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1 The Schwarzschild hole

Let us start with the Schwarzschild metric of the 3+1 dimensional black hole

ds2 = −(1 −
2GM

c2r
)dt2 +

dr2

1 −
2GM

c2r

+ r2(dθ2 + sin2 θdφ2) (1)

We will set
G = c = ~ = 1 (2)

and write dΩ2
2 = dθ2 + sin2 θdφ2 for the metric on the unit 2-sphere S2. Then (1) becomes

ds2 = −(1 −
2M

r
)dt2 +

dr2

1 −
2M

r

+ r2dΩ2
2 (3)

Consider the line
r = r0, θ = θ0, φ = φ0 (4)

so that only t changes along this line
(i) For r > 2M the metric along this line gives

ds2 = −(1 −
2M

r
)dt2 < 0 (5)

so this is a timelike line, and can be the worldline of an actual particle.
(ii) For r < 2M we get

ds2 = −(1 −
2M

r
)dt2 > 0 (6)

so this is a spacelike line, and cannot be the path of a particle. In other words, a particle
cannot sit at constant r, θ, φ for r < 2M .

*******************************************************************************
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Problem 1: Prove that even if we allow θ, φ to change, it remains true that any particle
at r < 2M will have to move towards smaller r, and will thus end up at r = 0.

*******************************************************************************

The surface r = 2M is called the horizon. Classically (i.e. without quantum effects)
no particle can emerge from inside the horizon to the outside.

2 Kruskal coordinates

In the metric (3) we see that there is a problem when 1 −
2M

r
= 0, since the coefficient of

dt2 vanishes and the coefficient of dr2 diverges. Before we know any more, we cannot be
sure if this means that the coordinates are bad at this location r = 2M or if the metric has
a geometrical singularity of some kind. It will turn out that the singularity at the horizon
is only a coordinate singularity. To show this, we need to use coordinates that are well
behaved at the horizon. Let us find such coordinates.

(i) First we look at the t, r part of the metric and write

ds2 = −(1 −
2M

r
)dt2 +

dr2

1 −
2M

r

= (1 −
2M

r
)[−dt2 +

dr2

(1 −
2M

r
)2

] (7)

We would now like to find a coordinate r∗ such that

dr∗
2 =

dr2

(1 −
2M

r
)2

(8)

This gives the equation dr∗ = dr

1− 2M

r

which has the solution

r∗ =

∫
r dr

1 −
2M

r

=

∫
r r

r − 2M
=

∫
r

dr[1 +
1

r

2M
− 1

] = r + 2M ln(
r

2M
− 1) (9)

where we have set the arbitrary additive constant to zero. The metric (3) becomes

ds2 = (1 −
2M

r
)[−dt2 + dr∗

2] + r2dΩ2
2 (10)

(ii) Now we move to null coordinates by writing

u = t + r∗, v = t − r∗ (11)

This gives

ds2 = (1 −
2M

r
)[−dudv] + r2dΩ2

2 (12)
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(iii) Let us now look at the ranges of these coordinates. Note that the range r =
(2M,∞) maps to r∗ = (−∞,∞). Now consider a null geodesic falling radially into the
hole. Thus θ, φ are constant, and the worldline will be given by solving ds2 = 0 in the
(t, r∗) space. At infinity where the metric is flat the ingoing geodesic is t + r = const..
From (12) we see that taking into account the metric of the hole changes this to

t + r∗ = u = u0 (13)

By taking geodesics starting from a given r∗ with different values of t we see that we can
cover the full range −∞ < u0 < ∞ for points outside the horizon. Similarly, v = t− r∗ can
cover this full range. But note in addition that as the ingoing null geodesic approaches the
horizon we get

v = t − r∗ = u0 − 2r∗ → ∞ (14)

In short, the ‘future horizon’ (i.e. the horizon which is crossed in the future by an observer
who decides to fall into the black hole) is given by

−∞ < u < ∞, v = ∞ (15)

(iv) From (15) we see that our coordinates (u, v) ‘end’ at the horizon. If we wish to
see the horizon as a regular region of our manifold, then we would like to have coordinates
that smoothly take us across the horizon. Thus we need the horizon to be at finite values
of our coordinates, unlike (15). Let we write

U = eαu, V = −e−αv (16)

where we will choose the constant α later. Assuming α > 0, we see that the region outside
the horizon is

U > 0, V < 0 (17)

and the horizon itself is
0 < U < ∞, V = 0 (18)

Thus we have brought the horizon to a finite position in our new coordinates U, V , and if
the metric is smooth at U = V = 0 then we can continue the spacetime past the region
(17).

