Physics 5300, Theoretical Mechanics Spring 2015

Assignment 2 solutions
Given: Tue, Jan 20, Due Tue Jan 27
The problems numbers below are from Classical Mechanics, John R. Taylor, University Science Books (2005).

Problem 1 Taylor 6.1

Solution: Consider a sphere of radius R. The distance between points (θ, ϕ) and $(\theta+d \theta, \phi+d \phi)$ is given by

$$
d s^{2}=R^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

Consider the path to be given by a function $\phi(\theta)$. Then we have

$$
d s=R \sqrt{\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)}=R \sqrt{1+\sin ^{2} \theta \phi^{\prime 2}} d \theta
$$

Thus the total length is

$$
L=\int_{i}^{f} d s=R \int_{\theta_{1}}^{\theta_{2}} \sqrt{1+\sin ^{2} \theta \phi^{\prime 2}} d \theta
$$

Problem 2 Taylor 6.2
Solution: The cylinder has all its points at $\rho=R$. Thus the points of interest are given by (R, ϕ, z) and ($R, \phi+d \phi, z+d z)$. The distance is given by

$$
d s^{2}=R^{2} d \phi^{2}+d z^{2}
$$

Writing the path as $\phi(z)$, we get,

$$
d s=\sqrt{R^{2} \phi^{\prime 2}+1} d z
$$

Thus the total length is

$$
L=\int_{i}^{f} d s=\int_{\theta_{1}}^{\theta_{2}} \sqrt{R^{2} \phi^{\prime 2}+1} d z
$$

Problem 3 Taylor 6.7

Solution: The quantity to be minimized is

$$
L=\int_{i}^{f} d s=\int_{z_{1}}^{z_{2}} \sqrt{R^{2} \phi^{\prime 2}+1} d z
$$

The equation is then

$$
\frac{d}{d z}\left[\frac{R \phi^{\prime}}{\sqrt{\phi^{\prime 2}+1}}\right]=0
$$

Thus

$$
\frac{R \phi^{\prime}}{\sqrt{R^{2} \phi^{\prime 2}+1}}=\text { const }
$$

Thus

$$
\phi^{\prime}=\text { const }
$$

Thus

$$
\phi=a z+b
$$

Laid out on a flat $y-z$ plane, the y coordinate is $R \phi$ and the z coordinate is z itself. Thus we expect a straight line in the $y-z$ plane, and this is what we have obtained from the variational equation.

Problem 4 Taylor 6.9
Solution: We wish to miniize

$$
L=\int_{O}^{P}\left(y^{\prime 2}+y y^{\prime}+y^{2}\right) d x
$$

The variational equation is

$$
\frac{d}{d x}\left[\left(2 y^{\prime}+y\right)\right]-\left(y^{\prime}+2 y\right)=0
$$

This is

$$
2 y^{\prime \prime}-2 y=0
$$

or

$$
y^{\prime \prime}=y
$$

The solution has the form

$$
y=A e^{x}+B e^{-x}
$$

At the origin O we have

$$
0=A+B
$$

which implies $A=-B$. At P we have

$$
1=A e+B e^{-1}
$$

Thus

$$
B\left(-e+e^{-1}\right)=1, \quad B=\frac{1}{-e+e^{-1}}=-\frac{e}{e^{2}-1}
$$

Thus we get

$$
y=\frac{e}{e^{2}-1}\left(e^{x}-e^{-x}\right)
$$

Problem 5 Taylor 6.11
Solution: The quantity to be minimized has the form $\int_{i}^{f} L d x$, where

$$
L=\sqrt{x} \sqrt{1+y^{\prime 2}}
$$

The variational equation is

$$
\frac{d}{d x}\left[\frac{\sqrt{x} y^{\prime}}{\sqrt{1+y^{\prime 2}}}\right]=0
$$

Thus

$$
\begin{gathered}
\frac{\sqrt{x} y^{\prime}}{\sqrt{1+y^{\prime 2}}}=C \\
\frac{x y^{\prime 2}}{1+y^{\prime 2}}=C^{2} \\
x y^{\prime 2}=C^{2}\left(1+y^{\prime 2}\right) \\
y^{\prime 2}\left(x-C^{2}\right)=C^{2} \\
y^{\prime}=\frac{C}{\sqrt{x-C^{2}}} \\
y=2 C \sqrt{x-C^{2}}+D
\end{gathered}
$$

Problem 6 Taylor 6.12
Solution: The quantity to be minimized has the form $\int_{i}^{f} L d x$, where

$$
L=x \sqrt{1-y^{\prime 2}}
$$

The variational equation is

$$
\frac{d}{d x}\left[\frac{x y^{\prime}}{\sqrt{1-y^{\prime 2}}}\right]=0
$$

Thus

$$
\begin{gathered}
\frac{x y^{\prime}}{\sqrt{1-y^{\prime 2}}}=C \\
\frac{x^{2} y^{\prime 2}}{1-y^{\prime 2}}=C^{2} \\
x^{2} y^{\prime 2}=C^{2}\left(1-y^{\prime 2}\right) \\
y^{\prime 2}\left(x^{2}+C^{2}\right)=C^{2} \\
y^{\prime}=\frac{C}{\sqrt{x^{2}+C^{2}}} \\
y=\int \frac{C}{\sqrt{x^{2}+C^{2}}} d x
\end{gathered}
$$

To solve this equation, we write

$$
x=C \sinh \mu
$$

Then

$$
\begin{aligned}
d x & =C \cosh \mu d \mu \\
y=\int C \cosh \mu d \mu \frac{C}{C \cosh \mu} & =C \int d \mu=C \mu+D=C \sinh ^{-1} \frac{x}{C}+D
\end{aligned}
$$

