
1 Angular momentum algebra

1.1 The algebra

The commutation relations are
[Lx, Ly] = i~Lz (1)

and others obtained from cycling

x→ y → z → x (2)

We also have
[Lx, L

2] = 0 (3)

We write
Lz|β, α〉 = α|β, α〉, L2|β, α〉 = β|β, α〉 (4)

Thus L2, Lz will be simple in our representation. We define

L+ = Lx + iLy (5)

L− = Lx − iLy (6)

Then we find
L+L− = L2

x + L2
y − i[Lx, Ly] = L2

x + L2
y + ~Lz (7)

L−L+ = L2
x + L2

y + i[Lx, Ly] = L2
x + L2

y − ~Lz (8)

This gives
L2 = L+L− − ~Lz + L2

z (9)

L2 = L−L+ + ~Lz + L2
z (10)

Thus
L+L− = L2 + ~Lz − L2

z (11)

L−L+ = L2 − ~Lz − L2
z (12)

1.2 Raising and lowering

Now we see that
LzL+|α, β〉 = (α+ ~)L+|β, α〉 (13)

LzL−|α, β〉 = (α− ~)Lz|β, α〉 (14)

L2L±|α, β〉 = βL±|β, α〉 (15)

Positivity shows that
α2 ≤ β (16)
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So there is a maximum value for α. We call this αmax. Since we cannot raise α any higher
than this, we have

L+|αmax, β〉 = 0 (17)

Then we have

L2|αmax, β〉 = (L−L+ + ~Lz + L2
z)|αmax, β〉 = α2

max + ~αmax (18)

Thus
β = αmax(αmax + ~) (19)

1.3 Coefficients

We assume normalized states |β, α〉 so that

〈β, α|β, α〉 = 1 (20)

Let us define
L−|β, α〉 = C−(β, α) (21)

L+|β, α〉 = C+(β, α) (22)

We have
L+L− = L2 + ~Lz − L2

z (23)

We have
〈β, α|L+L−|β, α〉 = |C−(β, α)|2 (24)

The LHS can be written as

〈β, α|L+L−|β, α〉 = 〈β, α|(L2 + ~Lz − L2
z)|β, α〉 (25)

This is
〈β, α|(β + ~α− α2)|β, α〉 = (β + ~α− α2) (26)

Using the value of β, we find

C−(β, α) = [αmax(αmax + ~) + ~α− α2]
1
2 (27)

Similarly we find

C+(β, α) = [αmax(αmax + ~)− ~α− α2]
1
2 (28)
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1.4 Multiplets

For the lowest state in the multiplet, we must have

C−(β, α) = 0 (29)

This gives a quadratic equation for α, with the solutions

α = αmax + ~ (30)

and
α = −αmax (31)

The first is not an allowed value of α, so we take the second value. The change in α from
the highest to the lowest value is

∆α = αmax − (−αmax) = 2αmax (32)

This must be an integer number N times the step size ~. Thus

2αmax = N~ (33)

αmax =
N

2
~ (34)

We write

l =
N

2
(35)

and get the allowed values

l = 0,
1

2
, 1,

3

2
, 2, . . . (36)

2 The coordinate representation of the L̂i

2.1 The 2-d case

Consider the plane x, y with
x = r cos θ, y = r sin θ (37)

Perform a rotation so that the function value at the point θ gets carried to the point θ+δα.
We write this as

θ → θ + δα (38)

The new function is

f̃(θ) = f(θ − δα) = f(θ) + δα(− ∂

∂θ
)f(θ) + . . . (39)

The angular momentum generator is

L̂ = −i~ ∂
∂θ

(40)
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2.2 The 3-d case

Now we have two coordinates θ, φ. Under a rotation, we will have

θ → θ + c1δα (41)

φ→ φ+ c2δα (42)

f̃(θ, φ) = f(θ − c1δα, φ− c2δα) = f(θ, φ) + δα(−c1
∂

∂θ
− c2

∂

∂φ
)f(θ, φ) + . . . (43)

Thus we should write

L̂ = −i~(c1
∂

∂θ
+ c2

∂

∂φ
) (44)

Now we look at each case.

2.3 L̂z

We have
x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ (45)

We need
δz = 0, δy = xδα, δx = −yδα (46)

Since we will remain on the sphere, we set r = 1 so that

δr = 0 (47)

Then
δz = −r sin θδθ = 0 (48)

which gives
δθ = 0 (49)

We also have
δx = r cos θδθ cosφ− r sin θ sinφδφ (50)

We set this equal to −yδα getting

r cos θδθ cosφ− r sin θ sinφδφ = −r sin θ sinφδα (51)

which gives
δφ = δα (52)

Thus we get

L̂z = −i~ ∂

∂φ
(53)

as expected.
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2.4 L̂x

We need
δx = 0, δz = yδα, δy = −zδα (54)

From δx = 0 we get
r cos θδθ cosφ− r sin θ sinφδφ (55)

which gives
δφ = cot θ cotφδθ (56)

From δz = yδα we get
−r sin θδθ = r sin θ sinφδα (57)

which gives
δθ = − sinφδα (58)

Then we get
δφ = cot θ cotφδθ = − cot θ cosφδα (59)

Thus

L̂x = −i~(− sinφ
∂

∂θ
− cot θ cosφ

∂

∂φ
) (60)

2.5 L̂y

We need
δy = 0, δx = zδα, δz = −xδα (61)

From δy = 0 we get
r cos θδθ sinφ+ r sin θ cosφδφ (62)

which gives
δφ = − cot θ tanφδθ (63)

From δz = −xδα we get
−r sin θδθ = −r sin θ cosφδα (64)

which gives
δθ = cosφδα (65)

Then we get
δφ = − cot θ tanφδθ = − cot θ sinφδα (66)

Thus

L̂y = −i~(cosφ
∂

∂θ
− cot θ sinφ

∂

∂φ
) (67)
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2.6 Computing L̂±

We have

L̂+ = L̂x+iL̂y = −i~
(

(− sinφ+ i cosφ)
∂

∂θ
− cot θ(cosφ+ i sinφ)

∂

∂φ

)
= −i~

(
ieiφ

∂

∂θ
− cot θeiφ

∂

∂φ

)
(68)

This gives

L̂+ = ~eiφ
(
∂

∂θ
+ i cot θ

∂

∂φ

)
(69)

Similarly, we have

L̂− = L̂x+iL̂y = −i~
(

(− sinφ− i cosφ)
∂

∂θ
− cot θ(cosφ− i sinφ)

∂

∂φ

)
= −i~

(
−ie−iφ ∂

∂θ
− cot θe−iφ

∂

∂φ

)
(70)

This gives

L̂− = ~e−iφ
(
− ∂

∂θ
+ i cot θ

∂

∂φ

)
(71)

3 Spin

3.1 The problem with spin

We have, under a rotation about the z axis by angle δα

φ→ φ+ δα (72)

We get the change of functions
f(φ)→ f̃(φ) (73)

where

f̃(φ) = f(φ− δα) ≈ f(φ)− δα ∂

∂φ
f(φ) (74)

We get this from

f → (1− iδαL̂z
~

)f = (1− iδα1

~
(−i~ ∂

∂φ
))f = (1− δα ∂

∂φ
)f (75)

For finite rotations, we get

f → f̃ = e−iα
L̂z
~ f (76)

Suppose that
L̂zf = ~mf (77)
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Then we get

f → f̃ = e−iα
L̂z
~ f = e−iα

m
~ f = e−iαmf (78)

If m is an integer then α = 2π gives

e−iαm = e2πmi = 1 (79)

But if α is a half integer, then α = 2π gives

e−iαm = e2πmi = −1 (80)

3.2 Making a matrix representation of the L̂i

We start with the normalized basis
|l,m〉 (81)

Thus
〈l′,m′|l,m〉 = δl,l′δm,m′ (82)

Then we have
L̂z|l,m〉 = ~m|l,m〉 (83)

L̂+|l,m〉 = ~
√

(l −m)(l +m+ 1)|l,m+ 1〉 (84)

L̂−|l,m〉 = ~
√

(l +m)(l −m+ 1)|l,m− 1〉 (85)

3.3 The matrices for l = 1
2

We write

|1
2
,
1

2
〉 =

(
1
0

)
(86)

|1
2
,−1

2
〉 =

(
0
1

)
(87)

Thus

|ψ〉 = α|1
2
,
1

2
〉+ β|1

2
,−1

2
〉 =

(
α
β

)
(88)

We have
〈ψ|ψ〉 = |α|2 + |β|2 (89)

If the state is normalized, then

〈ψ|ψ〉 = |α|2 + |β|2 = 1 (90)

Then

L̂z ≡ ŝz =

(
1
2~ 0
0 −1

2~

)
=

1

2
~
(

1 0
0 1

)
≡ 1

2
~σz (91)
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L̂+ ≡ ŝ+ =

(
0 ~
0 0

)
=

1

2
~
(

0 2
0 0

)
≡ 1

2
~σ+ (92)

L̂− ≡ ŝ− =

(
0 0
~ 0

)
=

1

2
~
(

0 0
2 0

)
≡ 1

2
~σ− (93)

We can also define
σ+ = σx + iσy, σ− = σx − iσy (94)

which gives

σx =
1

2
(σ+ + σ−) =

(
0 1
1 0

)
(95)

σy =
1

2i
(σ+ − σ−) =

(
0 −i
i 0

)
(96)

σz =

(
1 0
0 −1

)
(97)

In short,

ŝi =
1

2
~σi, i = x, y, z (98)

3.4 The algebra of Pauli matrices

We have
σ2
x = 1, σ2

y = 1, σ2
z = 1 (99)

σxσy = iσz, σyσz = iσx, σzσx = iσy (100)

Thus
[σx, σy] = 2iσz, [σy, σz] = 2iσx, [σz, σx] = 2iσy (101)