(v) From (16) we get
dU = αeαudu, dV = αe−αvdv (19)

Thus the metric (12) becomes

ds2 = −(1 −
2M

r
)
e−α(u−v)

α2
dUdV + r2dΩ2

2 = −
(r − 2M)

r

e−α(u−v)

α2
dUdV + r2dΩ2

2 (20)
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Now note that

e−α(u−v) = e−2αr∗ = e−2α[r+2M ln( r

2M
−1)] = e−2αr(

r

2M
−1)−4αM = e−2αr(2M)4αM (r−2M)−4αM

(21)
We now see that if we choose

α =
1

4M
(22)

then we cancel the factor r − 2M in (20), getting

ds2 = −
32M3

r
e−

r

2M dUdV + r2dΩ2 (23)

This metric is now written in coordinates U, V, θ, φ, with

U = (
r

2M
− 1)

1

2 e
r

4M e
t

4M

V = −(
r

2M
− 1)

1

2 e
r

4M e−
t

4M (24)

Note that
UV = −(

r

2M
− 1)e

r

2M (25)

and we should understand the symbol r in (23) as the function r(U, V ) given through the
transcendental equation (25). Since we do not need the explicit form of this function for
our analysis, we leave it as the symbol r. All we note for now is that at the horizon (where
we are trying to get smooth coordinates) the function r is smooth function on the manifold,
with r ≈ 2M(1 − UV ).

3 Extending past the horizon

The region outside the horizon was given by the coordinate range (17). Let us now see
how we would extend the spacetime past the horizon, to reach the interior of the black
hole. We let the metric continue to have the form (23), where r(U, V ) will continue to be
given through (25). There is no problem with either equation at r = 2M . There will be
a singularity at r = 0, which is a real singularity: the curvature diverges there, and we
cannot remove this singularity with a coordinate transformation. From (25) we see that

r = 0 ↔ UV = 1 (26)

We see that we can extend the coordinate range from the initial range (17) to all values of
U, V satisfying UV < 1. This spacetime is called the ‘extended black hole spacetime’, and
we depict it in fig.1. There is a ‘future singularity’ at U > 0, V > 0, UV = 1; if an observer
decides to fall into the black hole then he will hit this singularity sometime in his future.
But there is another singularity – the ‘past singularity’ at U < 0, V < 0, UV = 1. We will
discuss the structure of this spacetime in more detail after drawing the Penrose diagram.
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Figure 1: The fully extended Schwarzschild geometry

4 The Penrose diagram

The U, V coordinates cover all of our spacetime, but these coordinates do not have a
bounded range. Thus if we try to draw the U, V space on a sheet of paper, we have to
stop at a finite value of U, V , and we do not explicitly see the picture of how the ‘points
at infinity’ border our spacetime. To bring these ‘points at infinity’ to a finite coordinate
distance from the points in the interior of our spacetime, we make a conformal rescaling of
the metric. Here the word ‘conformal’ means that at each point the metric is scaled by a
number gab(x) → Ω2(x)gab(x), so that the angles between different directions at the point
x do not change, and in particular null directions remain null directions. Such a rescaling
will help us to understand the causal structure of the spacetime, including the behavior of
‘infinity’.

