Physics 5300, Theoretical Mechanics Spring 2015

Assignment 1

Given: Tue, Jan 13, Due Tue Jan 20

The problems numbers below are from Classical Mechanics, John R. Taylor, University Science Books (2005).

Problem 1 Taylor 5.5

Solution: We start with the form

$$I: \quad x(t) = C_1 e^{i\omega t} + C_2 e^{-i\omega t} \tag{1}$$

We have

$$e^{i\omega t} = \cos(\omega t) + i\sin(\omega t) \tag{2}$$

$$e^{-i\omega t} = \cos(\omega t) - i\sin(\omega t) \tag{3}$$

Thus we get

$$x(t) = C_1[\cos(\omega t) + i\sin(\omega t)] + C_2[\cos(\omega t) - i\sin(\omega t)]$$

$$= (C_1 + C_2)\cos(\omega t) + i(C_1 - C_2)\sin(\omega t)$$

$$\equiv B_1\cos(\omega t) + B_2\sin(\omega t)$$
(4)

Thus we have

$$II: B_1 = (C_1 + C_2), B_2 = i(C_1 - C_2)$$
 (5)

Now consider the expression

$$III: \quad x(t) = A\cos(\omega t - \delta) \tag{6}$$

This gives

$$x(t) = A\cos(\omega t)\cos\delta + A\sin(\omega t)\sin\delta \tag{7}$$

Comparing to II, we have

$$A\cos\delta = B_1, \quad A\sin\delta = B_2 \tag{8}$$

Thus we have

$$A^{2}(\cos^{2}\delta + \sin^{2}\delta) = A^{2} = B_{1}^{2} + B_{2}^{2}$$
(9)

which gives

$$A = \sqrt{B_1^2 + B_2^2} \tag{10}$$

and

$$\tan \delta = \frac{B_2}{B_1}, \quad \delta = \tan^{-1} \frac{B_2}{B_1} \tag{11}$$

Now consider the expression

$$IV: \quad x(t) = Re[Ce^{i\omega t}] \tag{12}$$

We write

$$C = |C|e^{i\phi} \tag{13}$$

Then we have

$$x(t) = Re[|C|e^{i(\omega t + \phi)}] = |C|Re[e^{i(\omega t + \phi)}] = |C|\cos(\omega t + \phi)$$
(14)

Comparing to III, we have

$$|C| = A, \quad \phi = -\delta \tag{15}$$

Now start with

$$x(t) = Re[Ce^{i\omega t}] = \frac{1}{2}[Ce^{i\omega t} + C^*e^{-i\omega t}]$$
(16)

This is of the form I with

$$C_1 = \frac{1}{2}C, \quad C_2 = \frac{1}{2}C^*$$
 (17)

Problem 2 Taylor 5.7

Solution: (a) We have

$$x(t) = B_1 \cos(\omega t) + B_2 \sin(\omega t) \tag{18}$$

$$\dot{x}(t) = -B_1 \omega \sin(\omega t) + B_2 \omega \cos(\omega t) \tag{19}$$

Thus

$$x(0) = x_0 = B_1, \quad \dot{x}(0) = v_0 = B_2 \omega$$
 (20)

Thus

$$B_1 = x_0, \quad B_2 = \frac{v_0}{\omega} \tag{21}$$

(b) We have

$$\omega = \sqrt{\frac{k}{m}} = \sqrt{\frac{50}{.5}} = 10 \tag{22}$$

$$B_1 = x_0 = 3 (23)$$

$$B_2 = \frac{v_0}{\omega} = \frac{50}{10} = 5 \tag{24}$$

(c) We have

$$x(t) = B_1 \cos(\omega t) + B_2 \sin(\omega t) = 3\cos(\omega t) + 5\sin(\omega t)$$
(25)

To get x(t) = 0 we need

$$3\cos(\omega t) + 5\sin(\omega t) = 0, \quad \tan(\omega t) = -\frac{3}{5}$$
 (26)

We have

$$-\tan^{-1}\frac{3}{5} = -.54, -.54 + \pi = 2.6, \dots$$
 (27)

Thus the earliest positive time when x(t) = 0 is

$$t = \frac{2.6}{\omega} = \frac{2.6}{10} = .26 s \tag{28}$$

Similarly, we have

$$\dot{x}(t) = -B_1 \omega \sin(\omega t) + B_2 \omega \cos(\omega t) = -30 \sin(\omega t) + 50 \cos(\omega t)$$
 (29)