Now we compute
ei(αxσx+αyσy+αzσz) ≡ ei~α·~σ (102)

We can also write this as

(αx, αy, αz) = α(nx, ny, nz), ~α = αn̂ (103)

where n̂ is a unit vector. We note that

(nxσx + nyσy + nzσz)
2 = n2

x + n2
y + n2

z = 1 (104)

Thus we get

ei~α·~σ = eiαn̂·~σ = 1 + iαn̂ · ~σ − α2

2!
− iα

3

3!
n̂ · ~σ + . . . = cosα+ i(n̂ · ~σ) sinα (105)
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3.5 Rotations

For rotations about the z axis we have

|ψ〉 → |ψ〉 = e−iα
ŝz
~ |ψ〉 (106)

For rotations about the x axis we have

|ψ〉 → |ψ〉 = e−i
1
2
α ŝx~ |ψ〉 = (cos

α

2
− i sin

α

2
σx)|ψ〉 =

(
cos α2 −i sin α

2
−i sin α

2 cos α2

)
|ψ〉 (107)

3.6 Measurements

We write

|1
2
,
1

2
〉 =

(
1
0

)
(108)

|1
2
,−1

2
〉 =

(
0
1

)
(109)

In general we have (
α
β

)
(110)

If the wavefunction (spinor) is normalized, we have

|α|2 + |β|2 = 1 (111)

We can write (
α
β

)
= c1

(
1
0

)
+ c2

(
0
1

)
(112)

If we measure ŝz we will get 1
2~ with probability |c1|2 and −~ with probability |c2|2.

If we measure ŝx, we will again get two possibilities 1
2~ and −1

2~. But we need the
eigenfunctions:

ŝx =
1

2
~σx (113)

λ =
1

2
~ : |ψ+〉 =

(
1√
2

1√
2

)
(114)

λ = −1

2
~ : |ψ−〉 =

(
1√
2

− 1√
2

)
(115)

Suppose we are given

|ψ〉 =

(
3
5
4
5

)
(116)
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Then we should write this as(
3
5
4
5

)
= c1

(
1√
2

1√
2

)
+ c2

(
1√
2

− 1√
2

)
(117)

If we measure ŝx we will get 1
2~ with probability |c1|2 and −~ with probability |c2|2.

An easy way to compute ci, c2 is to note that the eigenvectors are orthonormal. Thus
wee have

|ψ〉 = c1|ψ+〉x + c2|ψ−〉x (118)

where |ψ±〉x are the eigenstates of sx with eigenvalues ±1
2~. Then we have

x〈ψ+|ψ〉 = c1 x〈ψ+|ψ+〉x + c2 x〈ψ+|ψ−〉x = c1 (119)

x〈ψ−|ψ〉 = c1 x〈ψ−|ψ+〉x + c2 x〈ψ−|ψ−〉x = c2 (120)

Thus we will get

c1 =
(

( 1√
2
)∗, ( 1√

2
)∗
)( 3

5
4
5

)
=

7

5
√

2
(121)

Similarly,

c2 =
(

( 1√
2
)∗,−( 1√

2
)∗
)( 3

5
4
5

)
= − 1

5
√

2
(122)

As a check, we see that the probabilities add up to unity

|c1|2 + |c2|2 = 1 (123)

4 Hamiltonians

The Schrodinger equation is

i~
∂ψ

∂t
= Ĥψ (124)

This gives

ψ = e−i
1
~ Ĥtψ0, ψ0 = ψ(t = 0) (125)

For spin systems, we have a 2-dimensional Hilbert space, and so we can write

Ĥ = AI +Bσ1 + Cσ2 +Dσ3 (126)

We need
Ĥ = Ĥ† (127)

We have
I† = I, σ†i = σi (128)
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Thus A,B,C,D are real.
In particular for a spin placed in a magnetic field, we have

Ĥ = −~µ · ~B (129)

We have
~µ = −ν ~S (130)

But
~S =

1

2
~~σ (131)

Thus

Ĥ = ν
1

2
~ ~B · ~σ (132)

4.1 Problem 10-8

We start with the spin in the state

ψ0 =

(
1√
2

1√
2

)
(133)

The first evolution gives

ψ1 = e−
i
~ Ĥ1Tψ0 = e−i

1
2
νBσzTψ0 =

(
cos(

1

2
νBT )− i sin(

1

2
νBT )σz

)
ψ0 (134)

=

(
cos(1

2BT )− i sin(1
2νBT ) 0

0 cos(1
2νBT ) + i sin(1

2νBT )

)
ψ0 (135)

The second evolution gives

ψ2 = e−
i
~ Ĥ2Tψ1 = e−i

1
2
νBσyTψ1 =

(
cos(

1

2
νBT )− i sin(

1

2
νBT )σy

)
ψ1 (136)

=

(
cos(1

2BT ) − sin(1
2νBT )

sin(1
2νBT ) cos(1

2νBT )

)
ψ1 (137)

Thus the final wavefunction is

ψf =

(
cos(1

2BT ) − sin(1
2νBT )

sin(1
2νBT ) cos(1

2νBT )

)(
cos(1

2BT )− i sin(1
2νBT ) 0

0 cos(1
2νBT ) + i sin(1

2νBT )

)( 1√
2

1√
2

)
(138)
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The probability amplitude to get σx = 1
2~ is

A =
( 1√

2
1√
2

)( cos(1
2BT ) − sin(1

2νBT )
sin(1

2νBT ) cos(1
2νBT )

)
(

cos(1
2BT )− i sin(1

2νBT ) 0
0 cos(1

2νBT ) + i sin(1
2νBT )

)( 1√
2

1√
2

)
(139)

= cos2(
1

2
νBT )− i sin2(

1

2
νBT ) (140)

and the probability is

P = |A|2 = cos4(
1

2
BT ) + sin4(

1

2
BT ) (141)

We can simplify this further by using the identities

cos2 θ =
1

2
(1 + cos(2θ)), sin2 θ =

1

2
(1− cos(2θ)) (142)

which give

cos4 θ + sin4 θ =
1

4
(1 + cos(2θ))2 +

1

4
(1− cos(2θ))2 =

1

2
(1 + cos2(2θ)) (143)

Thus we get

P =
1

2
(1 + cos2(νBT )) (144)

This can b mapped to the text through

ν =
eg

2m
(145)

5 The Hydrogen atom

In 3-d we have

i~
∂

∂t
ψ(x, y, z, t) = − ~2

2m
(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
)ψ(x, y, , t) + V (x, y, z, t)ψ(x, y, z, t) (146)

We wish to write this in polar coordinates:

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ (147)

We can write
ψ(x, y, z, t)→ ψ̃(r, θ, φ, t) (148)

(We will write the ψ̃ → ψ from now on.) Similarly, we can write

V (x, y, z, t)→ Ṽ (r, θ, φ, t) (149)
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and write Ṽ → V from now on. But we have

∂ψ

∂x
=
∂ψ

∂r

∂r

∂x
+
∂ψ

∂θ

∂θ

∂x
+
∂ψ

∂φ

∂φ

∂x
(150)

Thus we need the inverse relations

r = (x2 + y2 + z2)
1
2 , θ = tan−1

√
x2 + y2

z
, φ = tan−1 y

x
(151)

For the second derivative

∂2ψ

∂x2
=

∂

∂x

∂ψ

∂x
=

∂

∂r
[
∂ψ

∂r

∂r

∂x
+
∂ψ

∂θ

∂θ

∂x
+
∂ψ

∂φ

∂φ

∂x
]
∂r

∂x

+
∂

∂θ
[
∂ψ

∂r

∂r

∂x
+
∂ψ

∂θ

∂θ

∂x
+
∂ψ

∂φ

∂φ

∂x
]
∂θ

∂x

+
∂

∂φ
[
∂ψ

∂r

∂r

∂x
+
∂ψ

∂θ

∂θ

∂x
+
∂ψ

∂φ

∂φ

∂x
]
∂φ

∂x

(152)

For this we will need to write
∂r

∂x
,
∂θ

∂x
,
∂φ

∂x
(153)

in terms of r, θ, φ.
We can simplify this by computing

M =

 ∂x
∂r

∂y
∂r

∂z
∂r

∂x
∂θ

∂y
∂θ

∂z
∂θ

∂x
∂φ

∂y
∂φ

∂z
∂φ

 (154)

Then

M−1 =


∂r
∂x

∂r
∂y

∂r
∂z

∂θ
∂x

∂θ
∂y

∂θ
∂z

∂φ
∂x

∂φ
∂y

∂φ
∂z

 (155)

and now the derivatives will automatically be in terms of r, θ, φ.
With all this we find (using the Mathematica file)

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
)ψ = (

∂2

∂r2
+

2

r

∂

∂r
+

1

r2
[
∂2

∂θ2
+ cot θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2
])ψ (156)

6 Solving the Hydrogen atom

We have

V = − 1

4πε0

e2

r
= −k

r
(157)
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where

k =
e2

4πε0
(158)

Then

i~
∂

∂t
ψ = − ~2

2m
(
∂2

∂r2
+

2

r

∂

∂r
+

1

r2
[
∂2

∂θ2
+ cot θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2
])ψ − k

r
ψ (159)

There is no explicit t dependence anywhere. Just as in an algebraic equation

d2y

∂t2
= αy (160)

we can write y = eat, getting a2 = α, we can try an exponential ansatz. Thus we write

ψ = χ(r, θ, φ)e−i
E
~ t (161)

getting

Eχ(r, θ, φ)e−i
E
~ t = [− ~2

2m
(
∂2

∂r2
+

2

r

∂

∂r
+

1

r2
[
∂2

∂θ2
+ cot θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2
])− k

r
]χ(r, θ, φ)e−i

E
~ t

(162)
Now the t dependence drops out

− ~2

2m
(
∂2

∂r2
+

2

r

∂

∂r
+

1

r2
[
∂2

∂θ2
+ cot θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2
])χ(r, θ, φ)− k

r
χ(r, θ, φ) = Eχ(r, θ, φ)

(163)
If we solve this, we will get an energy eigenstate with energy E. But not all E values may
be allowed; thus we have to find the spectrum.

