
1 The virial theorem

Consider a collection of particles with masses mi, i = 1, 2, . . . N . Let the complete system
be in a ‘steady state’, where the individual particles move around but the overall description
of the system does not change qualitatively; i.e., its macroscopic parameters remain within
certain bounds. Then we can obtain a relation between the kinetic and potential energies
of the system.

The equations of motion for the ith particle are

ṗi = Fi (1)

Write
G =

∑
i

pi · ri (2)

Then
Ġ =

∑
i

ṗi · ri +
∑

i

pi · vi =
∑

i

Fi · ri + 2T (3)

Let us compute the time average of each quantity over time τ . The time average of a
quantity Q is given by

Q̄ =
1

τ

∫ τ

t=0

dtQ(t) (4)

Computing these time averages we find

1

τ

∫ τ

0

Ġdt = 2T +
∑

i

Fi · ri (5)

In a steady state, the difference G(τ) − G(0) will remain finite, so if we take the large τ

limit we will get
1

τ

∫ τ

0

Ġdt =
1

τ
[G(τ) − G(0)] → 0 (6)

So we find that in steady state

T = −
1

2

∑
i

Fi · ri (7)

where the time averages are now assumed to be taken with the limit τ → ∞.
The RHS of the above equation does not make much physical sense as it stands, but we

will now evaluate it for a specific force law. Let us consider a 2-body central force, given
by a potential V

V =
1

2

∑
j 6=i

αij(rij)
n (8)

where
rij = |~ri − ~rj| (9)

1



is the distance between particles i and j. Then the force on the kth particle is obtained by
taking the gradient with respect to ~rk (with a negative sign)

~Fk = −
1

2
~∇k

∑
j 6=i

αijr
n
ij (10)

The variable ~rk appears in two ways in the expression above:

~Fk = −
1

2
~∇k

∑
j 6=k

αkjr
n
kj −

1

2
~∇k

∑
j 6=k

αjkr
n
jk (11)

We have
~∇krkj = ~∇k[(~rk − ~rj) · (~rk − ~rj)]

1

2 =
1

rkj

(~rk − ~rj) (12)

~∇krjk = ~∇k[(~rj − ~rk) · (~rj − ~rk)]
1

2 = −
1

rjk

(~rj − ~rk) =
1

rkj

(~rk − ~rj) (13)

So we get

~Fk = −
∑
j 6=k

αkjnrn−1

kj

1

rkj

(~rk − ~rj) (14)

Now we compute our quantity of interest

∑
k

~Fk · ~rk = −
∑
j 6=k

αkjnrn−1

kj

1

rkj

(~rk − ~rj) · ~rk (15)

Note that αjk = αkj, and rjk = rkj. Interchanging the dummy labels j, k we can also write

∑
k

~Fk · ~rk = −
∑
j 6=k

αkjnrn−1

kj

1

rkj

(~rj − ~rk) · ~rj (16)

Adding the above two expressions for
∑

k
~Fk · ~rk and dividing by 2, we get

∑
k

~Fk · ~rk = −
1

2

∑
j 6=k

αkjnrn−1

kj

1

rkj

(~rk − ~rj) · (~rk − ~rj) = −
1

2

∑
k 6=j

αkjnrn
kj = −nV (17)

Thus we have found that

T = −
1

2

∑
k

~Fk · ~rk =
n

2
V (18)

For the Kepler potential we have n = −1 and we get

T̄ = −
1

2
V̄ (19)
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