Physics 5300, Theoretical Mechanics Spring 2015

Assignment 1
Given: Tue, Jan 13, Due Tue Jan 20

The problems numbers below are from Classical Mechanics, John R. Taylor, University
Science Books (2005).

Problem 1 Taylor 5.5

Solution: We start with the form

I: z(t) = Cre™" + Che™ ™t (1)
We have '
et = cos(wt) + i sin(wt) (2)
e = cos(wt) — isin(wt) (3)
Thus we get
z(t) = Ci[cos(wt) + isin(wt)] + Cacos(wt) — i sin(wt)]
= (C1 + Cy) cos(wt) +i(Cy — Co) sin(wt)
= Bjcos(wt) + By sin(wt) (4)
Thus we have
II: By = (Cl + CQ), By = Z(Cl — 02) (5)
Now consider the expression
I1T: x(t) = Acos(wt — 0) (6)
This gives
x(t) = Acos(wt) cosd + Asin(wt) sin d (7)
Comparing to II, we have
Acosd = By, Asind = By (8)
Thus we have
A?(cos® 6 +sin? §) = A* = B} + B3 (9)

which gives
A=/B?+ B? (10)
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and

B B
tand = B—i, §=tan~! B—j

Now consider the expression

IV :  z(t) = Re[Ce™

We write

C =|C|e*
Then we have
2(t) = Re[|Cle 9] = |C|Rele )] = |C] cos(wt + ¢)

Comparing to III, we have
|C’ =A, ¢=-9

Now start with )
z(t) = Re[Ce™!] = i[Cei“’t + C*e 1]

This is of the form I with ] ]
Ci==-C, Cy==-C*
1 2 y 2 2

Problem 2 Taylor 5.7
Solution: (a) We have
x(t) = By cos(wt) + Ba sin(wt)

#(t) = —Bywsin(wt) + Bow cos(wt)

Thus
.’L‘(O) =T = Bl, :r(O) = Vo = ng
Thus v
By =19, By=—
w
(b) We have

k /50
W m .5
B

:{1’,‘0:3

Vo 50
B:—:—:
S 10 g
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(c) We have
x(t) = By cos(wt) + By sin(wt) = 3 cos(wt) + 5sin(wt)
To get z(t) = 0 we need
. 3

3cos(wt) + bsin(wt) =0, tan(wt) = ~5

We have 5
—tan~! 5= 0= =26,

Thus the earliest positive time when z(t) = 0 is

6 2.6
=22 20 o
w 10 5

Similarly, we have

#(t) = —Biwsin(wt) + Baw cos(wt) = —30sin(wt) + 50 cos(wt)

We get () = 0 when

5
tan(wt) = 3
This gives
wt =1.03
and therefore
t= 1.03 =.103
w

Problem 3 Taylor 5.22

Solution: (a) The equation for oscillations is
i 4 2wod + wiz =0
The solution is
z(t) = Cre 0" 4 Cote 0!

We have
z(0)=0
which gives
Cre ot 4 Cote™'Cy =01 =0

The velocity is
T = —chle_th — CQUJOtG_th + 02€—w0t



Setting this to vg at ¢ = 0 we get

CQ = o (38)
Thus we have
z(t) = vote w0t (39)
(b) Now we have
z(0) =Cy =9 (40)
x(()) = —woCi + Cy =0, Cy = w1 (41)
Thus
x(t) = moe " + womgte w0 (42)
At t = %’ we have
z = zge 2" + 2mzpe 2" = xo(1 + 2m)e 2" (43)
Problem 4  Taylor 5.33
Solution: We have
z(t) = Acos(wt — 8) + e PY[B) cos(wit) + By sin(wit)] (44)
Thus
i(t) = — Awsin(wt—08)—Be P By cos(wit)+ By sin(wit)]4e P! [— Bywy sin(wt)4 Baw; cos(wit)]
(45)
Thus we have
xg = Acos(d) + By (46)
vg = —Awsin(d) — fB; + Baw; (47)
Thus
By =29 — Acosd (48)
1
By = w—[vo + Awsind + B(xg — Acosd)] (49)
1
Problem 5 Taylor 5.41
Solution: We have )
A = /o (50)

(Wi — w?)? + 45%w?