No we notice that the terms with derivatives in r separate out from terms with deriva-
tives in θ, φ. Thus we try

χ(r, θ, φ) = A(r)B(θ, φ) (164)

− ~2

2m
(B(θ, φ)

∂2A(r)

∂r2
+B(θ, φ)

2

r

∂A(r)

∂r
+A(r)

1

r2
[
∂2

∂θ2
+cot θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2
]B(θ, φ)) (165)

−k
r
A(r)B(θ, φ) = EA(r)B(θ, φ) (166)

We divide both sides by A(r)B(θ, φ) and multiply by r2

− ~2

2m

r2

A(r)
[
∂2A(r)

∂r2
+

2

r

∂A(r)

∂r
+

2m

~2

k

r
A(r)] (167)

=
1

B(θ, φ)

~2

2m
[
∂2

∂θ2
+ cot θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2
]B(θ, φ)) + Er2 (168)
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7 The angular Laplacian

We had
L2 = L2

x + L2
y + L2

z (169)

This is
L2 = L+L− − ~Lz + L2

z (170)

L̂+ = ~eiφ
(
∂

∂θ
+ i cot θ

∂

∂φ

)
(171)

L̂− = ~e−iφ
(
− ∂

∂θ
+ i cot θ

∂

∂φ

)
(172)

Thus

L+L− = ~2[eiφ
(
∂

∂θ
+ i cot θ

∂

∂φ

)
][e−iφ

(
− ∂

∂θ
+ i cot θ

∂

∂φ

)
] (173)

= ~2[− ∂2

∂θ2
+ i cot θ

∂2

∂θ∂φ
− icosc2θ

∂

∂φ
− i cot θ

∂2

∂φ∂θ
− cot θ

∂

∂θ
− cot2 θ

∂2

∂φ2
+ i cot2 θ

∂

∂φ
]

(174)

= −~2[
∂2

∂θ2
+ cot θ

∂

∂θ
+ cot2 θ

∂2

∂φ2
+ i

∂

∂φ
] (175)

−~Lz + L2
z = ~2i

∂

∂φ
− ~2 ∂

2

∂φ2
(176)

Therefore

L2 = L+L− − ~Lz + L2
z = −~2[

∂2

∂θ2
+ cot θ

∂

∂θ
+ cot2 θ

∂2

∂φ2
+ i

∂

∂φ
+−i ∂

∂φ
+

∂2

∂φ2
] (177)

= −~2[
∂2

∂θ2
+ cot θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2
] (178)

Thus this operator should take the eigenvalues

~2l(l + 1) (179)

8 The radial equation

We had

− ~2

2m

r2

A(r)
[
∂2A(r)

∂r2
+

2

r

∂A(r)

∂r
+

2m

~2

k

r
A(r)] (180)

=
1

B(θ, φ)

~2

2m
[
∂2

∂θ2
+ cot θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2
]B(θ, φ)) + Er2 (181)
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We write
1

B(θ, φ)

~2

2m
[
∂2

∂θ2
+ cot θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2
]B(θ, φ)) = −C (182)

−~2[
∂2

∂θ2
+ cot θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2
]B(θ, φ)) = 2mCB(θ, φ) (183)

Thus

2mC = ~2l(l + 1), C =
~2l(l + 1)

2m
(184)

Thus we get

− ~2

2m

r2

A(r)
[
∂2A(r)

∂r2
+

2

r

∂A(r)

∂r
+

2m

~2

k

r
A(r)] = Er2 − C = Er2 − ~2l(l + 1)

2m
(185)

This is

[
∂2A(r)

∂r2
+

2

r

∂A(r)

∂r
+

2m

~2

k

r
A(r)] + [

2mE

~2
− l(l + 1)

r2
]A(r) = 0 (186)

This is [
∂2

∂r2
+

2

r

∂

∂r
+

2m

~2

(
k

r
+ E − ~2l(l + 1)

2mr2

)]
A(r) = 0 (187)

9 Long distance limit

We have [
∂2

∂r2
+

2

r

∂

∂r
+

2m

~2

(
k

r
+ E − ~2l(l + 1)

2mr2

)]
A(r) = 0 (188)

In the limit r →∞ we get [
∂2

∂r2
+

2mE

~2

]
A(r) = 0 (189)

Since we have E < 0 for a bound state, we write this as

∂2A(r)

∂r2
=

(
−2mE

~2

)
A(r) (190)

which gives

A(r) = Ce
−
√
− 2mE

~2 r
(191)
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10 Short distance limit

For r ∼ 0 we have [
∂2

∂r2
+

2

r

∂

∂r
− l(l + 1)

r2

]
A(r) = 0 (192)

We try A ∼ ra. This gives
a(a− 1) + 2a− l(l + 1) = 0 (193)

a2 + a− l(l + 1) = 0 (194)

a =
1

2
[−1±

√
1 + 4l2 + 4l] =

1

2
[−1± (2l + 1)] = l,−l − 1 (195)

Thus we get
A(r) ∼ rl (196)

11 Simplifying the equation

We have [
∂2

∂r2
+

2

r

∂

∂r
+

2m

~2

(
k

r
+ E − ~2l(l + 1)

2mr2

)]
A(r) = 0 (197)

The constant term is, noting that E < 0

−(
2m(−E)

~2
) ≡ −C (198)

We write
r = αρ (199)[

1

α2

∂2

∂ρ2
+

1

α2

2

ρ

∂

∂ρ
+

2m

~2

(
1

α

k

ρ
− 1

α2

~2l(l + 1)

2mρ2

)
− C

]
A(ρ) = 0 (200)

We multiply through by α2[
∂2

∂ρ2
+

2

ρ

∂

∂ρ
+

2m

~2

(
αk

ρ
− ~2l(l + 1)

2mρ2

)
− α2C

]
A(ρ) = 0 (201)

We set

α2C =
1

4
, α =

√
1

4C
=

√
~2

8m(−E)
(202)

The equation is ∂2

∂ρ2
+

2

ρ

∂

∂ρ
+


√

~2
8m(−E)2mk

~2ρ
− l(l + 1)

ρ2

− 1

4

A(ρ) = 0 (203)
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[
∂2

∂ρ2
+

2

ρ

∂

∂ρ
+

(√
2m

(−E)

k

2~
1

ρ
− l(l + 1)

ρ2

)
− 1

4

]
A(ρ) = 0 (204)

Writing

λ =

√
2m

(−E)

k

2~
(205)

this is [
∂2

∂ρ2
+

2

ρ

∂

∂ρ
+

(
λ

ρ
− l(l + 1)

ρ2

)
− 1

4

]
A(ρ) = 0 (206)

In this notation, the behavior at infinity is

A ∼ e−
√
− 2mE

~2 r ∼ e−
√
− 2mE

~2

√
~2

8m(−E)
ρ ∼ e−

1
2
ρ (207)

The behavior near the origin is
A ∼ ρl (208)

12 Separating out the behavior at infinity

We write
A = e−

1
2
ρG (209)[

∂2

∂ρ2
+

2

ρ

∂

∂ρ
+

(
λ

ρ
− l(l + 1)

ρ2

)
− 1

4

]
e−

1
2
ρG(ρ) = 0 (210)

1

4
e−

1
2
ρG(ρ)−e−

1
2
ρG′(ρ)+e−

1
2
ρG′′(ρ)+

2

ρ
(−1

2
e−

1
2
ρG(ρ)+e−

1
2
ρG′(ρ))+

[(
λ

ρ
− l(l + 1)

ρ2

)
− 1

4

]
e−

1
2
ρG(ρ) = 0

(211)

−G′(ρ) +G′′(ρ) +
2

ρ
(−1

2
G(ρ) +G′(ρ)) +

[(
λ

ρ
− l(l + 1)

ρ2

)]
G(ρ) = 0 (212)

G′′(ρ) + [
2

ρ
− 1]G′(ρ) +

[(
(λ− 1)

ρ
− l(l + 1)

ρ2

)]
G(ρ) = 0 (213)

13 Separating out the behavior at the origin

We write
G = ρlH (214)

G′′(ρ) + [
2

ρ
− 1]G′(ρ) +

[(
(λ− 1)

ρ
− l(l + 1)

ρ2

)]
G(ρ) = 0 (215)
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ρlH ′′+ l(l−1)ρl−2H+2lρl−1H ′+[
2

ρ
−1](lρl−1H+ρlH ′)+

[(
(λ− 1)

ρ
− l(l + 1)

ρ2

)]
ρlH = 0

(216)

ρlH ′′ + 2lρl−1H ′ +
2

ρ
ρlH ′ − (lρl−1H + ρlH ′) +

[(
(λ− 1)

ρ

)]
ρlH = 0 (217)

H ′′ + 2l
1

ρ
H ′ +

2

ρ
H ′ − (l

1

ρ
H +H ′) +

[(
(λ− 1)

ρ

)]
H = 0 (218)

H ′′ + (
2l + 2

ρ
− 1)H ′ + [

(λ− 1− l)
ρ

]H = 0 (219)

14 Getting the lowest levels for each l

We can set H = const. if
λ = l + 1 (220)

Thus √
2m

(−E)

k

2~
= l + 1 (221)

2m

(−E)
(
k

2~
)2 = (l + 1)2 (222)

E = − mk2

2~2(l + 1)2
= − mZ2e4

2(4πε0)2~2(l + 1)2
(223)

The wavefunctions are

ψl ∼ rle
−
√
− 2mE

~2 r
(224)

