
Relativistic Electrodynamics

Notes (I will try to update if typos are found)

June 1, 2009

1 Dot products

The Pythagorean theorem says that distances are given by

(∆s)2 = (∆x)2 + (∆y)2 + (∆z)2 (1)

With time as a fourth direction, we find

(∆s)2 = (∆x)2 + (∆y)2 + (∆z)2 − c2(∆t)2 (2)

We can rewrite this by defining two kinds of objects. One is a vector with
components

(∆x,∆y,∆z,∆t) (3)

It does not matter at the end whether we write this as a row or a column
vector, since we will write all matrix index summations explicitly. All we
care about is that it has 4 elements. We write these components with a
superscript, i.e. an ‘up’ index:

∆xµ, µ = 1, 2, 3, 4 (4)

We define another 4-component object

∆xµ : (∆x,∆y,∆z,−c2∆t) (5)

Thus the set with index written as a subscript differs from the case with the
superscript in that the last term is multiplied by −c2.

This looks like a lot of notation, but it makes our task of computing dot
products easier. Each dot product will involve one quantity with an ‘up’
index and one quantity with a ‘down’ index. Thus we will write

(∆s)2 =

4
∑

µ=1

∆xµ∆xµ (6)
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One can check that this reproduces (2). The advantage of setting up all this
notation is that now we do not see factors of c in the expression for the dot
product. We will try to use up and down indices carefully so that we never
have to write c explicitly if at all possible. To summarize, our general rule
is the following. If we have a vector with up indices

V µ = (V 1, V 2, V 3, V 4) (7)

then we get a version with lower indices as follows

Vµ = (V 1, V 2, V 3,−c2V 4) (8)

Conversely, if we have a vector with indices down, like

Wµ = (W1,W2,W3,W4) (9)

then we get a version with up indices as follows

W µ = (W1,W2,W3,−
1

c2
W4) (10)

Thus multiplying the last component by −c2 make an up index go down,
while dividing by −c2 makes a down index go up.

2 Joining quantities into 4-vectors

Many of the familiar quantities can now be expressed in this new notation.
The current and charge density make a 4-vector with an up index

Jµ = (Jx, Jy, Jz , ρ) (11)

On the right hand side it does not matter whether we write the indices
x, y, z up or down, since these just stand for the three components of the
usual current, and when we were dealing with normal 3-component vectors
there is no notion of up or down indices. The up and down difference affects
only the fourth component.

The derivatives can be grouped as

(
∂

∂x
,

∂

∂y
,

∂

∂z
,

∂

∂t
) (12)

Our convention is that the basic coordinates (x, y, z, t) have an up index. In
taking a derivative, we see that these coordinates are in the denominator,
so the 4-vector of derivatives is a quantity with indices down.
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Now we recall the continuity equation:

~∇ · ~J +
∂ρ

∂t
= 0 (13)

In full this is
∂Jx

∂x
+

∂Jy

∂y
+

∂Jz

∂z
+

∂ρ

∂t
= 0 (14)

We see that this is a natural dot product of the derivative operation with
the current vector

4
∑

µ=1

∂

∂xµ
Jµ = 0 (15)

Note that as expected, the Jµ is a quantity with an up index, and the
derivatives ∂

∂xµ are quantities with a lower index. so we have a natural dot
product. (All dot products should involve a summation sign, an up index,
and a down index.) The goal of writing (15) is that it is a lot simpler than
(13).

3 The gauge potential

We have one scalar potential V , and three components of a vector potential
~A = Ax, Ay, Az . It turns out that these can be grouped into a 4-vector,
which has indices down. Its components are

Aµ = (Ax, Ay, Az , At) (16)

where the fourth component is

At = −V (17)

How do we know that there should be a negative sign here? We have to get
the electric and magnetic fields out of these potentials. Recall the expres-
sions

~E = −~∇V −
∂ ~A

∂t
(18)

~B = ~∇× ~A (19)

Our goal is to get these electric and magnetic fields from the potentials in a
natural way. But as it stands, the equation for ~E looks quite different from
the equation for ~B. We will now see that in 4-component notation, these
equations are actually completely similar.
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Note that
Bx = ∂yAz − ∂zAy (20)

Thus Bx can be called the y − z component of the curl. Similarly we have

By = ∂zAx − ∂xAz (21)

Bz = ∂xAy − ∂yAx (22)

Now that we have a fourth variable t, we should ask about similar things
we can make with t. If we make the t − x component of the curl we find

∂xAt − ∂tAx = −∂xV − ∂tAx (23)

But we see from (18) that this is just Ex. Thus we have

∂xAt − ∂tAx = −∂xV − ∂tAx = Ex (24)

∂yAt − ∂tAy = −∂yV − ∂tAy = Ey (25)

∂zAt − ∂tAz = −∂zV − ∂tAz = Ez (26)

Thus we can now define a new quantity with two indices, both of which are
written as ‘down’ indices. This quantity is called Fµν , and is defined as

Fµν = ∂µAν − ∂νAµ (27)

We then find

Fµν =









0 Bz −By Ex

−Bz 0 Bx Ey

By −Bx 0 Ez

−Ex −Ey −Ez 0









(28)

4 Maxwell’s equations

In this section we will look at Maxwell’s equations and see that they take a
nice form in the 4-vector language.

