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The Work of Laurent Lafforgue
Michael Rapoport

Laurent Lafforgue was awarded the Fields Medal for
his proof of the Langlands correspondence for the
general linear groups GLr over function fields of
positive characteristic. His approach to this prob-
lem follows the basic strategy introduced twenty-
five years ago by V. Drinfeld in his proof for GL2.
Already Drinfeld’s proof is extremely difficult. Laf-
forgue’s proof is a real tour de force, taking up as
it does several hundred pages of highly condensed
reasoning. By his achievement Lafforgue has proved
himself a mathematician of remarkable strength
and perseverance.

In this brief report I will sketch the background
of Lafforgue’s result, state his theorems, and then
mention some ingredients of his proof. The final
passages are devoted to the human factor.
The Background
The background of Lafforgue’s theorem is the web
of conjectures known as the Langlands philosophy,
which is a far-reaching generalization of class field
theory. Let F be a global field, i.e., either a finite 
extension of Q (the number field case) or a finite ex-
tension of Fp(t) where Fp is the finite field with p
elements (the function field case). Let A be the adèle
ring of F .

Global class field theory may be formulated as
giving a bijection between the sets of characters of
finite order of the Galois group Gal(F̄/F ) on the one

hand and of the idèle class group A×/F× on the
other hand. This is the reciprocity law of T. Takagi
and E. Artin established in the 1920s as a far-reach-
ing generalization of the quadratic reciprocity law
going back to L. Euler. At the end of the 1960s,
R. Langlands proposed a nonabelian generaliza-
tion of this reciprocity law. It conjecturally relates
the irreducible representations of rank r of Gal(F̄/F )
(or, more generally, of the hypothetical motivic
Galois group of F) with cuspidal automorphic rep-
resentations of GLr (A). In fact, this conjecture is
part of an even grander panorama of Langlands (the
functoriality principle), in which homomorphisms
between L-groups of reductive groups over F induce
relations between the automorphic representations
on the corresponding groups. These hypothetical
reciprocity laws would imply famous conjectures,
such as the Artin conjecture on the holomorphy of
L-functions of irreducible Galois representations
and the Ramanujan-Petersson conjecture on the
Hecke eigenvalues of cusp forms for GLr.

In the number field case, deep results along
these lines have been obtained for groups of small
rank, such as GL2, by Langlands himself and by
many others. And such results have already had
spectacular applications, such as in the proof of 
Fermat’s last theorem. However, the proof of the
Langlands correspondence in any generality in 
the number field case seems out of reach at the 
present time. Lafforgue’s result, which concerns 
the function field case, is the first general non-
abelian reciprocity law.
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Lafforgue’s Theorem
From now on let F denote a function field of char-
acteristic p. We also fix an auxiliary prime number
	 �= p. For a positive integer r let Gr be the set of
equivalence classes of irreducible 	-adic repre-
sentations of dimension r of Gal(F̄/F ) . For each
σ ∈ Gr , A. Grothendieck defined its L-function
L(σ, s), which is a rational function in p−s satisfy-
ing a functional equation of the form
L(σ, s) = ε(σ, s) · L(σ∨,1− s) , where ε(σ, s) is a
monomial in p−s and σ∨ denotes the contragredi-
ent representation. The L-function is an Euler prod-
uct, L(σ, s) = ΠxLx(σ, s) , over all places x of F , and
for a place x of degree deg(x), where σ is unrami-
fied, we have

Lx(σ, s) =
r∏
i=1

1
1− zi p−s deg(x)

.

Here z1, . . . , zr are the Frobenius eigenvalues of σ
at x.

Let Ar be the set of equivalence classes of cus-
pidal representations of GLr (A). For each π ∈Ar,
R. Godement and H. Jacquet defined its L-function
L(π, s) with properties similar to those of the above
L-functions. The Euler factor at a place x where π
is unramified is given as

Lx(π, s) =
r∏
i=1

1
1− zi p−s deg(x)

,

where z1, . . . , zr are the Hecke eigenvalues of π
at x. The main result of Lafforgue consists of the
following theorems.