15 Series solution for H

We write
H =

∑
k≥0

akρ
k (225)

H ′′ + (
2l + 2

ρ
− 1)H ′ + [

(λ− 1− l)
ρ

]H = 0 (226)

k(k − 1)akρ
k−2 + (

2l + 2

ρ
− 1)kakρ

k−1 + [
(λ− 1− l)

ρ
]akρ

k = 0 (227)

We look at the coefficient of ρk−1

(k + 1)kak+1 + (2l + 2)(k + 1)ak+1 − kak + [(λ− 1− l)]ak = 0 (228)
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(k + 1)(k + 2l + 2)ak+1 = (k − λ+ 1 + l)ak (229)

ak+1 =
(k − λ+ 1 + l)

(k + 1)(k + 2l + 2)
ak (230)

Thus we get
λ = l + 1 + k, k = 0, 1, 2, . . . (231)

We define
n = l + 1 + k (232)

Then √
2m

(−E)

k

2~
= n (233)

2m

(−E)

k2

4~2
= n2 (234)

E = − mk2

2~2n2
= − mZ2e4

2(4πε0)2~2

1

n2
(235)

16 Perturbation theory

We begin by recalling the perturbation theory for a general Hamiltonian. The details of
the perturbation expansion depends on the level of degeneracy that exists in the problem.
Consider a Hamiltonian

H = H(0) + λH(1) (236)

The eigenvalue condition is
Hψ = Eψ (237)

This condition will be solved by a state of the form

ψ = ψ(0) + λψ(1) + λ2ψ(2) + . . . (238)

and the eigenvalue will be given by an expression of the form

E = E(0) + λE(1) + λ2E(2) + . . . (239)

Now consider different levels of degeneracy:

(i) The unperturbed Hamiltonian H(0) is nondegenerate for the energy level E(0) that
we are seeking to perturb.

(ii) The unperturbed Hamiltonian H(0) is degenerate for the energy level E(0), but the
perturbing Hamiltonian H(1) lifts this degeneracy at first order in the perturbation.
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(iii) The unperturbed Hamiltonian H(0) is degenerate for the energy level E(0), and the
perturbing Hamiltonian H(1) fails to lift the degeneracy to first order in the perturbation.
The degeneracy is however lifted to second order.

We can continue in this fashion to more complicated situations. The standard text-
book treatment of perturbation theory terms (i) as the nondegenerate case and (ii) as the
degenerate case. In our problem however we will find that we are in case (iii). While
perturbation theory for all kinds of degeneracy is of course fully understood, we will review
in this section the theory for case (iii). This will help set notation, as well as remind us of
the expressions for lifting when we are not in either of cases (i) or (ii).

16.1 Zeroth order

The eigenstates of H(0) yield a complete orthonormal basis |ψ(0)
k 〉

〈ψki |ψkj 〉 = δij (240)

We will let the starting eigenvector for our perturbation theory have the index k0. At the
zeroth order in λ we have

H(0)|ψ(0)
k0
〉 = E

(0)
k0
|ψ(0)
k0
〉 (241)

16.2 First order

At the first order we get

(H(0) − E(0))|ψ(1)〉 = −H(1)|ψ(0)
k0
〉+ E(1)|ψ(0)

k0
〉 (242)

We write
|ψ(1)〉 =

∑
k 6=k0

Ck|ψ
(0)
k 〉 (243)

where we have choosen to not include the k = k0 term since that is already present in the
zeroth order wavefunction.

Substituting this in (242) gives∑
k 6=k0

Ck(E
(0)
k − E

(0)
k0

)ψ
(0)
k = −H(1)ψ

(0)
k0

+ E(1)|ψ(0)
k0
〉 (244)

Taking the inner product of both sides with 〈ψ(0)
k0
| we find

E(1) = 〈ψ(0)
k0
|H(1)|ψ(0)

k0
〉 (245)
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Now we ask for the expansion coefficients Ck. To get these, we return to (244) and take

the inner product of both sides with 〈ψ(0)
k′ | with k′ 6= k0. This gives∑

k 6=k0

Ck(E
(0)
k − E

(0)
k0

)δk,k′ = −〈ψ(0)
k′ |H

(1)|ψ(0)
k0
〉 (246)

Now we have two cases:

16.2.1 Nondegenerate level E
(0)
k0

Suppose that the energy level E
(0)
k0

is nondegenerate for the Hamiltonian H(0). Then (246)
gives

Ck =
〈ψ(0)

k |H
(1)|ψ(0)

k0
〉

(E
(0)
k0
− E(0)

k )
, k 6= k0 (247)

16.2.2 Degenerate level E
(0)
k0

Suppose that the eigenvalue E
(0)
k0

is degenerate; then |ψ(0)
k0
〉 is one vector in a subspace

corresponding to this eigenvalue. We decompose this subspace into the vector |ψ(0)
k0
〉 and

the vectors |ψ(0)

k̄i
〉 orthogonal to |ψ(0)

k0
〉. Then (246) gives a contradiction for the values

k′ = k̄i, unless

〈ψ(0)

k̄i
|H(1)|ψ(0)

k0
〉 = 0 (248)

To resolve this difficulty we note that since the energy level E
(0)
k0

is degenerate, there is

no unique choice of the starting eigenvector |ψ(0)
k0
〉. Thus we first diagonalize H(1) in the

subspace formed by these degenerate states with eigenvalue E
(0)
k0

, and let the starting state

|ψ(0)
k0
〉 be one of these eigenstates. Then (248) is true. For k 6= k0, k̄i we get

Ck =
〈ψ(0)

k |H
(1)|ψ(0)

k0
〉

(E
(0)
k0
− E(0)

k )
, k 6= k0, k̄i (249)

while for the coefficients Ck̄i are undetermined at this stage.

16.3 Second order

At second order in λ we have

(H(0) − E(0)
k0

)|ψ(2)〉 = −H(1)|ψ(1)〉+ E(1)|ψ(1)〉+ E(2)|ψ(0)
k0
〉 (250)
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We can expand as before

|ψ(2)〉 =
∑
k 6=k0

Dk|ψ
(0)
k 〉 (251)

getting ∑
k′ 6=k0

Dk′(E
(0)
k′ − E

(0)
k0

)|ψ(0)
k′ 〉 = −H(1)|ψ(1)〉+ E(1)|ψ(1)〉+ E(2)|ψ(0)

k0
〉 (252)

We take the inner product of each side with |ψ(0)
k0
〉, getting

E(2) = 〈ψ(0)
k0
|H(1)|ψ(1)〉 =

∑
k 6=k0

Ck〈ψ
(0)
k0
|H(1)|ψ(0)

k 〉 (253)

To find the Dk we take the inner product of both sides of (252) with 〈ψ(0)
k | with k 6= k0.

Note that 〈ψ(0)
k |ψ

(1)〉 = 0 due to the expansion (243). We find

Dk(E
(0)
k − E

(0)
k0

) = −
∑
k′′ 6=k0

Ck′′〈ψ
(0)
k |H

(1)|ψ(0)
k′′ 〉+ E(1)Ck (254)

Now we consider different cases.

16.3.1 Nondegenerate level E
(0)
k0

Suppose that the energy level E
(0)
k0

is nondegenerate for the Hamiltonian H(0). Then using
(247) we can write

E(2) =
∑
k 6=k0

|〈ψ(0)
k |H

(1)|ψ(0)
k0
〉|2

(E
(0)
k0
− E(0)

k )
(255)

**This is the point till which you need to know for this course **

Now we find the Dk. Substituting the value of Ck from (247) into (254) we get

Dk =
∑
k′′ 6=k0

〈ψ(0)
k |H

(1)|ψ(0)
k′′ 〉〈ψ

(0)
k′′ |H

(1)ψ
(0)
k0
〉

(E
(0)
k0
− E(0)

k )(E
(0)
k0
− E(0)

k′′ )
−
〈ψ(0)

k |H
(1)|ψ(0)

k0
〉〈ψ(0)

k0
|H(1)|ψ(0)

k0
〉

(E
(0)
k0
− E(0)

k )2
, k 6= k0

(256)
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16.3.2 Degenerate level E
(0)
k0

, degeneracy lifted at first order

First consider the relation (253) for the perturbed energy. The coefficients Ck̄i appearing

on the RHS are undetermined. But these coefficients multiply the factor 〈ψ(0)
k0
|H(1)|ψ(0)

k̄i
〉

which vanishes due to the choice (248). Thus we can write

E(2) =
∑

k 6={k0,k̄i}

|〈ψ(0)
k |H

(1)|ψ(0)
k0
〉|2

(E
(0)
k0
− E(0)

k )
(257)

Now let us come to the determination of the wavefunction. Let us set k = k̄i. Then
the LHS of (254) vanishes, and we get

−
∑

k′′ 6={k0,k̄i}

Ck′′〈ψ
(0)

k̄i
|H(1)|ψ(0)

k′′ 〉 −
∑
k̄j

Ck̄j 〈ψ
(0)

k̄i
|H(1)|ψ(0)

k̄j
〉+ E(1)Ck̄i = 0 (258)

where we have separated the contribution of the k̄i from the other states. Note that H(1)

has already been diagonalized on the space k = k̄i, and its eigenvalues are real. Thus we
have

〈ψ(0)

k̄j
|H(1)|ψ(0)

k̄i
〉 = E(1,i)δij (259)

Thus ∑
k̄j

Ck̄j 〈ψ
(0)

k̄i
|H(1)|ψ(0)

k̄j
〉 = E(1,i)Ck̄iδij (260)

The relation (258) then gives

(E(1) − E(1,i))Ck̄i =
∑

k′′ 6={k0,k̄i}

Ck′′〈ψ
(0)

k̄i
|H(1)|ψ(0)

k′′ 〉 (261)