We get $\dot{x}(t) = 0$ when

$$\tan(\omega t) = \frac{5}{3} \tag{30}$$

This gives

$$\omega t = 1.03 \tag{31}$$

and therefore

$$t = \frac{1.03}{\omega} = .103 \tag{32}$$

Problem 3 Taylor 5.22

Solution: (a) The equation for oscillations is

$$\ddot{x} + 2\omega_0 \dot{x} + \omega_0^2 x = 0 \tag{33}$$

The solution is

$$x(t) = C_1 e^{-\omega_0 t} + C_2 t e^{-\omega_0 t} (34)$$

We have

$$x(0) = 0 (35)$$

which gives

$$C_1 e^{-\omega_0 t} + C_2 t e^{-\omega_0 t} C_1 = C_1 = 0 (36)$$

The velocity is

$$\dot{x} = -\omega_0 C_1 e^{-\omega_0 t} - C_2 \omega_0 t e^{-\omega_0 t} + C_2 e^{-\omega_0 t}$$
(37)

Setting this to v_0 at t=0 we get

$$C_2 = v_0 \tag{38}$$

Thus we have

$$x(t) = v_0 t e^{-\omega_0 t} \tag{39}$$

(b) Now we have

$$x(0) = C_1 = x_0 (40)$$

$$\dot{x}(0) = -\omega_0 C_1 + C_2 = 0, \quad C_2 = \omega_0 C_1 \tag{41}$$

Thus

$$x(t) = x_0 e^{-\omega_0 t} + \omega_0 x_0 t e^{-\omega_0 t} \tag{42}$$

At $t = \frac{2\pi}{\omega_0}$, we have

$$x = x_0 e^{-2\pi} + 2\pi x_0 e^{-2\pi} = x_0 (1 + 2\pi) e^{-2\pi}$$
(43)

Problem 4 Taylor 5.33

Solution: We have

$$x(t) = A\cos(\omega t - \delta) + e^{-\beta t} [B_1 \cos(\omega_1 t) + B_2 \sin(\omega_1 t)]$$
(44)

Thus

$$\dot{x}(t) = -A\omega\sin(\omega t - \delta) - \beta e^{-\beta t} [B_1\cos(\omega_1 t) + B_2\sin(\omega_1 t)] + e^{-\beta t} [-B_1\omega_1\sin(\omega_1 t) + B_2\omega_1\cos(\omega_1 t)]$$
(45)

Thus we have

$$x_0 = A\cos(\delta) + B_1 \tag{46}$$

$$v_0 = -A\omega\sin(\delta) - \beta B_1 + B_2\omega_1 \tag{47}$$

Thus

$$B_1 = x_0 - A\cos\delta\tag{48}$$

$$B_2 = \frac{1}{\omega_1} [v_0 + A\omega \sin \delta + \beta (x_0 - A\cos \delta)]$$
 (49)

Problem 5 Taylor 5.41

Solution: We have

$$A^{2} = \frac{f_{0}^{2}}{(\omega_{0}^{2} - \omega^{2})^{2} + 4\beta^{2}\omega^{2}}$$

$$(50)$$

The peak of A^2 occurs at $\omega = \omega_0$, which gives

$$A^2 = \frac{f_0^2}{4\beta^2\omega^2} \approx \frac{f_0^2}{4\beta^2\omega_0^2} \tag{51}$$

Thus A^2 has half this maximum value when

$$\frac{f_0^2}{(\omega_0^2 - \omega^2)^2 + 4\beta^2 \omega^2} \approx \frac{f_0^2}{(\omega_0^2 - \omega^2)^2 + 4\beta^2 \omega_0^2} = \frac{f_0^2}{8\beta^2 \omega_0^2}$$
 (52)

This gives

$$(\omega_0^2 - \omega^2)^2 + 4\beta^2 \omega_0^2 = 8\beta^2 \omega_0^2 \tag{53}$$

$$(\omega_0^2 - \omega^2)^2 = 4\beta^2 \omega_0^2 \tag{54}$$

$$\omega_0^2 - \omega^2 = \pm 2\beta\omega_0 \tag{55}$$

We can write this as

$$(\omega + \omega_0)(\omega - \omega_0) \approx 2\omega_0(\omega - \omega_0) = \pm 2\beta\omega_0 \tag{56}$$

which gives

$$\omega - \omega_0 = \pm \beta \tag{57}$$

Thus $\omega = \omega_0 \pm \beta$, and the full width at half-maximum is

$$(\omega_0 + \beta) - (\omega_0 - \beta) = 2\beta \tag{58}$$

Problem 6 Taylor 5.47

Solution: (i) We have

$$\cos A \cos B = \frac{1}{2} [\cos(A+B) + \cos(A-B)] \tag{59}$$

Thus

$$\cos(n\omega t)\cos(m\omega t) = \frac{1}{2}[\cos((n+m)\omega t) + \cos((n-m)\omega t)]$$
 (60)

We get

$$\int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} dt \cos(n\omega t) \cos(m\omega t) = \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} dt \frac{1}{2} \left[\cos((n+m)\omega t) + \cos((n-m)\omega t)\right]$$
 (61)