4.1 The Gauss law equation ~∇ · ~E = ρ

ǫ0

Let us look at the first equation

~∇ · ~E =
ρ

ǫ0

(29)
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In full, this is
∂

∂x
Ex +

∂

∂y
Ey +

∂

∂z
Ez =

ρ

ǫ0

(30)

In terms of the Fµν quantity that we have defined, this is

∂

∂x
Fxt +

∂

∂x
Fyt +

∂

∂x
Fzt =

ρ

ǫ0

(31)

Let us make two more changes. First, since Ftt = 0, we can add a term
involving Ftt to the LHS to make it look like a sum over all of x, y, z, t

∂

∂x
Fxt +

∂

∂x
Fyt +

∂

∂x
Fzt −

1

c2

∂

∂t
Ftt =

ρ

ǫ0

(32)

Let us see why we added this last term in this particular way. Note that on
the LHS we now have a sum of terms involving in turn x, y, z, t. We would
like to write this sum as a dot product in the usual way. We see that the
dot product involves the derivative operator index and the first index of F .
Recall that a dot product must involve one up and one down index. Recall
also that the derivative operator has a down index. But both indices of F

are also down. So we must write the equation a little differently, so that F

appears in the equation with the first index as an ‘up’ index. In the three
terms on the LHS of (31) the first index is 1,2 and 3 respectively, so we can
think of this index as ‘up’ if we want. The fourth term which we added is
zero anyway, but as written now it is

−
1

c2

∂

∂t
Ftt =

∂

∂t
F t

t (33)

Thus the equation becomes

4
∑

µ=1

∂

∂xµ
Fµ

t =
ρ

ǫ0

(34)

The next thing we do is write the RHS as

ρ

ǫ0

= µ0c
2ρ (35)

Recall from (11) that ρ = J t, the fourth component of the current Jµ. In
(34) on the LHS we have an index t that has not been summed over, but
that index t is down. Thus on the RHS we should also write something with
a ‘down’ index. We note that from our rule for indices

−c2J t = Jt (36)
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Thus we can write the RHS as −µ0Jt, and the full equation becomes

4
∑

µ=1

∂

∂xµ
Fµ

t = −µ0Jt (37)

4.2 The equation ~∇× ~B = µ0
~J + 1

c2
∂ ~E
∂t

Given the equation (37), it is natural to expect the equations

4
∑

µ=1

∂

∂xµ
Fµ

x = −µ0Jx (38)

4
∑

µ=1

∂

∂xµ
Fµ

y = −µ0Jy (39)

4
∑

µ=1

∂

∂xµ
Fµ

z = −µ0Jz (40)

What are these equations? Let us look at the first one, eq. (38). This is

∂xF x
x + ∂yF

y
x + ∂zF

z
x + ∂tF

t
x = −µ0Jx (41)

To make sense of these terms, let us write them in terms of F with both
indices down, which is the way we had defined F . For the first term on the
LHS, the up index is x, and as we have seen before, there is no change if we
write it as a down index. Similarly for the next two terms. Thus we have

∂xFxx + ∂yFyx + ∂zFzx + ∂tF
t
x = −µ0Jx (42)

Now note that F t
x = − 1

c2
Ftx. Thus we have

∂xFxx + ∂yFyx + ∂zFzx −
1

c2
∂tFtx = −µ0Jx (43)

Now note that Fxx = 0. Next, note that

∂yFyx + ∂zFzx = −∂yBz + ∂zBy = −(~∇× ~B)x (44)

So our equation is

−(~∇× ~B)x −
1

c2
∂tFtx = −µ0Jx (45)
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Finally, note that Ftx = −Ex, and the equation is

−(~∇× ~B)x +
1

c2
∂tEx = −µ0Jx (46)

which is just one component of the last Maxwell equation:

(~∇× ~B)x = µ0Jx +
1

c2

∂Ex

∂t
(47)

Similarly, (39),(40) give the other components of the last Maxwell equation,
i.e. we get all three components of

~∇× ~B = µ0
~J +

1

c2

∂ ~E

∂t
(48)

4.3 The equation ~∇ · ~B = 0

This equation is
∂xBx + ∂yBy + ∂zBz = 0 (49)