Theorem 1 (the Langlands conjecture). There is
a bijection π � σ (π ) between Ar and Gr, charac-
terized by the fact that Lx(π, s) = Lx(σ (π ), s) for
every place x of F .

Theorem 2 (the Ramanujan-Petersson conjec-
ture). Let π ∈Ar with central character of finite
order. Then for every place x of F where π is un-
ramified, the Hecke eigenvalues z1, . . . , zr ∈ C are
all of absolute value 1.

Theorem 3 (the Deligne conjecture). Let σ ∈ Gr
with determinant character of finite order. Then σ
is pure of weight 0, i.e., for any place x of F where
σ is unramified, the images of the Frobenius eigen-
values z1, . . . , zn under any embedding of Q̄ 	 into
C are of absolute value 1.

Here Theorems 2 and 3 are consequences of
Theorem 1 through P. Deligne’s purity theorem
and the estimate on Hecke eigenvalues of Jacquet
and J. Shalika. Theorem 1 itself is proved by in-
duction on r (Deligne recursion principle). After
what was known before (in addition to the func-
tional equations, essentially the converse theo-
rems of A. Weil and I. Piatetskii-Shapiro and the

product formula for ε-factors of G. Laumon), it all
boiled down to proving the existence of the map
π � σ (π ) with the required properties. This is ex-
actly what Lafforgue did.

Before spending a few words on his proof, let us
consider the question, What is it good for? The an-
swer is that neither of the sets Gr and Ar is simpler
than the other in every aspect but that Theorem 1 can
be used to transfer available information in either 
direction. Theorem 3 is an instance where informa-
tion available on Ar implies results on Gr. In the
other direction, Theorem 1 permits one to use 
constructions available on Gr to prove various in-
stances of Langlands functoriality for Ar, such as
the existence of tensor products, of base change,
and of automorphic induction.
About the Proof
The strategy of constructing the map π � σ (π ) is
due to Drinfeld and is inspired by the work of
Y. Ihara, Langlands, and others in the theory of
Shimura varieties. It consists in analyzing the 	-adic
cohomology of the algebraic stack Shtr ,∅ over
SpecF × SpecF parametrizing shtukas of rank r
or the algebraic stack Shtr = lim← Shtr ,N parame-
trizing shtukas of rank r equipped with a com-
patible system of level structures for all levels N.
The latter cohomology module is equipped with an
action of GLr (A)×Gal(F̄/F )×Gal(F̄/F ) , and the
aim is to isolate inside it a subquotient of the form

⊕
π∈Ar

π ⊗σ (π )⊗σ (π )∨

by comparing the Grothendieck-Lefschetz fixed-
point formula and the Arthur-Selberg trace for-
mula. The essential difficulty is that, in contrast to
the case of Shimura varieties, the moduli stack
Shtr is not of finite type, not even at any finite
level N. To understand why, recall that a shtuka 
of rank r is a vector bundle of rank r on X with 
additional structure (essentially a meromorphic
descent datum under Frobenius). Here X is the
smooth irreducible projective curve over Fp with
function field F . And, just as the moduli stack of
vector bundles of rank r on X is not of finite type,
neither are the stacks Shtr ,∅ and Shtr ,N .