Suppose that the degeneracy of the level E
(0)
k0

at leading order is lifted completely at first
order; i.e.,

E(1) − E(1,i) 6= 0 (262)

for all i. Then (261) gives

Ck̄i =
1

(E(1) − E(1,i))

∑
k′′ 6={k0,k̄i}

〈ψ(0)

k̄i
|H(1)|ψ(0)

k′′ 〉〈ψ
(0)
k′′ |H

(1)|ψ(0)
k0
〉

(E
(0)
k0
− E(0)

k′′ )
(263)

Now consider the Dk given through (254). Using the Ck, k 6= k0, k̄i from (607), the Ck̄i
from (263) and the E1 from (245) we get

Dk =
1

(E
(0)
k0
− E(0)

k )
×

[

24



∑
k̄i

1

(E(1) − E(1,i))

∑
k′′ 6={k0,k̄i}

〈ψ(0)
k |H

(1)|ψ(0)

k̄i
〉〈ψ(0)

k̄i
|H(1)|ψ(0)

k′′ 〉〈ψ
(0)
k′′ |H

(1)|ψ(0)
k0
〉

(E
(0)
k0
− E(0)

k′′ )

+
∑

k′′ 6=k0,k̄i

〈ψ(0)
k |H

(1)ψ
(0)
k′′ 〉〈ψ

(0)
k′′ |H

(1)|ψ(0)
k0
〉

(E
(0)
k0
− E(0)

k′′ )
−
〈ψ(0)

k |H
(1)|ψ(0)

k0
〉〈ψ(0)

k0
|H(1)|ψ(0)

k0
〉

(E
(0)
k0
− E(0)

k )

]
(264)

16.3.3 Degenerate level E
(0)
k0

, degeneracy not lifted at first order

Now we assume that the energy level E
(0)
k0

is degenerate for the Hamiltonian H(0), and

further, that H(1) does not lift this degeneracy at first order. Let the indices k̄a, k̄b, . . . run

over the entire degenerate subspace of H(0) with energy E
(0)
k0

; i.e., these indices run over

k0 as well as the k̄i. Thus in place of (259) we have

〈ψ(0)

k̄b
|H(1)|ψ(0)

k̄a
〉 = E(1)δab (265)

The difficulty this leads to can be seen as follows. Consider the relation (258). From (265)

we have 〈ψ(0)

k̄i
|H(1)|ψ(0)

k̄j
〉 = E(1)δij , and we find that the last two terms cancel. Substituting

the value of the Ck from (607), we get

∑
k′′ 6={k0,k̄i}

〈ψ(0)

k̄i
|H(1)|ψ(0)

k′′ 〉〈ψ
(0)
k′′ |H

(1)|ψ(0)
k0
〉

(E
(0)
k0
− E(0)

k′′ )
= 0 (266)

But there is no reason for this relation to be true in general. Thus we have a contradiction,
and need to find a different way to proceed.

The essential point is that if H(1) fails to lift the degeneracy of the level E
(0)
k0

at first
order, then we have no way of selecting the starting vector |ψk0〉 from the degenerate sub-
space at the present stage. Thus we must postpose the selection of the eventual eigenvector
to the time when we have solved the perturbation to second order. Let us carry out this
step.

We define ∑
k′′ 6={kc}

〈ψ(0)

k̄b
|H(1)|ψ(0)

k′′ 〉〈ψ
(0)
k′′ |H

(1)|ψ(0)

k̄a
〉

(E
(0)
k0
− E(0)

k′′ )
≡Mba (267)

So far we have no particular reason to choose any preferred orthonormal basis in the space
of the k̄a, but now we choose one that diagonalizes Mba. Thus we have

Mba = E(2),aδba (268)
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and the |ψ(0)

k̄a
〉 are the eigenvectors of Mba. Let us focus on one of the k̄a, and this will be

our starting vector k̄0 in what follows. The k̄a orthogonal to k̄0 will be termed k̄i as before.
Let us return to the relation (253). We have∑
k 6=k0

Ck〈ψ
(0)
k0
|H(1)|ψ(0)

k 〉 =
∑

k 6={k0,k̄i}

Ck〈ψ
(0)
k0
|H(1)|ψ(0)

k 〉+
∑
k=k̄i

Ck〈ψ
(0)
k0
|H(1)|ψ(0)

k 〉 (269)

The last term on the RHS vanishes because of (265), and we get

E(2) =
∑

k 6={k0,k̄i}

Ck〈ψ
(0)
k0
|H(1)|ψ(0)

k 〉 =
∑

k 6={k0,k̄i}

|〈ψ(0)
k |H

(1)|ψ(0)
k0
〉|2

(E
(0)
k0
− E(0)

k )
(270)

just as in (257). But note that we had to first compute and diagonalize the matrix Mba to

find the vectors |ψ(0)
k0
〉, |ψ(0)

k̄i
〉 before the above relation could be written down for the case

where H(1) fails to lift the degeneracy at first order.
Let us now consider the wavefunction. In place of (243) we write the more general

relation
|ψ(1),a〉 =

∑
k 6=ka

Cak |ψ
(0)
k 〉 (271)

Following the steps leading to (247) we get

Cak =
〈ψ(0)

k |H
(1)|ψ(0)

k̄a
〉

(E
(0)

k̄a
− E(0)

k )
, k 6= k̄c (272)

while the Ca
k̄b

remain undetermined at this stage. These undetermined coefficients will be
determined at the next order in perturbation theory if the degeneracy is lifted at that level,
and at a later order still if the degeneracy persists at the next level. The undetermined Ca

k̄b
lead to indeterminate coefficients Da

k at second order so the Da
k will have to be determined

at a later stage as well.

17 The Stark effect

17.1 Dipole moments

Suppose we have charges q,−q separated by a distance d. Then the dipole moment is

|~p| = qd (273)

with direction that points from the negative to the positive charge The electric field is

~E = −~∇Φ (274)
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where Φ is the electric potential. For ~E = E ẑ, we have Φ = −Ez. For the dipole centered
at z = 0, aligned along ẑ, we have charge q at (0, 0, d2) and charge −q at (0, 0,−d

2). The
energy is

E = qΦ(
d

2
)− qΦ(−d

2
) = −qdE (275)

More generally,
E = −~p · ~E (276)

Energy eigenstates of the Hydrogen atom do not have dipole moments if we take definite
n, l,m. But we can make states with nonzero dipole moments if we take linear combinations
of degenerate states with the same n but different l,m. For example, note that

Y0,0 =
1√
4π

(277)

Y1,0 =

√
3

4π
cos θ (278)

While Y0,0 is invariant under z → −z, we find that Y1,0 changes sign. Thus in a sum like
Y0,0 + Y1,0 the amplitudes will add for z > 0 and partially cancel for z < 0. Of course in
our actual problem these spherical harmonics will be multiplied by functions of r, but we
see that in general the probability for the electron to be at z > 0 need not be the same as
the probability for the electron to be at z < 0. This gives the atom a dipolee moment in
such states.

17.2 The matrix of Ĥ(1)

We have
Ĥ(1) = qΦ = eEz = eEr cos θ (279)

We find
[L̂z, Ĥ

(1)] = 0 (280)

Thus Ĥ(1) can only connect states with the same m. Since the ground state has m = 0,
we look at the matrix (

〈2, 0, 0|Ĥ(1)|2, 0, 0〉 〈2, 0, 0|Ĥ(1)|2, 1, 0〉
〈2, 1, 0|Ĥ(1)|2, 0, 0〉 〈2, 1, 0|Ĥ(1)|2, 1, 0〉

)
(281)

17.3 The wavefunctions

We have a form
ψ = Cρle−

1
2
ρA(ρ) (282)

Recall that

ak+1 =
(k − λ+ 1 + l)

(k + 1)(k + 2l + 2)
ak (283)
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λ = l + 1 + k = n (284)

To compute A(ρ), we note that with n = 2, l = 1

a0 = 1, a1 =
0− 2 + 1 + 1

1× 4
= 0 (285)

giving A(ρ) = 1.
With n = 2, l = 0

a0 = 1, a1 =
0− 2 + 1 + 0

1× 2
= 0 (286)

giving A(ρ) = 1− 1
2ρ.

We have

r = αρ, α =

√
~2

8m(−E)
(287)

E = − mZ2e4

2(4πε0)2~2

1

n2
(288)

Thus

α =

√
~22(4πε0)2~2n2

8mmZ2e4
=

~2(4πε0)n

2mZe2
(289)

α−1 =
2mZe2

~2(4πε0)n
(290)

Thus we have

ρ = α−1r =
2mZe2

~2(4πε0)n
r (291)

We define

a0 =
~2(4πε0)

me2
(292)

Then we have as the falloff
e−

1
2
ρ = e−

1
2
α−1r = e

− Zr
na0 (293)

We also have, for n = 2

(1− 1

2
ρ) = 1− Zr

2a0
(294)

Let us now compute the wavefunctions. We have

A(10) = Ce
−Zr
a0 (295)

We have ∫ ∞
0

drr2e−br =
d2

db2

∫ ∞
0

dre−br =
d2

db2
1

b
=

2

b3
(296)
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Thus

|C|2
∫ ∞

0
drr2e

−2Zr
a0 = |C|22(

a0

2Z
)3 = 1, C = 2(

Z

a0
)
3
2 (297)

Thus the wavefunction is

ψ100 = 2(
Z

a0
)
3
2 e
−Zr
a0 (298)

We find

A20 = C(1− Zr

2a0
)e
− Zr

2a0 , C = 2(
Z

2a0
)
3
2 (299)

Thus the wavefunction is

ψ200 = 2(
Z

2a0
)
3
2 (1− Zr

2a0
)e
− Zr

2a0 (300)

We have

A21 = Cre
− Zr

2a0 , C =
1

2
√

6
(
Z

a0
)
5
2 (301)