In terms of F , this is

∂xFyz + ∂yFzx + ∂zFxy = 0 (50)

Note that Fzx = −Fxz, and we have written the terms so that each comes
with a positive sign. In each term the indices x, y, z appear. How does the
second term differ from the first? The indices x, y, z have been permuted.
If we interchange xy, then the order xyz goes to yxz. If we further permute
xz, we get yzx. This is the order in the second term, so it comes from two

simple permutations put together. We call this an even permutation since
an even number, 2, of simple permutations were needed. By contrast, if we
wanted to just go to the order yxz then one permutation would be needed,
and we call yxz an odd permutation of the starting set xyz. Note that there
are 6 permutations of xyz in all. Note that

∂xFyz = −∂xFzy (51)

etc. Thus we can write (50) as

−∂xFzy − ∂yFxz − ∂zFyx = 0 (52)

or, adding (50) and (52), we can write the same equation as

∂xFyz + ∂yFzx + ∂zFxy − ∂xFzy − ∂yFxz − ∂zFyx = 0 (53)
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Now we have a simple structure. We have taken three indices , y, z. We have
written the terms with all 6 possible permutations. The even permutations
come with a positive sign, and the odd terms come with a negative sign.
The equation just says that the sum of all these terms is zero.

All this may look like a lot of work for rewriting the simple equation
~∇ · ~B = 0. What is the advantage? We will now see that the next Maxwell
equation, which looks quite different on the face of it, really has the same
structure!

4.4 The equation ~∇× ~E = −∂t
~B

In the above equation we permuted xyz. But we have 4 indices now to
choose from since t is also there, so we can choose some other set of three
indices. Let us choose x, y, t. Then the analog of (50) is

∂xFyt + ∂yFtx + ∂tFxy = 0 (54)

This is
∂xEy − ∂yEx + ∂tBz = 0 (55)

which is

(~∇× ~E)z = −
∂

∂t
Bz (56)

This is just the z component of the Maxwell equations

~∇× ~E = −∂t
~B (57)

We get the other components by taking other sets of indices xzt or yzt.

4.5 Summary of Maxwell equations

We see that the two Maxwell’s equations with ‘source’ can be unified into
one form:

4
∑

µ=1

∂

∂xµ
Fµ

ν = −µ0Jν (58)

where we can set the index ν to 1,2,3 or 4 to get different equations.
We also see that the two ‘source free’ equations are unified into just one

type of equation, which we can write as

∂µFνλ + ∂νFλµ + ∂λFµν = 0 (59)

Here we can choose µ, ν, λ as any three different indices from the set x, y, z, t.
Different choices give different equations. (Question: What happens if we
choose two of the indices to be the same; e.g. µ = x, ν = x, λ = y?)
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5 Lorentz transformations

First consider motion in only one dimension x. Suppose one observer uses
coordinates x, t. Suppose another observer is moving in the positive x di-
rection with constant velocity v. The coordinates for the moving observer
will be denoted x′, t′.

In Newtonian mechanics, time is unchanged, so

t′ = t (60)

while
x′ = x − vt (61)

Thus we can write
(

x′

t′

)

=

(

1 −v

0 1

)(

x

t

)

(62)

In relativistic mechanics we have a more symmetric transformation

(

x′

t′

)

=

(

γ −γv

−γv
c2

γ

)(

x

t

)

(63)

where γ = 1
q

1−
v2

c2

. Note that for v ≪ c, the relativistic case reduce to the

Newtonian case. With motion in the x direction, the y, z coordinates are
not affected. Thus we can write the full Lorentz transformation









x′

y′

z′

t′









=









γ 0 0 −γv

0 1 0 0
0 0 1 0

−γv
c2

0 0 γ

















x

y

z

t









(64)

5.1 Tensors

We are now ready to learn all about tensors. Recall that we had written
the position coordinates (and their differences) with an ‘up’ index. Thus we
have

xµ = (x, y, z, t) (65)

In the new frame we have

x′µ = (x′, y′, z′, t′) (66)

We have the Lorentz transformation matrix as a 4 × 4 matrix. We call this
matrix Λ. Any matrix has two indices, with the first denoting row number
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and the second column number. In our present notation, we will write the
first index ‘up’ and the second ‘down’. Thus we write

Λµ
ν =









γ 0 0 −γv

0 1 0 0
0 0 1 0

−γv
c2

0 0 γ









(67)

We can now write (64) as

x′µ =
4

∑

ν=1

Λµ
νx

ν (68)

Note that the index which is summed over appears once as an up index and
once as a down index, just like in any dot product. The other index, µ, is
up on the left and so up on the right, as it should be.

