1 Small oscillations

Start with a Lagrangian
Lqi, qi] (1)
Suppose there is an equilibrium point for this system, i.e.
¢ = gio, ¢ =0 (2)
Then we can consider small deformations of the system around this equilibrium point. We write
4 = G — qio (3)

and consider ¢; as small. We get
G; = i (4)

and we will also regard ¢, as being small, of the same order as ¢}. We expand L as

Llgi; 4] = Llgio,0] + {@[Qi,o, 0]}q; +{ [%07 0]}4;
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Now we note the following points:

(a) The first term is a constant, so it can be dropped from the lagrangian.
(b) The third term is a total derivative, so we can drop it as well.

(c) Working to first order in the perturbation, let us write the Lagrangian equations. To this order

we get
oL
{5, @001} =0 (6)

so we must be at a point g;0 which satisfies this condition.

(d) The fourth and fifth terms have coefficients that are symmetric

9%L
{aqlaq 2,0,01} =Vi; = Vi
9’L
{m[Qi,OaO}}ETij = ng (7)

We have chosen the symbols V;;, T;; here since if we had a Lagrangian of the simple form

L=T-V 8)



then we would have o o

Vv T
Qi,0707 E = fqi,()vo 9
v (9,0, 0] = G (9,0, 0] 9)

Vij =

(e) The sixth term would be absent in a simple lagrangian of the form (8). Let us assume for now
that it vanishes, and then return to its consideration later.

1.1 The lagrangian (8)

We have ) )
L = 5Tydid5 — 5 Vijdid; (10)
The equation of motion for ¢} is
TG + Vijq; =0 (11)
Let us write
g = sie” (12)
Then we get
—w?Tyjsj + Vijs; =0 (13)
or in matrix form
[V —w?T)S =0 (14)

This is almost in the form of a standard eigenvalue problem. We could make it look like an
eigenvalue problem by writing

(T7'V)S = w?S (15)
but note that (T~'V) would not be symmetric in general
(T~ =vIT T =yt £ 77V (16)

so we cannot use the nice symmetry properties 77 = T, VT = V. Thus to see the implications of
these symmetries for w, let us follow the usual arguments used in eigenvalue problems from first
principles.

(a) First let us ask if w? has to be real or if it can be complex. Starting with
VS =w’TS (17)

write

STV S =w?siTs (18)
Note that the matrices V,T are real and symmetric, so that

vi=v, Tt=T (19)
Thus

(sTvs)yr = Stvis=svs
(T'vry = TViIT=TvT (20)



and we find that
9 Stvs

- StTs
is real. Thus we conclude that either w is real (if w? is positive) or w is pure imaginary (if w? is
negative).

w (21)

(b) The kinetic energy is positive on physical grounds, so for any ¢; we should have

41545 > 0 (22)
Thus for real vectors S we will have
STTS >0 (23)
and for complex vectors S we will have
STTS = (Sg —iS))TT(Sk +1iS;) = SETSR + STTS; > 0 (24)

From (6) we see that we are perturbing around a point which is an extremum of V' (i.e. the forces
vanish there). This equilibrium position need not be a minimum of V: in general it could be a
minimum, a maximum, or a saddle point. But for most physical applications we perturb around a
minimum. Then we will have

0%V

qiq;

and V will also be a positive definite matrix. In this case we see from (21) that

[9i.0,0]¢iq; = ¢iVijq; > 0 (25)
w?>0 (26)

and so the actual frequencies w will be real.

1.2 Solving the equations of motion

Let us return to our dynamical equation (14)
[V —w?T)S =0 (27)

For the matrix (V —w?T) to have a null eigenvector S, it will need to have a determinant zero. (The
determinant is the product of all the eigenvalues of the matrix, and a single vanishing eigenvalue
will make the determinant vanish.) Thus we solve

V —w?T| =0 (28)

to find the allowed frequencies w?. We then obtain the eigenvectors S, > from (27). The full solution
of the system is then ‘
¢ = Age k(S 2)i + (complex conjugate) (29)

w

where Ay are arbitrary complex constants.



1.3 The term {%[%,070]}(]/@}

)

Now let us ask when the sixth term in the expansion (5) can be nonzero, and what the small
oscillations problem looks like in that case. This term has the form

Cijdid; (30)
but there is no reason to have any symmetry of C":
Cij # Cji (31)

/

By subtracting a total derivative from L we can flip the time derivative from q; to q;

. . d
Cijqid; = —Cijdid; + %Cijqéq} (32)

Dropping the total derivative, we can thus write this term in the Lagrangian as
1 ! -]
5[01" — Cjilq;4; (33)

Thus if C;; happens to be symmetric then this term will vanish. So we can just keep the antisym-
metric part of C'. Where does such a term arise? Consider the x —y plane, with a uniform magnetic
field B in the z direction. Let a point particle of mass m and charge ¢ move in this plane. The
Lagrangian is

1
L= omli + 3] + q[Aui + Ayg] (34)
Here

Cez = Ax,:):a Cazy = Ax-y’ ny - Ay,xa ny - Ay,y (35)

The fact that we can keep just the antisymmetric part of C' means that the only relevant part of
Cis

Coy = Cyo = Apy — Ay = B (36)
so we see that only the physical magnetic field shows up in the dynamics, not the different possible
vector potentials A which can give rise to the same B.

The x equations of motion is

d. . 0 : .
0 = ﬁ[mﬂc + qA,] — q%[Amx + Ayy]
= [m$ + qAa:,zj? + qA:v,yy] - q[A:Jc,xjf + Ay,xm
= mx—qBy (37)
and the y equation is
0=my+qBz (38)

Clearly, x = y = 0 is an equilibrium point, since this satisfies the equation of motion. Note that
the equations of small perturbations are not of the form (6), since we have a first derivative term.
But since the equations are linear in the perturbation, we can still solve them by writing

z = Relae ™', y = Re[be ™" (39)



which gives
—mw?a + iwgBb =0, — mw?b—iwgBa =0 (40)

One solution is w = 0, with (a, b) arbitrary; this corresponds to placing the particle at rest with an
arbitrary displacement. The other solution is

w? = = (41)

which gives the eigenvalues and eigenvectors

w==+\/—, a==Lib (42)
m

Taking the real parts of the motion to get x,y we get circular orbits with the cyclotron frequency.