Thus the wavefunction is

ψ21m =
1√
3

(
Z

2a0
)
3
2
Zr

a0
e
− Zr

2a0 Y1m(θ, φ) (302)

The spherical harmonics are

Y0,0 =
1√
4π

(303)

Y1,1 = −
√

3

8π
sin θeiφ (304)

Y1,−1 = −
√

3

8π
sin θe−iφ (305)

Y1,0 =

√
3

4π
cos θ (306)

17.4 Elements of the Ĥ(1) matrix

We have

〈2, 0, 0|Ĥ(1)|2, 0, 0〉 =

∫ ∞
0

drr2

∫ π

0
dθ sin θ

∫ 2π

0
dφ

[2(
Z

2a0
)
3
2 (1− Zr

2a0
)e
− Zr

2a0
1√
4π

][eEr cos θ][2(
Z

2a0
)
3
2 (1− Zr

2a0
)e
− Zr

2a0
1√
4π

]

(307)
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We have ∫ 2π

0
dφ = 2π (308)∫ π

0
dθ sin θ cos θ = 0 (309)

Thus we get
〈2, 0, 0|Ĥ(1)|2, 0, 0〉 = 0 (310)

We have

〈2, 0, 0|Ĥ(1)|2, 1, 0〉 =

∫ ∞
0

drr2

∫ π

0
dθ sin θ

∫ 2π

0
dφ

[2(
Z

2a0
)
3
2 (1− Zr

2a0
)e
− Zr

2a0
1√
4π

][eEr cos θ][
1√
3

(
Z

2a0
)
3
2
Zr

a0
e
− Zr

2a0

√
3

4π
cos θ]

(311)

We have ∫ 2π

0
dφ = 2π (312)∫ π

0
dθ sin θ cos2 θ =

2

3
(313)∫ ∞

0
drr2(1− Zr

2a0
)e
− Zr

2a0 r
Zr

a0
e
− Zr

2a0 = −36
a4

0

Z4
(314)

〈2, 0, 0|Ĥ(1)|2, 1, 0〉 = [2(
Z

2a0
)
3
2

1√
4π

][eE ][
1√
3

(
Z

2a0
)
3
2

√
3

4π
](2π)(

2

3
)(−36

a4
0

Z4
) = −3

a0

Z
eE

(315)
We have

〈2, 1, 0|Ĥ(1)|2, 1, 0〉 =

∫ ∞
0

drr2

∫ π

0
dθ sin θ

∫ 2π

0
dφ

[
1√
3

(
Z

2a0
)
3
2
Zr

a0
e
− Zr

2a0

√
3

4π
cos θ][eEr cos θ][

1√
3

(
Z

2a0
)
3
2
Zr

a0
e
− Zr

2a0

√
3

4π
cos θ]

(316)∫ 2π

0
dφ = 2π (317)∫ π

0
dθ sin θ cos3 θ = 0 (318)

Thus we get
〈2, 1, 0|Ĥ(1)|2, 1, 0〉 = 0 (319)
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17.5 The matrix

Thus we have(
〈2, 0, 0|Ĥ(1)|2, 0, 0〉 〈2, 0, 0|Ĥ(1)|2, 1, 0〉
〈2, 1, 0|Ĥ(1)|2, 0, 0〉 〈2, 1, 0|Ĥ(1)|2, 1, 0〉

)
= −3a0eE

Z

(
0 1
1 0

)
(320)

The eigenvalues and eigenvectors of (
0 1
1 0

)
(321)

are

λ = 1 :
1√
2

(
1
1

)
, λ = −1 :

1√
2

(
1
−1

)
(322)

Thus the energies are

E = E
(0)
2 − 3a0eE

Z
, |ψ〉 =

1√
2

(|2, 0, 0〉+ |2, 1, 0〉) (323)

E = E
(0)
2 +

3a0eE
Z

, |ψ〉 =
1√
2

(|2, 0, 0〉 − |2, 1, 0〉) (324)

18 Two particles

Consider two particles that can move on a circle parametrized by the coordinate θ. Let
the coordinate of the first particle be θ1 and of the second particle be θ2. The general
wavefunction will then have the form Ψ(θ1, θ2).

We can however start with simpler wavefunctions of the form

Ψ = ψ1(θ1)ψ2(θ2) (325)

The reason is that we can then take a superposition of such product wavefunctions

Ψ = ψ1(θ1)ψ2(θ2) + ψ3(θ1)ψ4(θ2) + . . . (326)

and thereby get any arbitrary function Ψ(θ1, θ2).

18.1 The effect of rotations

Let us recall how we expressed the effect of rotations on functions. Consider the 2-d plane,
and a particle that lives on the unit circle parametrized by 0 ≤ θ < 2π.

Suppose we perform a rotation so that the function value at the point θ gets carried to
the point θ + δα. We write this as

θ → θ + δα (327)
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For any function f(θ), the new function is

f̃(θ) = f(θ − δα) = f(θ) + δα(− ∂

∂θ
)f(θ) + . . . (328)

We define the angular momentum generator is

L̂ = −i~ ∂
∂θ

(329)

Now let us consider the effect of rotations on a function Ψ = ψ1(θ1)ψ2(θ2). We have

Ψ→ Ψ̃ = ψ1(θ1 − δα)ψ2(θ2 − δα) (330)

We assume that δα is small. Then ψ1(θ1) changes as

ψ1(θ1)→ ψ̃1(θ1) = ψ1(θ1 − δα) = ψ1(θ1) + δα(− ∂

∂θ1
)ψ1(θ1) + . . . (331)

Similarly, ψ2(θ2) changes as

ψ2(θ2)→ ψ̃2(θ2) = ψ2(θ2 − δα) = ψ2(θ2) + δα(− ∂

∂θ2
)ψ2(θ2) + . . . (332)

Thus Ψ changes as

Ψ→ Ψ̃ = ψ̃1(θ1)ψ̃2(θ2) = ψ1(θ1 − δα)ψ2(θ2 − δα)

=

(
ψ1(θ1) + δα(− ∂

∂θ1
)ψ1(θ1) + . . .

)(
ψ2(θ2) + δα(− ∂

∂θ2
)ψ2(θ2) + . . .

)
≈ ψ1(θ1)ψ2(θ2) + δα(− ∂

∂θ1
)ψ1(θ1) ψ2(θ2) + ψ1(θ1) δα(− ∂

∂θ2
)ψ2(θ2) (333)

Let us now write these relations in terms of infinitesimal changes. The change in ψ1(θ1)
is

δψ1(θ1) = ψ̃1(θ1)− ψ1(θ1) = δα(− ∂

∂θ1
)ψ1(θ1) + . . . (334)

Similarly, the change in ψ2(θ2) is

δψ2(θ2) = ψ̃2(θ2)− ψ2(θ2) = δα(− ∂

∂θ2
)ψ2(θ2) + . . . (335)

The change in Ψ is

δΨ = Ψ̃−Ψ

≈ δα(− ∂

∂θ1
)ψ1(θ1) ψ2(θ2) + ψ1(θ1) δα(− ∂

∂θ2
)ψ2(θ2)

(336)
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We see that in the first term we have a derivative acting on ψ1(θ1), but we leave ψ2(θ2)
untouched, while in the second term we have a derivative acting on ψ2(θ2), but we leave
ψ1(θ1) untouched. When we leave a function untouched we say that we acted on the
function with the identity operator I. Thus we would write

δα(− ∂

∂θ1
)ψ1(θ1) ψ2(θ2) =

(
δα(− ∂

∂θ1
)⊗ I

)
ψ1(θ1) ψ2(θ2) (337)

Here the operator is in the brackets (...). The full wavefunction ψ1(θ1) ψ2(θ2) is placed
on the right, and the symbol ⊗ separates the two parts of the operator so that we know
that the part of the left of this symbol will act on ψ1(θ1) and the part on the right of this
symbol will act on ψ2(θ2).

Finally we can write all this with a small change of notation where we define

L̂ = −i~ ∂
∂θ

(338)

Then we get for any wavefunction, under an infinitesimal rotation δα

δψ = − i
~
δαL̂ψ (339)

We then find that

L̂(T )Ψ =
(
L̂(1) ⊗ 1

)
ψ1(θ1)ψ2(θ2) +

(
1⊗ L̂(2)

)
ψ1(θ1)ψ2(θ2) (340)

19 Decomposing the product of two spin 1
2 representations

Suppose we have two systems each with spin 1
2 . Thus the states are

|1
2
,
1

2
〉1|

1

2
,
1

2
〉2

|1
2
,−1

2
〉1|

1

2
,
1

2
〉2

|1
2
,
1

2
〉1|

1

2
,−1

2
〉2

|1
2
,−1

2
〉1|

1

2
,−1

2
〉2

(341)

where |12 ,
1
2〉1 means the state of system 1, with l = 1

2 and m = 1
2 etc.

How do these four states respond to rotations? Do they fom a single representation
l,m〉 with l = 3

2 , and m = 3
2 ,m = 1

2 ,m = −1
2 ,m = −3

2? Or perhaps a representation |l,m〉
with l = 1 and m = 1, 0,−1 and another representation with |l,m〉 with l = 0,m = 0?
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The total ~L(T ) operator is given by

~L(T ) = ~L(1) + ~L(2) (342)

This is equivalent to the three relations

L(T )
x = L(1)

x + L(2)
x

L(T )
y = L(1)

y + L(2)
y

L(T )
z = L(1)

z + L(2)
z

(343)

We can define, as before

L
(1)
± = L(1)

x ± iL(1)
y

L
(2)
± = L(2)

x ± iL(2)
y

(344)

Note that
1

2

(
L

(1)
+ ⊗ L

(2)
− + L

(1)
− ⊗ L

(2)
+

)
= L(1)

x ⊗ L(2)
x + L(1)

y ⊗ L(2)
y (345)

Thus

L(1)
z ⊗ L(2)

z +
1

2

(
L

(1)
+ ⊗ L

(2)
− + L

(1)
− ⊗ L

(2)
+

)
= L(1)

x ⊗ L(2)
x + L(1)

y ⊗ L(2)
y + L(1)

z ⊗ L(2)
z

≡ ~L(1) · ~L(2) (346)

Note that to avoid complicated notation, we sometimes omit the ⊗ symbol.

