1 The virial theorem

Consider a collection of particles with masses m;, ¢ = 1,2,... N. Let the complete system
be in a ‘steady state’, where the individual particles move around but the overall description
of the system does not change qualitatively; i.e., its macroscopic parameters remain within
certain bounds. Then we can obtain a relation between the kinetic and potential energies
of the system.

The equations of motion for the ith particle are

pi = F; (1)

Write
G=Y piri (2)

Then

G=> pi-ri+» pi-vi=y F-ri+2T (3)

Let us compute the time average of each quantity over time 7. The time average of a
quantity @ is given by
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Computing these time averages we find
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In a steady state, the difference G(7) — G(0) will remain finite, so if we take the large 7
limit we will get
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So we find that in steady state
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where the time averages are now assumed to be taken with the limit 7 — oo.

The RHS of the above equation does not make much physical sense as it stands, but we
will now evaluate it for a specific force law. Let us consider a 2-body central force, given
by a potential V' .

V=3 > airi)" (8)
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where
rij = |7 — 7] (9)



is the distance between particles i and j. Then the force on the kth particle is obtained by
taking the gradient with respect to 7, (with a negative sign)
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The variable 7, appears in two ways in the expression above:
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So we get
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Now we compute our quantity of interest
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Note that o, = ayj, and 75 = 7. Interchanging the dummy labels j, k we can also write
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Adding the above two expressions for ), ﬁk - 7, and dividing by 2, we get
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Thus we have found that 1
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For the Kepler potential we have n = —1 and we get
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