
1 Green’s functions

The harmonic oscillator equation is

mẍ+ kx = 0 (1)

This has the solution

x = A sin(ωt) +B cos(ωt), ω =

√
k

m
(2)

where A,B are arbitrary constants reflecting the fact that we have two arbitrary initial
conditions (position and velocity).

Suppose we have a forced harmonic oscillator

mẍ+ kx = F (t) (3)

How do we obtain the solution, if we are given F (t)?
First we note that suppose someone did give us one solution of this equation

mẍp(t) + kxp(t) = F (t) (4)

then we could find other solutions by adding solutions of the free equation

x(t) = xp(t) +A sin(ωt) +B cos(ωt) (5)

This reflects the fact that we still have two initial conditions that we can chose for the
problem.

But how do we find xp(t)? This will depend on F (t), and since there can be an infinite
number of choices for F (t) it may look hopeless to write a solution to this problem. But
there is a simplification because the LHS of (3) is linear in x. Thus suppose we have

mẍ1(t) + kx1(t) = F1(t) (6)

mẍ2(t) + kx2(t) = F2(t) (7)

Then

m
d2

dt2
[x1(t) + x2(t)] + k[x1(t) + x2(t)] = F1(t) + F2(t) (8)

so we can find an answer to the problem with forcing function F1 + F2 if we knew the
solutions to the problems with forcing functions F1 and F2 separately.

This suggests that we choose a simple set of forcing functions F , and solve the prob-
lem for these forcing functions. Then by adding the results with various proportionality
constants we can get the solution to the problem for arbitrary F .
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2 Forcing functions of the form δ(t− t′)
What is the simplest F (t)? We look for an F which is zero everywhere except at one point
of time

F (t) = δ(t− t′) (9)

Even though this function is nonzero only at one point of time, its integral is nonzero∫ ∞
t=−∞

F (t)dt = 1 (10)

Let us look for the solution to the equation

mẍ+ kx = δ(t) (11)

We have to choose initial conditions to specify a solution, but we can take any conditions
we please, since we can later get any other solution by using (5). Thus let us assume that

x(t) = 0, t < 0 (12)

This is certainly an allowed solution, since before we apply any force we can imagine that
the oscillator is at rest; one may also think of it as a natural condition to take from a
physical point of view (this choice of condition will give us a Green’s function that will be
called the ‘retarded Green’s function’, reflecting the fact that any effects of the force F
appear only after the force is applied.)

What is x(t) for t > 0? There is again no force after t = 0, so we will have a solution
of the form

x = A sin(ωt) +B cos(ωt), t > 0 (13)

where now A,B will be determined by the F that is applied at t = 0.
Thus we need ‘junction conditions’ that will connect the solution at t < 0 to the solution

at t > 0. Such conditions are found by looking at the equation for x

mẍ+ kx = δ(t) (14)

Suppose we integrate both ides over a small interval containing the origin. Then we get∫ ε

t=−ε
mẍ(t)dt+

∫ ε

t=−ε
kx(t)dt =

∫ ε

t=−ε
δ(t)dt (15)

which gives
mẋ|t=εt=−ε +O(ε) = 1 (16)

where the second term on the LHS will be small because

|
∫ ε

t=−ε
kx(t)| ≤ max|x(t)|2ε (17)

2



We take the limit ε→ 0, getting

mẋ(t = 0+)−mẋ(t = 0−) = 1 (18)

Since ẋ(t = 0−) = 0, we find

ẋ(t = 0+) =
1

m
(19)

The variable x itself is expected to be continuous at x = 0, since∫ ε

t=−ε
ẋ(t)dt = x(t = ε)− x(t = −ε) (20)

The LHS goes to zero in the limit ε→ 0 since

|
∫ ε

t=−ε
ẋ(t)dt| ≤ max|ẋ|(2ε) (21)

Thus
x(t = 0+) = x(t = 0−) = 0 (22)

We can now find A,B. Consider the solution (13) which is valid at t = 0+. From (22) we
get at t = 0

B = 0 (23)

From (19) we get at t = 0

Aω =
1

m
, → A =

1

mω
(24)

Thus

x(t) =
1

mω
sin(ωt), t > 0 (25)

To summarize, a forcing function F = δ(t) acting on an oscillator at rest converts the
oscillator motion to x(t) = 1

mω sin(ωt). More generally, a forcing function F = δ(t − t′)
acting on an oscillator at rest converts the oscillator motion to

x(t) =
1

mω
sin(ω(t− t′)) (26)

3 Putting together simple forcing functions

We can now guess what we should do for an arbitrary forcing function F (t). We can
imagine that any function is made of delta functions with appropriate weight. Around a
point t′, imagine a delta function of strength F (t′). If we add up such delta functions, then
we should get the function F . Thus

F (t) =

∫ ∞
t′=−∞

dt′F (t′)δ(t− t′) (27)
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We can now guess that we should take the solution x(t) generated by each such delta
function, and add them up. There are two things to note:

(a) Since the delta function at t′ has strength F (t′) instead of strength unity, we should
multiply the solution (26) by F (t′) before adding it to the mix.

