of M, and to each oriented edge e of I', the copy of M x M where the
first factor of M is labeled by the staring vertex of e, and the second factor by the
ending vertex. Associate to this copy of M x M the form w, and in this way, the
edge e labels a (singular) 2-form we on Xyertices(ry M -

Step & At least away from all versions of the subvariety ¥, the
forms {we}eceages(ry can be wedged together to give a top dimensional form
Heeedges(r) We, ON X yevertices(r) M - It is a non-trivial task to prove that this form
is integrable. In any event, the assignment of this integral to the pair (T, 0) gives
a Z-linear map from Gg to R. The latter map does not define an invariant of
M from the pair (I',0) as there are choices involved in the definition of w, and
these choices effect the value of the integral. However, Kontsevich found a Stokes
theorem argument which shows that this map from Gy to R descends to the kernel
of 0 as an invariant of M. That is, these graph-parameterized integrals define a
3-manifold invariant with values in the dual space (GCp)*. (A recent paper by
Bott and Cattaneo has an exceptionally elegant discussion of these points.)

Kontsevich’s construction of 3-manifold invariants completely separates the
analytic issues from the algebraic ones. Indeed, the module GCy encapsulates all
of the algebra; while the analysis, as it were, is confined to issues which surround
the integrals over products of M. In particular, much is known about GCjy; for
example, it is known to be highly non-trivial.

Kontsevich has a similar story for knots which involves integrals over con-
figuration spaces that consist of points on the knot and points in the ambient
space. Here, there is a somewhat more complicated analog of graph cohomology.
In the case of knots in 3-sphere, Kontsevich’s construction is now known to give
all Vassiliev invariant of knots.

In closing this section, it should be said that Kontsevich has a deep un-
derstanding of these and related graph cohomology in terms of certain infinite
dimensional algebras [3].

3 ENUMERATION OF RATIONAL CURVES VIA TORUS ACTIONS [4]

The general problem here is as follows: Suppose X is a compact, complex algebraic
variety in some complex projective space. Fix a 2-dimensional homology class
on X and ‘count’ the number of holomorphic maps from the projective line P!
into X which represent the given homology class. To make this a well posed
problem, maps should be identified when they have the same image in X. The
use of quotes around the word count signifies that further restrictions are typically
necessary in order to make the problem well posed. For example, a common
additional restriction fixes some finite number of points in X and requires the
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maps in question to hit the given points.

These algebro-geometric enumeration problems were considered very difficult.
Indeed, for the case where X = P2, the answer was well understood prior to
Kontsevich’s work only for the lowest multiples of the generator of Ha(P2;Z).
Kontsevich synthesized an approach to this counting problem which has been
quickly adopted by algebraic geometers as the method of choice. Of particular
interest are the counts made by Kontsevich for the simplest case of X = P2 and
for the case where X is the zero locus in P* of a homogeneous, degree 5 polynomial.
(The latter has trivial canonical class which is the characterization of a Calabi-Yau
manifold.)

There are two parts to Kontsevich’s approach to the counting problem. The
first is fairly general and is roughly as follows: Let V be a compact, algebraic vari-
ety and let 8 denote a 2-dimensional homology class on V. Kontsevich introduces
a certain space M of triples (C,z, f) where C is a connected, compact, reduced
complex curve, while z = (z1,...,%%) is a k-tuple of pairwise distinct points on
C and f: C = V is a holomorphic map which sends the fundamental class of C
to 8. Moreover, the associated automorphism group of f is suitably constrained.
(Here, k could be zero.) This space M is designed so that its compactification is a
reasonable, complex algebraic space with a well defined fundamental class. (This
compactification covers, in a sense, the oft used Deligne-Mumford compactification
of the space of complex curves with marked points.) The utilization of this space
M with its compactification is one key to Kontsevich’s approach. In particular,
suppose X C V is an algebraic subvariety. Under certain circumstances, the prob-
lem of counting holomorphic maps from C' into X can be computed by translating
the latter problem into that of evaluating the pairing of M’s fundamental class
with certain products of Chern classes on M. The point here is that the condition
that a map f: C — V lie in X can be reinterpreted as the condition that the
corresponding points in M lie in the zero locus of a certain section of a certain
bundle over M.

With these last points understood, Part 2 of Kontsevich’s approach exploits
the observation that V' = P" has a non-trivial torus action. Such an action in-
duces one on M and its compactification. Then, in the manner of Ellingsrud and
Stromme, Kontsevich uses one of Bott’s fixed point formulas to obtain a formula
for the appropriate Chern numbers in various interesting examples.

4 DEFORMATION QUANTIZATION OF POISSON MANIFOLDS

This last subject comes from very recent work of Kontsevich, so the discussion here
will necessarily be brief. A ‘Poisson structure’ on a manifold X can be thought of
as a bilinear map

By: C®(X) ® C®(X) = C=(X)

which gives a Lie algebra structure to C*°(X). In particular, B; sends a pair
(f,9) to (o, df Adg) where a is a non-degenerate section of A>T X which satisfies a
certain quadratic differential constraint. The problem of quantizing such a Poisson
structure can be phrased as follows: Let h be a formal parameter (think Planck’s
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constant). Find a set of bi-differential operators Bz, Bs, ... so that

f*9=fg+h-Bi(f,9)+h - Ba(f,9)+...

defines an associative product taking pairs of functions on X and returning a
formal power series with C°°(X) valued coefficients. (A bi-differential operator
acts as a differential operator on each entry separately.) Kontsevich solves this
problem by providing a formula for {Bs, Bs, ...} in terms of B;. The solution has
the following remarkable form

fxg= > h" > wrBra(f.9),

0<n<oo reG[n]
where

e GJn] is a certain set of (n(n + 1))™ labeled graphs with n + 2 vertices and n
edges.

e Br , is a bi-differential operator whose coefficients are constructed from mul-
tiple order derivatives of the given « by a rules which come from the graph
T.

e wr is a number which is obtained from I' by integrating a certain I'-dependent
differential form over the configuration space of n distinct points in the upper
half plane.

The details can be found in [5].
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