Let us first carry out this process for Minkowski spacetime; we will need this result
anyway to describe part of the black hole spacetime when the black hole is made by
‘collapse’ of a shell. Minkowski spacetime is

ds2 = −dt2 + dr2 + r2dΩ2
2 (27)

Let us write
U = t + r, V = t − r (28)

getting
ds2 = −dUdV + r2dΩ2 (29)

where now the coordinates are U, V, θ, φ, and r = 1
2 (U − V ). Since

r =
1

2
(U − V ) ≥ 0 (30)
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Figure 2: Penrose diagram of Minkowski space

we have the alllowed range

−∞ < U < ∞, −∞ < V < ∞, U ≥ V (31)

so we have an infinite coordinate range. Let us write

Ũ = tanh U, Ṽ = tanh V (32)

so that
−1 < Ũ < 1, − 1 < Ṽ < 1, Ũ ≥ Ṽ (33)

and the metric is

ds2 = −[
dU

dŨ

dV

dṼ
]dŨ Ṽ + r2dΩ2 (34)

But
dU

dŨ
= sech2U =

1

1 − Ũ2
,

dV

dṼ
= sech2V =

1

1 − Ṽ 2
(35)

so that

ds2 =
1

(1 − Ũ2)(1 − Ṽ 2)
[−dŨdṼ + r2(1 − Ũ2)(1 − Ṽ 2)dΩ2] (36)

So far we have just rewritten Minkowski spacetime in new coordinates, but now let us
make a conformal transformation, defining a new metric

g′ab = (1 − Ũ2)(1 − Ṽ 2)gab (37)
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Thus the new metric is

ds′2 = −dŨdṼ + r2(1 − Ũ2)(1 − Ṽ 2)dΩ2 (38)

Let us ignore the angular directions; since we have spherical symmetry there is no nontrivial
structure in these directions, and the size if the angular sphere is not relevant for the main
computations we are interested in. Thus we get

ds′2 = −dŨdṼ (39)

with the coordinate range (33). The null directions are Ũ = U0 and Ṽ = V0. This gives
the Penrose diagram in fig.2.

*******************************************************************************

Problem 2: Show that all points at spatial infinity t = t0, r → ∞ are represented as one
point in the Penrose diagram; i.e., they are at one value Ũ , Ṽ . Similarly show that all
points at timelike infinity r = r0, t → ∞ are at one point in the Penose diagram. What do
the different points along the boundary of the diamond describe?

*******************************************************************************

Figure 3: Penrose diagram for the ‘eternal Schwarzschild hole’

We now do a similar transformation (32),(37) for the black hole metric (23), getting

ds′2 = −
32M3

r
e−

r

2M dŨdṼ (40)
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We have to be careful about the coordinate ranges though. The spacetime again ends at
r = 0; this time there is a singularity there instead of a ‘simple origin of coordinates’. But
r = 0 is now given by solving UV = 1 which is

tanh−1Ũ tanh−1Ṽ = 1 (41)

This is a curve in Ũ , Ṽ space, and points beyond this curve are not in the spacetime
represented by the Penrose diagram, since they lie past the singularity. We draw the
Penrose diagram in fig.3. The singularity runs along a curve from Ũ = 0, Ṽ = 1 to
Ũ = 1, Ṽ = 0. Note that the causal structure of infinity is not changed by any other
conformal rescaling of the metric at interior points of spacetime. Thus we can imagine a
further rescaling which makes the singularity a straight line Ũ = 0, Ṽ = 1 to Ũ = 1, Ṽ = 0;
this is easier to draw, and is typically what is done in figures. The essential property of
the singularity we cannot change in the picture is that the singularity is spacelike; The
constant r surface r = 0 is inside the horizon and so is spacelike instead of timelike.

5 The black hole formed by collapse

Figure 4: Penrose diagram of the black hole made by collapse of a shell

The black hole spacetime made above does not describe a realistic black hole made
by collapse of a star. The spacetime we have found has a ‘past singularity’, which a
collapsing star would not have, and also a second asymptotically flat region, which we
cannot hope to produce simply by letting a star collapse in our starting spacetime. To get
the correct spacetime for the collapsing star, note that the metric inside a spherical shell is
flat Minkowski spacetime. This follows by the Birkoff theorem, which says that a spherically
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symmetric vacuum solution to Einstein’s equations must be a piece of the Schwarzscild
geometry; since we have no source inside the shell, we must choose the geometry with
M = 0, which is just Minkowski space. Thus inside the shell we take Minkowski spacetime,
and outside the shell we must glue this to the black hole spacetime (using ‘Israel matching
conditions’ across the shell). The resulting spacetime, shown in fig.4, does not have either
the past singularity or the second asymptotically flat region.
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