To deal with this difficulty, Lafforgue introduces
the open substacks Sht≤Pr,∅ and Sht≤Pr,N of shtukas
where the Harder-Narasimhan polygon is bounded
by P. These substacks are of finite type, and their
union is the whole space. The trouble is that they
are not stable under the Hecke correspondences.
Therefore Lafforgue constructs in the case without
level structure a smooth compactification Sht≤Pr,∅ of
Sht≤Pr,∅ with a normal crossing divisor at infinity and
extends the Hecke correspondences to it by
simple normalization. He then applies the Grothen-
dieck-Lefschetz fixed-point formula to these
correspondences. However, only a part of this for-
mula can be determined explicitly, and therefore
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this seems a pointless exercise. Lafforgue circum-
vents this problem by isolating the r -essential part
of the cohomology of Sht≤Pr,∅ and by showing that
the remainder, both the difference between the
cohomology of Sht≤Pr,∅ and of Shtr ,∅ and the coho-
mology of the boundary of Sht≤Pr,∅ , is r -negligible.
Here the work of R. Pink on Deligne’s conjecture
on the Grothendieck-Lefschetz formula enters in
a decisive way. In the case where a level structure
is imposed, Lafforgue manages to push through his
method by constructing a partial compactification
of Sht≤Pr,N which is smooth with a normal crossing
divisor at infinity and which is stable under the
Hecke correspondences and by supplementing
Pink’s theorem by K. Fujiwara’s theorem.
The Months of Suspense
Lafforgue’s first attempt at a proof of Theorem 1
used a compactification of Sht≤Pr,N . His construc-
tion was based on the compactifications of the
quotient spaces Xr,n = (PGLr )n+1/PGLr that he had
defined in earlier work, generalizing the case n = 1
due to C. De Concini and C. Procesi. In June 2000,
while lecturing on his proof, Lafforgue discovered
that, contrary to what he had claimed, these com-
pactifications of Xr,n, and hence also the corre-
sponding compactifications of Sht≤Pr,N , are not
smooth in general. He was not even able to resolve
their singularities. During two months of suspense
in the summer of 2000, Lafforgue managed to fill
the gap by finding the above-mentioned partial
compactifications of Sht≤Pr,N and was able to finesse
the proof of Theorem 1 from them. Thus in the end,
the modified argument is simpler than the origi-
nal attempt.

Even though Lafforgue’s compactifications of Xr,n
are not used in the final proof, they are fascinating
objects in themselves, with close relations to such di-
verse geometric objects as configuration spaces of
matroids, thin Schubert cells, stable degeneration
of n-pointed projective lines, and local models of
Shimura varieties. It turns out that these compacti-
fications are smooth for n = 1 (respectively toroidal
forn = 2) and arbitrary r (De Concini and Procesi, re-
spectively Lafforgue) and for r = 2 and arbitrary n
(G. Faltings), but can have arbitrarily bad singulari-
ties in general (N. Mnev). These compactifications
constitute a new field of investigation, taken up by
Lafforgue in a 265-page preprint (http://www.ihes.
fr/PREPRINTS/M02/Resu/resu-M02-31.html).
Biographical Data
Laurent Lafforgue was born in 1966. He was a stu-
dent at the École Normale Supérieure (1986–1990)
before entering the Centre National des Recherches
Scientifiques in 1990. His academic teacher is
Gérard Laumon, with whom he obtained his thèse
at the Université de Paris-Sud in 1994. It is in the
famous Bâtiment de Mathématique (“le 425”) on the
Orsay campus that Lafforgue worked out his proof.

Since 2000 he has been a professor at the Institut
des Hautes Études Scientifiques.
Further Information
For excellent overviews of Lafforgue’s proof, see
Laumon’s Bourbaki seminar No. 873, March 2000,
which also contains an annotated bibliography,
and Lafforgue’s notes of a course at the Tata In-
stitute (http://www.ihes.fr/PREPRINTS/
M02/Resu/resu-M02-45.html).

The Work of Vladimir Voevodsky
Eric M. Friedlander and Andrei Suslin

In 1982 Alexander Beilinson stated conjectures
which crystallized a vision of the relationship be-
tween algebraic K-theory and “integral motivic co-
homology theory” of algebraic varieties over a field
F and between mod-	 algebraic K-theory and
mod-	 étale cohomology, where 	 is a prime in-
vertible in F [Be]. These conjectures, more detailed
and specific than the earlier “Quillen-Lichtenbaum
Conjecture”, provided a challenging program that
explains a great deal about Quillen’s algebraic
K-theory [Q]. Although one of Beilinson’s conjec-
tures remains unsolved (and may well prove to be
false in general), Vladimir Voevodsky has made
great strides in completing Beilinson’s program.