19.1 Examining the states

Let us look at the state

|1
2
,
1

2
〉1|

1

2
,
1

2
〉2 (347)

The total angular momentum operator has the components

L(T )
x , L(T )

y , L(T )
z (348)

We define
L

(T )
± = L(T )

x ± iL(T )
y (349)

Let us compute

L
(T )
+ |

1

2
,
1

2
〉1|

1

2
,
1

2
〉2 =

(
L

(1)
+ ⊗ I + I ⊗ L(2)

+

)
|1
2
,
1

2
〉1|

1

2
,
1

2
〉2

(350)
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Recall that

L
(1)
+ |

1

2
,
1

2
〉1 = 0

L
(1)
+ |

1

2
,−1

2
〉1 = |1

2
,
1

2
〉1

L
(1)
− |

1

2
,
1

2
〉1 = |1

2
,−1

2
〉1

L
(1)
− |

1

2
,−1

2
〉1 = 0

(351)

Similarly

L
(2)
+ |

1

2
,
1

2
〉2 = 0

L
(2)
+ |

1

2
,−1

2
〉2 = |1

2
,
1

2
〉2

L
(2)
− |

1

2
,
1

2
〉2 = |1

2
,−1

2
〉2

L
(2)
− |

1

2
,−1

2
〉2 = 0

(352)

20 Decomposing a product of representations

We have two spin half particles. The states are

|1
2
,
1

2
〉1|

1

2
,
1

2
〉2

|1
2
,−1

2
〉1|

1

2
,
1

2
〉2

|1
2
,
1

2
〉1|

1

2
,−1

2
〉2

|1
2
,−1

2
〉1|

1

2
,−1

2
〉2

(353)

20.1 The spin 1 (triplet) representation

Let us start with

Ψ = |1
2
,
1

2
〉1|

1

2
,
1

2
〉2 (354)
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We see that

L̂(T )
z Ψ =

(
L̂(1)
z ⊗ I + I ⊗ L̂(2)

z

)
|1
2
,
1

2
〉1|

1

2
,
1

2
〉2

=
1

2
~|1

2
,
1

2
〉1|

1

2
,
1

2
〉2 +

1

2
~|1

2
,
1

2
〉1|

1

2
,
1

2
〉2

= ~|1
2
,
1

2
〉1|

1

2
,
1

2
〉2 (355)

Thus we see that mT = 1. More generally, we see that

mT = m1 +m2 (356)

Now let us check

L̂
(T )
+ Ψ =

(
L̂

(1)
+ ⊗ 1 + 1⊗ L̂(2)

+

)
|1
2
,
1

2
〉1|

1

2
,
1

2
〉2

= 0 + 0 = 0 (357)

Thus we see that L̂
(T )
+ Ψ = 0, so that it would be a mt = 1 member of a multiplet with

lT = 1. Thus we write

|lT ,mT 〉 = |1, 1〉 = |1
2
,
1

2
〉1|

1

2
,
1

2
〉2 (358)

Now let us compute

L̂
(T )
− Ψ =

(
L̂

(1)
− ⊗ 1 + 1⊗ L̂(2)

−

)
|1
2
,
1

2
〉1|

1

2
,
1

2
〉2

= |1
2
,−1

2
〉1|

1

2
,
1

2
〉2 + |1

2
,
1

2
〉1|

1

2
,−1

2
〉2

(359)

We see that this is a state with mT = 0. Thus we expect this to be a lT = 1,mT = 0. It is
not normalized however, and we find its norm is 1 + 1 = 2. Thus we define the normalized
state

|lT ,mT 〉 = |1, 0〉 =
1√
2

(
|1
2
,−1

2
〉1|

1

2
,
1

2
〉2 + |1

2
,
1

2
〉1|

1

2
,−1

2
〉2
)

(360)

From the above we see that

L̂
(T )
− |1, 1〉 =

√
2|1, 0〉 (361)

which agrees with the algebra of the L̂i.
Now let us compute

L̂
(T )
− |1, 0〉 =

(
L̂

(1)
− ⊗ 1 + 1⊗ L̂(2)

−

) 1√
2

(
|1
2
,−1

2
〉1|

1

2
,
1

2
〉2 + |1

2
,
1

2
〉1|

1

2
,−1

2
〉2
)

=
1√
2
|1
2
,−1

2
〉1|

1

2
,−1

2
〉2 +

1√
2
|1
2
,−1

2
〉1|

1

2
,−1

2
〉2

=
√

2
1√
2
|1
2
,−1

2
〉1|

1

2
,−1

2
〉2 (362)
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We define

|lT ,mT 〉 = |1,−1〉 =
1√
2
|1
2
,−1

2
〉1|

1

2
,−1

2
〉2 (363)

20.2 The spin 0 (singlet) representation

It is a general rule that states of different representation are orthogonal to each other. We
need to have mT = 0. Thus we are looking for states in the subspace

c1|
1

2
,−1

2
〉1|

1

2
,
1

2
〉2 + c2|

1

2
,
1

2
〉1|

1

2
,−1

2
〉2 (364)

We already have the state

|1, 0〉 =
1√
2

(
|1
2
,−1

2
〉1|

1

2
,
1

2
〉2 + |1

2
,
1

2
〉1|

1

2
,−1

2
〉2
)

(365)

A state orthogonal to this has to satisfy

c1 + c2 = 0 (366)

If we normalize the state we get

|lT ,mT 〉 = |0, 0〉 =
1√
2

(
|1
2
,−1

2
〉1|

1

2
,
1

2
〉2 − |

1

2
,
1

2
〉1|

1

2
,−1

2
〉2
)

(367)

21 Computing (L̂(T ))2

Let us now compute

(L̂(T ))2 = (L̂(T )
x )2 + (L̂(T )

y )2 + (L̂(T )
z )2

= (L̂(1)
x ⊗ 1 + 1⊗ L̂(2)

x )2 + (L̂(1)
y ⊗ 1 + 1⊗ L̂(2)

y )2 + (L̂(1)
z ⊗ 1 + 1⊗ L̂(2)

z )2

=
(

(L̂(1)
x )2 ⊗ 1 + 1⊗ (L̂(2)

x )2 + 2L̂(1)
x ⊗ L̂(2)

x

)
+
(

(L̂(1)
y )2 ⊗ 1 + 1⊗ (L̂(2)

y )2 + 2L̂(1)
y ⊗ L̂(2)

y

)
+
(

(L̂(1)
z )2 ⊗ 1 + 1⊗ (L̂(2)

z )2 + 2L̂(1)
z ⊗ L̂(2)

z

)
= (L̂(1))2 ⊗ 1 + 1⊗ (L̂(2))2 + 2

(
L(1)
x ⊗ L(2)

x + L(1)
y ⊗ L(2)

y + L(1)
z ⊗ L(2)

z

)
= (L̂(1))2 + (L̂(2))2 + 2~L(1) · ~L(2) (368)

where in the last line we have not used the ⊗ symbol for simplicity. Thus we have

(L̂(T ))2 = (L̂(1))2 + (L̂(2))2 + 2~L(1) · ~L(2) (369)
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22 Measurement

We have written states as kets |ψ〉. The conjugate states are written as bras 〈χ|. The dot
product between these is written as 〈χ|ψ〉.

Consider a Hermitian operator Ô; all observables, in particular, are Hermitian opera-
tors. Let the eigenstates of Ô be called |n〉, corresponding the the eigenvalue λn.

The eigenstates |n〉 form a complete orthogonal set; we can normalize them so that we
get

〈ni|nj〉 = δij (370)

22.1 The identity operator

We can write the identity operator as follows

I =
∑
i

|ni〉〈ni| (371)

To check this, suppose a general state |ψ〉 is expanded as

|ψ〉 =
∑
k

ck|nk〉 (372)

Then we have(∑
i

|n〉〈ni|

)
|ψ〉 =

(∑
i

|ni〉〈ni|

)∑
k

ck|nk〉 =
∑
i

∑
k

ckδik|ni〉 =
∑
i

ci|ni〉 = |ψ〉 (373)

which shows that
∑

i |ni〉〈ni| acts like the identity operator on every state.

22.2 Expressing n arbitrary operator

Now we argue that the operator Ô can be written in terms of its eigenvalues λi and the
eigenstates |ni〉. We will argue that

Ô =
∑
i

λi|ni〉〈ni| (374)

To check this, let us compute the action of the above expression on one of the eigenstates
|nk〉. We get (∑

i

λi|ni〉〈ni|

)
|nk〉 =

∑
i

λiδik|ni〉 = λk|nk〉 (375)

which agrees with the expectation Ô|nk〉 = λk|nk〉. Since our expression agrees with the
action of Ô on all eigenstates |nk〉, this agreement will automatically extend to all linear
combinations of the |nk〉, which means the agreement extends to all states |ψ〉.
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22.3 Measurement

Suppose we start with a state |ψ〉 and make a measurement of an observable Ô. The
following are the rules of measurement:

(i) The measurement will have to yield one of the eigenvalues of Ô; let this eigenvalue
be λk, corresponding the the eigenstate |nk〉.

(ii) After the measurement, the state of the system will be this eigenstate |nk〉.