(b) Suppose we want to find x(t). Then we should take into account the effect of all
delta functions at t′ < t, but not those at t′ > t.

Thus we should write

xp(t) =

∫ t

t′=−∞
dt′F (t′)

1

mω
sin(ω(t− t′)) (28)

This is indeed the solution to the problem, since we can check that it satisfies (3). To check
this, note that

d

dt

∫ t

t′=−∞
dt′F (t′)

1

mω
sin(ω(t− t′)) = [F (t′)

1

mω
sin(ω(t− t′))]t′=t +

∫ t

t′=−∞
dt′F (t′)

1

mω

d

dt
sin(ω(t− t′))

=

∫ t

t′=−∞
dt′F (t′)

1

m
cos(ω(t− t′)) (29)

d2

dt2

∫ t

t′=−∞
dt′F (t′)

1

mω
sin(ω(t− t′)) =

d

dt

∫ t

t′=−∞
dt′F (t′)

1

m
cos(ω(t− t′))

= [F (t′)
1

m
cos(ω(t− t′))]t′=t +

∫ t

t′=−∞
dt′F (t′)

1

m

d

dt
cos(ω(t− t′))

=
1

m
F (t)− ω

m

∫ t

t′=−∞
dt′F (t′) sin(ω(t− t′)) (30)

kxp(t) = ω2m

∫ t

t′=−∞
dt′F (t′)

1

mω
sin(ω(t− t′)) (31)

= ω

∫ t

t′=−∞
dt′F (t′) sin(ω(t− t′)) (32)

and we find that

m
d2xp(t)

dt2
+ kxp(t) = F (t) (33)

The general solution of the problem is then found by using (5).

4 Defining Green’s functions

To make this solution more formal, we define a function

G(t, t′) = 0, t < t′
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G(t, t′) =
1

mω
sin(ω(t− t′)) (34)

Then we have

m
d2G(t, t′)

dt2
+ kG(t, t′) = δ(t− t′) (35)

Now suppose we have an arbitrary forcing function F (t). Then we write

xp(t) =

∫ ∞
t′=−∞

G(t, t′)F (t′)dt′ (36)

We then check that

mẍp(t)+kxp(t) = m

∫ ∞
t′=−∞

d2G(t, t′)

dt2
F (t′)dt′+k

∫ ∞
t′=−∞

G(t, t′)F (t′)dt′ =

∫ ∞
t′=−∞

δ(t−t′)F (t′)dt′ = F (t)

(37)
so that xp(t) is a solution of (3). The general solution will then be given by (5).

5 Perturbation theory

Above we considered a harmonic oscillator that was subject to an external force F (t).
More often we have an oscillator that is not subject to an external force, but where the
Lagrangian differs by a small amount from that of a harmonic oscillator. Thus consider

L =
1

2
mẋ2 − 1

2
kx2 − εx3 (38)

where ε is small. How do we solve this problem?
The equation of motion is

mẍ+ kx+ 3εx2 = 0 (39)

We write it with the new term on the RHS

mẍ+ kx = −3εx2 (40)

If we knew the RHS, then we could solve it by the method of Green’s functions shown
above. Of course we do not know the RHS until we solve for x(t). But if ε is small, then
we almost know the RHS. We first ignore the perturbation and solve the equation

mẍ+ kx = 0 (41)

This is not the full equation of course, but since ε is small it gives a good approximation.
We will call the solution x0(t), to denote the fact that this solution is the zeroth order
approximation, and later corrections will be added later. Thus we will have

x0(t) = A sin(ωt) +B cos(ωt) (42)
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where A,B are determined from our initial conditions, which we assume are given at t = ti.
Thus

x(ti) = A sin(ωti) +B cos(ωti), ẋ(ti) = Aω cos(ωti)−Bω sin(ωti) (43)

The full solution x(t) will be written as

x(t) = x0(t) + x1(t) + x2(t) + . . . (44)

where the term xk(t) is order εk.
Let us now find the first correction x1(t). In (40) the RHS is

−3εx2 = −3ε(x0 + x1 + x2 + . . .)2 = −3ε[x20 + 2x0x1 + (x21 + 2x0x2) + . . .] (45)

where we have grouped together terms of different order in ε. To find x1(t) we just keep
the lowest term −3εx20 on the RHS. But this is known, since we have chosen x0(t) above.
Since the initial conditions were given at t = ti, we can let the perturbation term act at
times after that to determine the solution for t > ti. We then get

x1(t) =

∫ t

t′=ti

G(t, t′)[−3εx20(t)] (46)

and the solution to this order is

x(t) = x0(t) + x1(t) = A sin(ωt) +B cos(ωt) +

∫ t

t′=ti

G(t, t′)[−3ε(A sin(ωt′) +B cos(ωt′))2]

(47)
Now that we know x0(t), x1(t) we can find out x2(t), since this needs the forcing func-

tion −6εx0x1. Continuing in this way, we can find the answer to any desired order in
perturbation theory.
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