Voevodsky’s achievements are remarkable. First,
he has developed a general homotopy theory for
algebraic varieties. Second, as part of this general
theory, he has formulated what appears to be the
“correct” motivic cohomology theory and verified
many of its remarkable properties. Third, as an ap-
plication of this general approach, he has proved
a long-standing conjecture of John Milnor relating
the Milnor K-theory of a field to its étale coho-
mology (and to quadratic forms over the field).

We provide below a brief sketch of Voevodsky’s
contributions, proceeding from the specific Mil-
nor Conjectures to the more general theory.
Milnor Conjecture
Given a field F , we define (following Milnor) the
graded ring KM∗ (F ) to be the tensor algebra over the
integers Z of the group F∗ of nonzero elements in
F , modulo the ideal generated by the Steinberg re-
lations in F∗ ⊗ F∗ (so that {a,1− a}, the image of
a⊗ (1− a) , is set equal to 0 ∈ KM2 (F ) for all a �= 1
∈ F∗). Thus, KM0 (F ) = K0(F ) = Z , KM1 (F ) = K1(F ) =
F∗, and (thanks to a theorem of Matsumoto)

Eric M. Friedlander is professor of mathematics at North-
western University. His work was partially supported by
NSF grant DMS-9988130 and by the NSA. His email ad-
dress is eric@math.nwu.edu.

Andrei Suslin is professor of mathematics at Northwest-
ern University. His work was partially supported by NSF-
grant DMS-0100586. His email address is suslin@
math.nwu.edu.

http://www.ihes.fr/PREPRINTS/M02/Resu/resu-M02-45.html
http://www.ihes.fr/PREPRINTS/M02/Resu/resu-M02-45.html
http://www.ihes.fr/PREPRINTS/M02/Resu/resu-M02-31.html
http://www.ihes.fr/PREPRINTS/M02/Resu/resu-M02-31.html


FEBRUARY 2003 NOTICES OF THE AMS 215

KM2 (F ) = K2(F ) = F∗ ⊗ F∗/(a⊗ (1− a);a �= 1 ∈ F∗).
By definition, the n-th Milnor K-group KMn (F ) is
generated by products of elements in degree 1 (so-
called symbols {a1, . . . , an} ), thereby being much
simpler than Quillen’s K-group Kn(F ) .

The following theorem, conjectured by Milnor
[Mi], has been proved by Voevodsky.

Theorem 1. [V4] Let F be a field of characteristic
different from 2. Then the natural map

KM∗ (F )⊗ Z/2Z→ H∗(F,Z/2Z)

is an isomorphism of graded rings. In particular,
for every n > 0, the Galois cohomology group
Hn(F,Z/2Z) is generated by n-fold cup products of
cohomology classes of degree 1.

One can marvel at this result from many points
of view. For example, it says there is something very
special about graded rings that arise as Galois co-
homology of fields.

Voevodsky, in collaboration with D. Orlov and 
A. Vishik, has also proved the following closely re-
lated theorem conjectured by Milnor [Mi]. The
Grothendieck-Witt ring GW (F ) has an underlying
abelian group given by isomorphism classes of
finite-dimensional F-vector spaces equipped with a
quadratic form and ring structure given by tensor
product. The Witt ring W (F ) is obtained by dividing
GW (F ) by the ideal generated by the 2-dimensional
F-vector space with the hyperbolic quadratic form.
The Witt ring W (F ) admits an augmentation map
W (F ) → Z/2Z induced by the rank map GW (F ) → Z.
Milnor investigated the successive quotients In/In+1,
where I ⊂ W (F ) denotes the kernel of the augmen-
tation map, and the resulting associated graded ring
gr∗(W (F )) = ⊕n≥0In/In+1 .

Theorem 2. [OVV] Let F be a field of characteris-
tic different from 2. Then the natural homomor-
phism of graded rings K∗(F )⊗ Z/2Z→ gr∗(W (F )) is
an isomorphism.

