
1 Hermitian conjugation

Recall that the operators αn were defined by

αµ
n =

â
µ
n√
n
, n > 0 (1)

α
µ
−n =

(âµ)†√
n

(2)

where ân, â
†
n are annihilation and creation operators for the mode n. Thus we have

α
µ
−n = (αµ

n)† (3)

Now look at the Virasoro operators. We have

L†
n = (αn−mαm)† = α†

mα
†
n−m = α−mα−n+m = L−n (4)

While these rules for Hermitian conjugation look natural, we will have some trouble in defining our
Hilbert space if we do not place additional restrictions on our theory. These issues stem from the
fact that by Lorentz covariance we must write

[âµ, (âν)†] = ηµν (5)

Thus for the timelike direction we have a commutation relation with a sign opposite to the one
that we are used to

[â0
n, (â

0
n)†] = −1 (6)

This causes the following problem. Again by covariance, we define the vacuum by

âµ
n|0〉 = 0 (7)

First consider the state
|ψ〉 = (âi

n)†|0〉 (8)

where i is a direction other than the timelike direction, so ηii = 1. The norm of this state is

〈ψ|ψ〉 = 〈0|âi
n(âi

n)†|0〉 = 〈0|âi
n(âi

n)†|0〉 + 〈0|[âi
n, (â

i
n)†|0〉 = 1 (9)

This is positive, so there is no problem. But now consider a similar state but using the oscillators
in the timelike direction

〈ψ|ψ〉 = 〈0|â0
n(â0

n)†|0〉 = 〈0|â0
n(â0

n)†|0〉 + 〈0|[â0
n, (â

0
n)†|0〉 = −1 (10)

This state has negative norm. Thus we do not have a good Hilbert space. We will have to remove
the negative norm states from our consideration. Let us investigate the norms of states a little
more, and then see how we solve this problem.
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2 Some basic relations

The mass formula of a state had been derived earlier in the classical limit. We have also advanced
some arguments as to why the ground state of the string has an oscillator level −1 because of
quantum effects related to the Casimir energy. We will return to this fact later in more detail, but
we accept it for now and write the mass formula that we will use. We will not take any dimensions
compact for now, so we will have

p
µ
L = p

µ
L − pµ

2
(11)

We have

α
µ
0 =

√
2α′p

µ
L =

√

α′

2
pµ (12)

The mass formula is

m2 = −p2 = 8πT (N − 1) =
4

α′
(N − 1) (13)

where N is the oscillator level of the right movers. A similar relation holds for the left movers.

2.1 States at level one

The vacuum is normalized to have
〈0|0〉 = 1 (14)

We will use the oscillators αn instead of the operators ân, â
†
n for convenience. At the first excited

level we have the states
|ψ〉 = Cµα

µ
−1|0〉 (15)

where Cn are complex constants. The norm of such a state is

〈ψ|ψ〉 = C∗
µCν〈0|αµ

1α
ν
−1|0〉 (16)

Using the basic relation
[αµ

n, α
ν
m] = ηµνδm+n,0 (17)

we get
〈ψ|ψ〉 = C∗

µCνη
µν = C∗

µC
µ ≡ |C|2 (18)

Thus this norm can be positive, negative or zero, because C can be spacelike, null or timelike. But
recall that not all states in the Hilbert space are supposed to be physical. We have to impose the
conditions

Ln|ψ〉 = 0, n > 0 (19)

In the present case it is clear that
Ln|ψ〉 = 0, n ≥ 2 (20)

This follows because such an Ln make the total level of the state positive, and thus every term will
have to contain an oscillator αm with m > 0, which will annihilate the vacuum. Thus the condition
that we should check is

L1|ψ〉 = 0 (21)
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We have

L1 =
1

2
α

µ
1−mαµ,m = α

µ
0αµ,1 + α

µ
−1αµ,2 + α

µ
−2αµ,3 + . . . (22)

Then we get

L1|ψ〉 =
(

α
µ
0αµ,1 + α

µ
−1αµ,2 + α

µ
−2αµ,3 + . . .

)

Cνα
ν
−1|0〉

= α
µ
0αµ,1Cνα

ν
−1|0〉

= Cνδ
ν
µα

µ
0 |0〉

=

√

α′

2
Cµp

µ|0〉 (23)

where we have assumed that the vacuum state has no oscillator excitations but carries a momentum
pµ

α
µ
0 |0〉 =

√

α′

2
p̂µ|0〉 =

√

α′

2
pµ|0〉 (24)

From now on we will set
α′ = 1 (25)

and thus we have

L1|0〉 =
1√
2
Cµp

µ|0〉 (26)

Thus we see that there is one constraint on the Cµ. From the mass formula for string states we see
that for a state with one oscillator excitation we will have

m2 = 8πT (N − 1) = 0 (27)

Thus this is a massless particle state, and by Lorentz invariance we can go to a frame where

pµ = (1, 1, 0, . . . 0) (28)

In this frame our constraint becomes
C0 + C1 = 0 (29)

Thus we find
|C|2 = −|C0|2 + |C1|2 + |Ci|2 = |Ci|2 > 0 (30)

so that C is spacelike. But in this case the norm of the state is positive

〈ψ|ψ〉 = |C|2 > 0 (31)

and we see that we have a well defined Hilbert space. We have eliminated the ‘ghost’ state which
ahd negative norm by imposing the constraints Ln > 0 for n > 0.