The peak of A% occurs at w = wy, which gives

4B%w? 452wk

Thus A? has half this maximum value when

/3 /g o
(wE — w?)? + 45%w? - (wE — w?)? + 452w - 832wk

This gives
(wf — w*)? + 4F%wf = 85%w]

(w§ — w?)? = 45%;
wg — w? = £2Bw
We can write this as
(w4 wp)(w — wo) = 2wp(w — wp) = £2Bwy

which gives
w—wy==E6

Thus w = wy & B, and the full width at half~-maximum is

(wo + B) — (wo — B) =28

Problem 6 Taylor 5.47

Solution: (i) We have
1
cos Acos B = i[cos(A + B) + cos(A — B)]

Thus

cos(nwt) cos(mwt) = é[cos((n + m)wt) + cos((n — m)wt)]

We get

(SR

xr
2

If n=0,m = 0, then we get

(SR

31
/ dti[cos((n + m)wt) 4 cos((n — m)wt)] = / dt =1

[SIR]
[SIR]

/_2 dt cos(nwt) cos(mwt) = /_2 dt%[cos((n + m)wt) 4 cos((n — m)wt)]

(51)



If n =m # 0, then we have

/2 dt cos(nwt) cos(mwt) = : dt%[cos((Qn)wt) +1]

z
2

—

(SR

sin((2n)wt)] é +

[

T

(SR
N =

(2nw)

N N =

(63)

If n # m, then n —m # 0, and n + m # 0. (The latter statement is true because n,m
are positive numbers.) Thus we get

x T 1
/2 dt cos(nwt) cos(mwt) = /2 dti[cos((n + m)wt) + cos((n — m)wt)]
—3 —3
1 . . z
= i[m sin((n + m)wt) + (=) sin((n — m)wt)]\_%
= 0
(64)
where in the last step we have used the fact that
w%zw (65)
(ii) We have
1
sin Asin B = 5[— cos(A + B) + cos(A — B)] (66)
Thus )
sin(nwt) sin(mwt) = 5[— cos((n + m)wt) + cos((n — m)wt)] (67)
We get

T T 1
/2 dt sin(nwt) sin(mwt) = /2 dti[_ cos((n + m)wt) + cos((n — m)wt)]  (68)
-3 -3

If either n = 0 or m = 0, then the integrand vanishes. Thus we must have n > 0, m > 0.
If n # m then we get

T T

/i dt sin(nwt) sin(mwt) = /27 dt%[— cos((n + m)wt) 4+ cos((n — m)wt)]
1 1 . . .
= 5[—m sin((n +m)wt) + (m = n)w sin((n — m)wt)]|2
= 0

(SR



where in the last step we have used the fact that
w-— =1

If n = m, then we get

/2 dt sin(nwt) sin(nwt) = dt—[— cos(2nwt) + 1]

r
2

(SR

i
(MR
— N =

—
[\

n)w

N[N N

(iii) We have
cos Asin B = %[sin(A + B) —sin(4A — B)]

Thus 1
cos(nwt) sin(mwt) = §[sin((n + m)wt) — sin((n — m)wt)]

We get

T z
2 2

sin((2n)wt)] é + %7‘

/ ® dt cos(nwt) sin(met) = / : dt%[sin((n + m)wt) — sin((n — m)wt)]

(71)

(74)

If either m = 0, then the integrand vanishes. Thus we must have m > 0. If n # m then

we get

T

/2 dt cos(nwt) sin(mwt) = /2 dt%[sin((n + m)wt) — sin((n — m)wt)]

T
2

[V}

1
5[—7(771 e cos((n + m)wt) + (m = n)w
=0

where in the last step we have used the fact that for any number p

cos(pw§) = COS(pW(—g))

cos((n — m)wt)]|



If m = n, then we have

-

/2 dt cos(nwt) sin(nwt)

x
2

(77)