Theorems 1 and 2 show that the three graded
rings KM∗ (F )⊗ Z/2Z, gr∗(W (F )), and H∗(F,Z/2Z) ,
which arise in very different manners, are canon-
ically isomorphic for any field of characteristic 
different from 2.
Motivic Cohomology
In algebraic topology, singular cohomology with 
integral coefficients has many good properties and
satisfies a tight relationship with topological
K-theory. One has known for many years that one
cannot define “algebraically” the integral (or even ra-
tional) singular cohomology of complex algebraic va-
rieties. On the other hand, étale cohomology with
mod-	 coefficients, as developed by Alexander
Grothendieck and Michael Artin, when applied to va-
rieties over a field F , succeeds admirably in

providing a substitute for singular cohomology
mod-	 whenever 	 does not equal the characteris-
tic of F .

Beilinson conjectured the existence of motivic
complexes Z(q) leading to bigraded motivic coho-
mology groups Hp(X,Z(q)) which should relate to
the algebraic K-theory of a smooth variety X over a
field F . (This relationship has recently seen various
proofs, beginning with work of Bloch-Lichtenbaum,
then Friedlander-Suslin, Levine, and finally Grayson-
Suslin.) Moreover, he conjectured that these com-
plexes, when reduced modulo 	 for 	 invertible in F,
should be related in a completely precise way to étale
cohomology.

In [Bl] Spencer Bloch produced an ingenious con-
struction yielding “higher Chow groups”, which are
excellent candidates for the cohomology of Beilin-
son’s conjectured motivic complexes. Somewhat
later, Suslin introduced algebraic singular complexes
which led Suslin and Voevodsky to an alternate 
algebraic model of singular cohomology with 
mod-	 coefficients [SV1]. A major achievement of
Voevodsky has been to formulate a natural category
(of abelian presheaves with transfers on the big 
Nisnevich site of all smooth varieties X over F) which
in conjunction with the algebraic singular complex
construction leads to a good formulation of motivic
complexes Z(n) developed by Suslin and Voevodsky
[SV2]. Recently Voevodsky has proved that the 
resulting cohomology groups are isomorphic to
Bloch’s higher Chow groups [V2].

Voevodsky’s formulation of motivic cohomology
is crucial, for it has led Voevodsky to prove various
important properties essential for his proof of the
Milnor Conjectures. We mention perhaps the most
important general theorem concerning motivic 
cohomology, a theorem for which Voevodsky has 
recently found a most elegant proof.

Theorem 3. [FV], [V5] Let X be a smooth variety
over a field F , and let Y ⊂ X be a smooth closed
subvariety everywhere of codimension d. Then
there is a canonical Gysin isomorphism

Hp
Y (X,Z(n)) = Hp−2d(Y,Z(n− d)).

Operations in Motivic Cohomology and the Proof
of the Milnor Conjecture
Steenrod operations in mod-	 motivic cohomology
are at the heart of Voevodsky’s proof of the Milnor
Conjecture. The construction of these operations
given in [V3] turned out to be much more subtle than
the topological counterpart, and their properties 
in the special case 	 = 2 differ somewhat from the
corresponding properties of Steenrod operations in
topological singular cohomology.

Following the approach for n = 2 introduced by
A. Merkurjev and Suslin, Voevodsky investigated
what happens when one splits a symbol
{a1, . . . , an} ∈ KMn ⊗ Z/	 . For any such symbol,



216 NOTICES OF THE AMS VOLUME 50, NUMBER 2

there exists a universal splitting variety Xa. Earlier
work of Suslin and Voevodsky [SV2], together with
several ingenious arguments introduced by Vo-
evodsky, reduces the proof of the Milnor Conjec-
ture (and the more general Bloch-Kato Conjecture)
to a specific vanishing calculation in motivic co-
homology associated to Xa: Hn+1(

∨
C(Xa),Z(	)(n)) = 0,

where 
∨
C(Xa) is a simplicial scheme with∨

Cn(Xa) = Xn+1
a and all face (respectively, degener-

acy) maps given by projections (respectively, di-
agonal embeddings).

Associated to Voevodsky’s Steenrod operations
are the corresponding Milnor operations

Qi : H̃p(−,Z/	(q))→ H̃p+2	i−1(−,Z/	(q + 	i − 1)).