If n = 0, m = 0, then we get

$$\int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} dt \frac{1}{2} [\cos((n+m)\omega t) + \cos((n-m)\omega t)] = \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} dt = \tau$$
 (62)

If $n = m \neq 0$, then we have

$$\int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} dt \cos(n\omega t) \cos(m\omega t) = \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} dt \frac{1}{2} [\cos((2n)\omega t) + 1]
= \frac{1}{2} [\frac{1}{(2n\omega)} \sin((2n)\omega t)]|_{-\frac{\tau}{2}}^{\frac{\tau}{2}} + \frac{1}{2}\tau
= \tau$$
(63)

If $n \neq m$, then $n - m \neq 0$, and $n + m \neq 0$. (The latter statement is true because n, mare positive numbers.) Thus we get

$$\int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} dt \cos(n\omega t) \cos(m\omega t) = \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} dt \frac{1}{2} \left[\cos((n+m)\omega t) + \cos((n-m)\omega t)\right]$$

$$= \frac{1}{2} \left[\frac{1}{(m+n)\omega} \sin((n+m)\omega t) + \frac{1}{(m-n)\omega} \sin((n-m)\omega t)\right]_{-\frac{\tau}{2}}^{\frac{\tau}{2}}$$

$$= 0$$
(64)

where in the last step we have used the fact that

$$\omega \frac{\tau}{2} = \pi \tag{65}$$

(ii) We have

$$\sin A \sin B = \frac{1}{2} [-\cos(A+B) + \cos(A-B)] \tag{66}$$

Thus

$$\sin(n\omega t)\sin(m\omega t) = \frac{1}{2}\left[-\cos((n+m)\omega t) + \cos((n-m)\omega t)\right]$$
(67)

We get

$$\int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} dt \sin(n\omega t) \sin(m\omega t) = \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} dt \frac{1}{2} \left[-\cos((n+m)\omega t) + \cos((n-m)\omega t)\right]$$
(68)

If either n = 0 or m = 0, then the integrand vanishes. Thus we must have n > 0, m > 0. If $n \neq m$ then we get

$$\int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} dt \sin(n\omega t) \sin(m\omega t) = \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} dt \frac{1}{2} [-\cos((n+m)\omega t) + \cos((n-m)\omega t)]
= \frac{1}{2} [-\frac{1}{(m+n)\omega} \sin((n+m)\omega t) + \frac{1}{(m-n)\omega} \sin((n-m)\omega t)]|_{-\frac{\tau}{2}}^{\frac{\tau}{2}}
= 0$$
(69)

(69)

where in the last step we have used the fact that

$$\omega \frac{\tau}{2} = \pi \tag{70}$$

If n = m, then we get

$$\int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} dt \sin(n\omega t) \sin(n\omega t) = \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} dt \frac{1}{2} [-\cos(2n\omega t) + 1]$$

$$= \frac{1}{2} [-\frac{1}{(2n)\omega} \sin((2n)\omega t)]|_{-\frac{\tau}{2}}^{\frac{\tau}{2}} + \frac{1}{2}\tau$$

$$= \frac{\tau}{2}$$
(71)

(iii) We have

$$\cos A \sin B = \frac{1}{2} [\sin(A+B) - \sin(A-B)]$$
 (72)

Thus

$$\cos(n\omega t)\sin(m\omega t) = \frac{1}{2}[\sin((n+m)\omega t) - \sin((n-m)\omega t)]$$
 (73)

We get

$$\int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} dt \cos(n\omega t) \sin(m\omega t) = \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} dt \frac{1}{2} [\sin((n+m)\omega t) - \sin((n-m)\omega t)]$$
 (74)

If either m=0, then the integrand vanishes. Thus we must have m>0. If $n\neq m$ then we get

$$\int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} dt \cos(n\omega t) \sin(m\omega t) = \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} dt \frac{1}{2} [\sin((n+m)\omega t) - \sin((n-m)\omega t)]
= \frac{1}{2} [-\frac{1}{(m+n)\omega} \cos((n+m)\omega t) + \frac{1}{(m-n)\omega} \cos((n-m)\omega t)]|_{-\frac{\tau}{2}}^{\frac{\tau}{2}}
= 0$$
(75)

where in the last step we have used the fact that for any number p

$$\cos(p\omega\frac{\tau}{2}) = \cos(p\omega(-\frac{\tau}{2})) \tag{76}$$

If m = n, then we have

$$\int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} dt \cos(n\omega t) \sin(n\omega t) = \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} dt \frac{1}{2} [\sin((2n)\omega t) - 0]
= \frac{1}{2} [-\frac{1}{(2n)\omega} \cos((2n)\omega t)]|_{-\frac{\tau}{2}}^{\frac{\tau}{2}}
= 0$$
(77)