Now the question is whether we can keep doing something similar for all states which have negative
norm. If we can, then we have a good theory, and can use it to describe the first quantized string.
We wil see that we can in fact achive this, but only if we have a ceratin dimension D and the choice
that

(L0 − 1)|ψ〉 = 0 (32)

This condition can be thought of as a member of the conditions Ln > 0 for n > 0. The mode
L0 is in-between the positive and negative modes of the Ln, so it was not immediately clear what
we should do with this mode as far as the constraints were concerned. Recall that only for this
mode L0 there is a normal ordering issue and so it is not a priori clear what the value of L0 on the
vacuum should be.
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3 Gauge modes

We have seen that physical states must satisfy

Ln|ψ〉 = 0, (n > 0), (L0 − 1)|ψ〉 = 0 (33)

These physicality conditions removed the negative norm states from out Hilbert space. Are the
states satisfying the physical state conditions all positive norm states? The L1|ψ〉 = 0 condition
told us that

Cµp
µ = 0 (34)

and the (L0 − 1)|ψ〉 = 0 condition told us that p was null so it had the form

pµ = (q, q, 0, 0 . . . 0) (35)

Suppose we choose
C0 = C1 = c (36)

Then this state satisfies the physicality conditions, but has norm zero

|ψ|2 = |C2| = 0 (37)

Thus physical states can have zero norm. Note that this state can be generated in the following
form

L−1|0〉 = [αµ
0αµ,−1 + . . .]|0〉 =

1√
2
pµαµ,−1|0〉 (38)

so that the state has Cµ ∝ pµ.

This state is a pure gauge state, since it is a massless state with polarization proportional to the
momentum. In gauge theory we make a pure gauge state by

Aµ(x) = ∂µΛ(x) ⇒ Aµ(p) ∼ pµ (39)

4 Extracting a general principle

We define descendent states by

|χ〉 = Lnk
. . . Ln1

|λ〉, ni > 0 (40)

These states are orthogonal to all states that satisfy

Ln|ψ〉 = 0, n > 0 (41)

This follows from
〈χ|ψ〉 = 〈λ|Lnk

. . . Ln1
|ψ〉 = 0 (42)

What happens if a state |χ〉 is a descendent and also a state that is annihilated by the Ln, n > 0?
Then we get

〈χ|χ〉 = 〈λ|Lnk
. . . Ln1

|χ〉 = 0 (43)
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so the state has zero norm.

Suppose that the state also satisfies
(L0 − 1)|χ〉 = 0 (44)

Then we must regard it as a physical state because it satisfies

Ln|χ〉 = 0, n > 0, (L0 − 1)|χ〉 = 0 (45)

But it is also a descendent since it is of the form

|χ〉 = L−nk
. . . Ln1

|λ〉 (46)

So it will be null. We will regard these states as pure gauge states.

5 States of level 2

Now let us look at states of level 2. We can make such states in two ways

α
µ
−1α

ν
−1|0〉 (47)

and
α

µ
−2|0〉 (48)

This time we will have to consider two conditions

L1|0〉 = 0, L2|0〉 = 0 (49)

Actually even if had a state of level 3 or higher, we would still have to consider only these two
conditions. The reason is that we have

[L1, L2] = −L3 (50)

so if L1, L2 annihilate a state then L3 will also do so automatically. More generally

[L1, Ln] = (1 − n)L1+n (51)

so all the Ln with n > 3 will automatically annihilate the state if L1, L2 do so.

We write the state at level 2 as
(

Cµνα
µ
−1α

ν
−1 +Dµα

µ
−2

)

|0〉 (52)

The relevant part of L1 is
L1 = α

µ
0αµ,1 + α

µ
−1αµ,2 + . . . (53)

The action of L1 on Cµνα
µ
−1α

ν
−1|0〉 gives

(αµ
0αµ,1)Cµνα

µ
−1α

ν
−1|0〉 =

2√
2
pµCµνα

ν
−1|0〉 (54)
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The action of L−1 on Dµα
µ
−2|0〉 gives

(

α
µ
−1αµ,2

)

Dµα
µ
−2|0〉 = 2Dµα

µ
−1|0〉 (55)

Thus we need
1√
2
Cµνp

ν +Dµ = 0 (56)

Now consider the action of L2. The relevant part of L2 is

L2 = α
µ
0αµ,2 +

1

2
α

µ
1αµ,1 + . . . (57)