As in algebraic topology, these operations satisfy
the property Q2

i = 0, so motivic cohomology pro-
vided with the operator Qi forms a complex, whose
homology is known as Margolis homology. As a next
step, Voevodsky proved the following remarkable
theorem concerning the vanishing of Margolis 
homology.

Theorem 4. [V3] Let X be a smooth projective va-
riety over a field k of characteristic different from
	. Assume that there exists a morphism Y → X
from a smooth projective variety Y of dimension
	m − 1 to X, and further assume that the charac-
teristic number deg(s	m−1(Y )) is not congruent to
0 modulo 	2 . Then all of the Margolis homology
groups of the simplicial sheaf C̃(X) (the unreduced
suspension of 

∨
C(X) ) corresponding to the opera-

tion Qm are 0.

For 	 = 2, one can represent the splitting vari-
ety Xa by the quadric Qq defined by the Pfister
neighbor q = 〈〈a1, . . . , an−1〉〉 ⊥ 〈−an〉 of 〈〈a1, . . . ,
an〉〉, which is a smooth projective variety of di-
mension 2n−1 − 1 and satisfies the condition that
deg(s2n−1(Xa)) is not divisible by 4. We now apply
Theorem 4 with X = Xa and Y = Q〈〈a1,...,am−1〉〉⊥〈−an〉
for 1 ≤m ≤ n to conclude the vanishing of the
Margolis homology of C̃(Xa) with respect to each
of the operations Q1, . . . ,Qn.

Using dimension considerations, Voevodsky ob-
serves that the operation Qn−2 ◦ · · · ◦Q1 and its in-
tegral counterpart

Q̃n−2 ◦ · · · ◦ Q̃1 : H̃n+2(C̃(X),Z(2)(n))

→ H̃2n (C̃(X),Z(2)(2n−1))

are monomorphisms. This reduces the proof of
the vanishing of Hn+1(

∨
C(X),Z(2)(n)) to the vanish-

ing of the group H2n−1(
∨
C(X),Z(2)(2n−1)). Fortunately

the latter group is much easier to understand:
Using [R1], Voevodsky shows that this group is
closely related to the group of 0-dimensional K1-
cycles studied closely by M. Rost in [R2]. To finish
the proof, Voevodsky then applies the main theo-
rem of [R2].

The Homotopy Category of Schemes
Beginning with his Harvard Ph.D. thesis, Voevod-
sky has had the goal of creating a homotopy the-
ory for algebraic varieties amenable to calculations
as in algebraic topology. Much of this homotopy
theory, both stable and unstable, has been devel-
oped in collaboration with Fabien Morel (see [MV]).
In this abstract context one can realize motivic co-
homology and algebraic K-theory as representable
functors. One can view motivic Steenrod opera-
tions as a special case of operations on “general-
ized stable cohomology theories”. When Voevod-
sky localizes to obtain a homotopy category of
schemes, he is forcing “homotopy invariance”, the
property that a homotopy type (e.g., represented
by a scheme) is viewed as equivalent to the prod-
uct of itself and the affine line. A key insight of Vo-
evodsky is that there are two types of “circles” in
algebraic geometry determining two types of sus-
pension. One type of circle arises when one con-
siders an affine nodal curve (tracing out a curve
which crosses itself) and the other when one con-
siders the punctured affine line (which is simply
real 2-space minus the origin in the special case the
ground field is the complex numbers).

Although Voevodsky has given us a relatively
streamlined proof of the Milnor Conjecture which
does not rely on this homotopy category, his orig-
inal conception of the proof relied heavily on such
a homotopy-theoretic point of view. Moreover, the
expected proof of the odd-prime analogue of the
Milnor Conjecture (the so-called “Bloch-Kato Con-
jecture”) fully utilizes this appealing formalism.

We conclude by observing that not only has Vo-
evodsky’s work much influenced how algebraic
geometers are approaching certain classical ques-
tions but also algebraic topologists have begun to
produce considerable foundational material in this
new homotopy theory.
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