What is all this notation good for? The key point comes now:
Any vector with an up index will change the same way when we go to a

moving frame as any other vector with an up index.

Thus take the 4-vector for the current Jµ. If we go to a moving frame,
the new components will be

J ′µ =
4

∑

ν=1

Λµ
νJ

ν (69)

Thus suppose in our initial frame we have only a charge density ρ, and no
current density. Thus we have

Jµ = (0, 0, 0, ρ) (70)

Now we go to a frame moving to the right with a velocity v. What will we
see? First, the charge will appear to be moving in the negative x direction,
so we should see a negative current Jx. But we should also see a length
contraction, which will make the charge distribution appear ‘compressed’;
thus the charge density will appear higher than in the original frame.

How can we get all these effects quantitatively? All we have to do is use
(69). This will give

J ′1 = −γvρ, J ′2 = 0, J ′3 = 0, J ′4 = γρ (71)

Thus we see that the charge density in the moving frame is indeed higher

J ′4 = ρ′ = γρ =
1

√

1 − v2

c2

ρ (72)
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while we have also found a current in the negative x direction

J ′1 = −γvρ = −vρ′ (73)

Thus we see that the current in the moving frame is indeed the charge
density in the moving frame times the velocity of that charge in the moving
frame, so our old equation ~J = ρ~v is still true.

5.2 Transformation of fields

So much for the transformations of vectors with an ‘up’ index. What about
vectors with a ‘down’ index? When we go to a moving frame, the compo-
nents change again, but the change is slightly different. To illustrate the
rule, take the vector Aµ given in (16). Then in the moving frame we will
have components given by A′

µ, with

A′

µ =
4

∑

ν=1

Λ̃µ
νAν (74)

Where

Λ̃µ
ν =









γ 0 0 γv
c2

0 1 0 0
0 0 1 0
γv 0 0 γ









(75)

One thing which can be checked is that if we have a dot product

4
∑

µ=1

WµV µ (76)

then it does not change if we change V µ by its rule for vectors with an up
index and change Wµ by its rule for vectors with a down index:

4
∑

µ=1

W ′

µV ′µ =
4

∑

µ=1

WµV µ (77)

Checking this takes a little work, but is worth doing.
Now we can say what happens to Fµν , which has all the electric and

magnetic fields in it. There are two ‘down’ indices. First look at one index,
and ignore the other one. Thinking of this as a single down vector index,
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write the change expected in the moving frame. Now do the same for the
other index. The result is

F ′

µλ =

4
∑

ν=1

4
∑

κ=1

Λ̃µ
νΛ̃λ

κFνκ (78)

Let us now apply this to various cases.

Example 1: Suppose we have only Ex in the initial reference frame.
We can ask what is E′

x in the moving frame. To do this, we have to first
note that

Ex = Fxt, E′

x = F ′

xt (79)

Then we write

F ′

xt =

4
∑

ν=1

4
∑

κ=1

Λ̃x
νΛ̃t

κFνκ (80)

Note that if we have only Ex nonzero, then the nonzero terms of Fµν are

Fxt = Ex, Ftx = −Ex (81)

Then in the summation we find the following nonzero terms

F ′

xt = Λ̃x
xΛ̃t

tFxt + Λ̃x
tΛ̃t

xFtx (82)

Note that Ftx = −Fxt. Thus we have

F ′

xt = [γ2 −
γ2v2

c2
]Fxt = γ2(1 −

v2

c2
)Fxt = Fxt (83)

We thus see that
E′

x = Ex (84)

so that Ex is not changed by a boost along the x direction. This fact was
not something that we could have seen right away without some calculation.

Example 2: Suppose we have By 6= 0, all other components zero. Now
we boost in the x direction as before. What are the fields in the moving
frame?

One field that becomes nonzero now is E′

z. To check this and find its
value, first note that

By = Fzx, E′

z = F ′

zt (85)
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Thus we want to know if F ′

zt is nonzero if we started with Fzx nonzero. We
find only one nonzero term in (78)

F ′

zt = Λ̃z
zΛ̃t

xFzx = γvFzx (86)

Thus we find that
E′

z =
v

√

1 − v2

c2

By (87)

6 Sample problems

Problem 1: Suppose in the rest frame we have

Ex = α, By = β (88)

Now we go to a frame moving with velocity ~v = vŷ.
(a) Write the matrices Λ, Λ̃ for this case.
(b) Find all the nonzero components of ~E, ~B in the new frame.

Problem 2: In the rest frame we have an infinite wire in the x direction
carrying a current I and a charge per unit length λ. Now we go to a frame
moving with velocity v in the positive x direction.

(a) Find the electric and magnetic fields in the original frame at the
point (x0, 0, z0)

(b) Find all the nonzero components of the fields at this point in the
moving frame.
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