The action of L2 on Cµνα
µ
−1α

ν
−1|0〉 gives

(

1

2
αλ

1αλ,1

)

Cµνα
µ
−1α

ν
−1|0〉 = Cµ

µ |0〉 (58)

The action of L2 on Dµα
µ
−2 gives

(

αλ
0αλ,2

)

Dµα
µ
−2|0〉 =

2√
2
pµDµ|0〉 (59)

Thus we get the condition
Cµ

µ +
√

2pµDµ = 0 (60)

Let us now see what these conditions give us. From the mass formula we have

−p2 = m2 = 8πT (N − 1) = 8πT =
4

α′
= 4 (61)

Thus we can go to the rest frame where

pµ = (2, 0, 0, . . . 0) (62)

In this frame we get the conditions √
2C0µ +Dµ = 0 (63)

Cµ
µ + 2

√
2D0 = 0 (64)

The second condition gives

D0 = − 1

2
√

2
Cµ

µ = − 1

2
√

2
(−C00 +

∑

i

Cii) (65)

In the first condition we can set µ = 0 to get

D0 = −
√

2C00 (66)

Using this in the equation just before we get

C00 =
1

5

∑

i

Cii (67)
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Putting µ = i in (63) we get
Di = −

√
2C0i (68)

Thus the Dµ are compeltely fixed by the Cµν , and the Cµν satisfy the additional condition (67).

Now let us see if once we impose the Ln conditions whether we get positive norm states. Thus we
should compute the norm of our state (52).

|ψ|2 = 〈0|
(

C∗
µ′ν′α

µ′

1 α
ν′

1 +Dµ′α
µ′

2

)

(

Cµνα
µ
−1α

ν
−1 +Dµα

µ
−2

)

|0〉 (69)

There are no cross terms between the two kinds of terms, and we find

|ψ|2 = 2
(

C∗
µνC

µν +D∗
µD

µ
)

(70)

Let us set C0i = 0. This sets Di = 0. Let us take all the Cii = 1. Then we have

C00 =
1

5
(D − 1) (71)

D0 = −
√

2C00 = −
√

2

5
(D − 1) (72)

We have

C∗
µνC

µν +D∗
µD

µ = C2
00+(D−1)−D2

0 =
(D − 1)2

25
+(D−1)− 2(D − 1)2

25
= −(D − 1)(D − 26)

25
(73)

Thus if D > 26 then we will get a negative norm state. It will turn out that we can get a consistent
theory when D = 26, where this is a zero norm state.

Let us now consider the termns C0i,Di which we had set to zero above. These contribute to the
norm squared

2

(

−2
∑

i

C0iC0i +
∑

i

DiDi

)

= 0 (74)

where we have used (68).

6 More on zero norm states

Suppose that we ask that there be physical states of a special form

|χ〉 = L−1|λ〉 (75)

where we ask that |λ〉 be such that
Ln|λ〉 = 0, n > 0 (76)

The physical state |χ〉 must be annihilated by all Ln, n > 0, so in particular

0 = L1|χ〉 = L1L−1|λ〉 = 2L0|λ〉 (77)
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Suppose we did not know the normal ordering constant in L0, so we just ask that physical states
satisfy

(L0 − a)|ψ〉 = 0 (78)

Then we will have
L0|λ〉 = a− 1 (79)

and we find from (77)
a = 1 (80)

Thus this value of a that we have selected on physical grounds provides physical states of type (75),
which, being also descendants, are null states. Thus at a = 1 we get extra null states of the kind
(75).

Now let us try the same with two levels of excitations created by the L−n. Thus we take

|χ〉 = (L−2 + γL2
−1)|λ〉 (81)

with
Ln|λ〉 = 0, n > 0 (82)

and
(L0 − 1)|χ〉 = 0 (83)

The latter relation implies that
L0|λ〉 = −1 (84)

We have
0 = L1|χ〉 = (3L−1 + γ[2L−1L0 + 2L0L−1|λ〉 = (3 − 2γ)L−1|λ〉 (85)

so that we find

γ =
3

2
(86)

Now we look at

0 = L2|χ〉 = L2(L−2 +
3

2
L2
−1)|λ〉 = [(−4 +

D

2
) +

3

2
(3L1L−1 + 6L0)|λ〉 = (−13 +

D

2
)|λ〉 (87)

Thus we get null states of this form for D = 26.

Thus we see that at D = 26 and a = 1 there are additional null states of a special kind.

7 Exercises

(A) Consider a complex fermion
d = d(1) + id(2) (88)

We have
(d(1)

n )† = d
(1)
−n, (d(2)

n )† = d
(2)
−n (89)

The commutation relations are

{d(1)
n , d(1)

m } = δn+m,0, {d(2)
n , d(2)

m } = δn+m,0 (90)
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We make the currents
Jn = id†mdn+m (91)

Find the commutation relations of these currents, together with the anomaly term.

(B) Analyse the Hilbert space at level three, following the analysis of levels one and two above.
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