(iii) The probability of getting this outcome λk is given by

pk = |〈nk|ψ〉|2 (376)

This expression can be understood by writing

|ψ〉 =
∑
i

ci|ni〉 (377)

The probability is then
pk = |ck|2 = |〈nk|ψ〉|2 (378)

22.4 Two systems

Suppose we have two systems, called 1 and 2. First we look at the structure of states and
dot products.

A product state of the full system can be written as

|Ψ〉 = |ψ〉1|χ〉2 (379)

Let another such state be
|Ψ′〉 = |ψ′〉1|χ′〉2 (380)

Then the dot product is
〈Ψ′|Ψ〉 = 〈ψ′|ψ〉〈χ′|χ〉 (381)

A general state that can be written as

|Ψ〉 =
∑
a

∑
b

Cab|ψa〉|χb〉 (382)

where |ψa〉1 is an orthonormal basis for system 1 and |χb〉2 is an orthonormal basis for
system 2. We have the following kinds of questions that can be asked:

(i) What is the probability that we get a state

|Ψ′〉 =
∑
c

∑
d

Dcd|ψa〉|χb〉 (383)
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Since we have a complete states of a complete system (formed by systems 1 and 2), we just
have

P = |〈Ψ′|Ψ〉|2 (384)

(ii) What is the probability to find a state

|ψ′〉1 =
∑
c

Dc|ψc〉1 (385)

Now we compute
|χ′〉2 = 1〈ψ′|Ψ〉 (386)

to get a state is system 2. Then we have

P = ||χ′〉2|2 = 2〈χ′|χ′〉2 (387)

(iii) Suppose we measure system 1 and find the eigenvalue λk corresponding to the
eigenstate |nk〉 for an operator Ô acting on system 1. What is the probability of finding a
state |χ′〉2 for system 2 after this first measurement?

Note that Ô is an observable on system 1, and does not affect system 2. Suppose the
measurement of system 1 gives the eigenstate |nk〉. Then the full state after measurement
will have the form

|Ψ′〉 = D(|nk〉〈nk| ⊗ I)|Ψ〉 (388)

where D is a constant that we will have to find to normalize |Ψ′〉. We can then proceed as
in (i) above.

22.5 Applying this to problem 10.13

(i) We can write the singlet state as

|Ψ〉0 =
1√
2

(|χ+〉1|χ−〉2 − |χ−〉1|χ+〉2〉) (389)

By inspection, we can see that if the spin of system 1 is |χ+〉1, then there is no amplitude
for the spin of the second system to also be up; i..e, |χ+〉2. Thus the probability is zero.

Formally, we can proceed as follows. After the spin of the first system is measured an
found to be |χ+〉1, the state of the system is

|Ψ′〉0 = D ((|nk〉〈nk| ⊗ I))
1√
2

(|χ+〉1|χ−〉2 − |χ−〉1|χ+〉2〉)

= D

(
(|χ+〉11〈χ+| ⊗

∑
l

|nl〉22〈nl|)

)
1√
2

(|χ+〉1|χ−〉2 − |χ−〉1|χ+〉2〉)

= D ((|χ+〉11〈χ+| ⊗ (|χ+〉22〈χ+|+ |χ−〉22〈χ−|))
1√
2

(|χ+〉1|χ−〉2 − |χ−〉1|χ+〉2〉)

= 0 (390)
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(ii) We can write the spins in the y basis. Then the singlet is

|Ψ〉0 =
1√
2

(
|χy+〉1|χ

y
−〉2 − |χ

y
−〉1|χ

y
+〉2〉

)
(391)

where we noted with a superscript that these are y direction spins. The measurement of
the first spin giving the result |χy+〉1 will give the final state as

|χy+〉1|χ
y
−〉2 (392)

The probability that the second system is in spin state |χx+〉2 is

P = |〈χx+|χ
y
−〉|2 =

1

2
(393)

where we used the explicit form of these eigenstates in the z basis

|χx+〉 =
1√
2

(
1
1

)
, |χy−〉 =

1√
2

(
1
−i

)
(394)

To do this formally, we can proceed as follows. After the spin of the first system is
measured an found to be |χy+〉1, the state of the system is

|Ψ′〉0 = D ((|nk〉〈nk| ⊗ I))
1√
2

(|χ+〉1|χ−〉2 − |χ−〉1|χ+〉2〉)

= D

(
(|χy+〉11〈χy+| ⊗

∑
l

|nl〉22〈nl|)

)
1√
2

(|χ+〉1|χ−〉2 − |χ−〉1|χ+〉2〉)

= D
(
(|χy+〉11〈χy+| ⊗ (|χ+〉22〈χ+|+ |χ−〉22〈χ−|)

) 1√
2

(|χ+〉1|χ−〉2 − |χ−〉1|χ+〉2〉)

= D

(
− 1√

2
1〈χy+|χ−〉1|χ

y
+〉1|χ+〉2 +

1√
2

1〈χy+|χ+〉1|χy+〉1|χ−〉2
)

= D

(
− 1√

2
(− i√

2
)|χy+〉1|χ+〉2 +

1√
2

(
1√
2

)|χy+〉1|χ−〉2
)

= D|χy+〉1
(
i

2
|χ+〉2 +

1

2
|χ−〉2

)
(395)

The normalized state is

|Ψ′〉0 = |χy+〉1
(

1√
2

(i|χ+〉2 + |χ−〉2)

)
(396)
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To find the probability that the second system is in the |σx+〉2 state, we compute

A = 2〈χx+|
(

1√
2

(i|χ+〉2 + |χ−〉2)

)
=

(
1√
2

2〈χ+|+
1√
2

2〈χ−|
)(

1√
2

(i|χ+〉2 + |χ−〉2)

)
=

1

2
(i+ 1) (397)

Then the probability is

P = |A|2 =
1

2
(398)

(iii) Suppose the first spin has the form

|ψ〉1 = cosα1|χ+〉+ sinα1e
iβ1 |χ−〉 (399)

and the second spin has the form

|χ〉2 = cosα2|χ+〉+ sinα2e
iβ2 |χ−〉 (400)

Thus the overall state is

|Ψ〉 =
(

cosα1|χ+〉1 + sinα1e
iβ1 |χ−〉1

)(
cosα2|χ+〉2 + sinα2e

iβ2 |χ−〉2
)

(401)

Let us ask for the probability for this to be in the singlet state

|Ψ〉0 =
1√
2

(|χ+〉1|χ−〉2 − |χ−〉1|χ+〉2〉) (402)

The amplitude for a singlet is

A0 = 〈Ψ0|Ψ〉

=
1√
2

(1〈χ+| 2〈χ−| − 1〈|χ−| 2〈χ+|)
(

cosα1|χ+〉1 + sinα1e
iβ1 |χ−〉1

)(
cosα2|χ+〉2 + sinα2e

iβ2 |χ−〉2
)

=
1√
2

cosα1 sinα2e
iβ2 − 1√

2
sinα1e

iβ1 cosα2

(403)

The probability for a singlet is

P0 = |A0|2 =
1

2
| cosα1 sinα2e

iβ2 − sinα1e
iβ1 cosα2|2 (404)

The probability of a triplet is then

P1 = 1− P0 = 1− 1

2
| cosα1 sinα2e

iβ2 − sinα1e
iβ1 cosα2|2 (405)
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23 Particle in a magnetic field

23.1 The classical Hamiltonian

We have

H =
1

2m
(~p− q ~A)2 (406)

ẋ =
∂H

∂px
=

1

2m
(px − qAx) (407)

Thus
px = mẋ+ qAx (408)

We have

ṗx = −∂H
∂x

= − 1

m
(px − qAx)(−q)Ax,x −

1

m
(py − qAy)(−q)Ay,x −

1

m
(pz − qAz)(−q)Az,x

(409)
This is

mẍ+ q(Ax,xẋ+Ax,yẏ +Ax,z ż) = q(ẋAx,x + ẏAy,x + żAz,x) (410)

mẍ = q(ẏ(Ay,x −Ax,y)− ż(Ax,z −Az,x)) (411)

mẍ = q(ẏBz − żBy) (412)

mẍ = q(~v × ~B)x (413)

23.2 General notations

Minimal coupling is
~p→ ~p− q ~A (414)

Thus for the electron we have
~p→ ~p+ e ~A (415)

The Hamiltonian is

H =
1

2m
(~p+ e ~A)2 − eΦ (416)

The schrodinger equation is

i~∂tψ =
1

2m
(−i~~∇+ e ~A)2ψ − eΦψ (417)

This is

i~∂tψ = − ~2

2m
4ψ − ie~

m
~A · ~∇ψ − ie~

2m
(~∇ · ~A)ψ +

e2

2m
A2ψ − eΦψ (418)

(Here there may be a factor of 2 error in the third term on the RHS.)
For a coulomb potential

Φ =
1

4πε0

Ze

r
(419)

(Here there may be a sign error in the text.)
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23.3 The gauge potential

Suppose we have a constant magnetic field B̂. Then we get this from

~A = −1

2
~r × ~B (420)

As an example, let
~B = Bz ẑ (421)

Then we have
~r × ~B = Bz(yx̂− xŷ) (422)

and
~A = −1

2
Bz(yx̂− xŷ) (423)

We check that
~∇ · ~A = 0 (424)

23.4 Weak constant magnetic field

We have

(− ie~
m

) ~A · ~∇ψ = (− ie~
m

)(−1

2
)(~r × ~B) · ~∇ψ

= (− ie~
m

)(−1

2
)~∇ψ · (~r × ~B)

= (− ie~
m

)(−1

2
) ~B · (~∇ψ × ~r)

= −(− ie~
m

)(−1

2
) ~B · (~r × ~∇ψ)

= −(− ie~
m

)(−1

2
)

1

(−i~)
~B · (~r × (−i~~∇)ψ)

= (
e

2m
) ~B · (~r × ~pψ)

= (
e

2m
) ~B · (~r × ~p)ψ

= (
e

2m
) ~B · ~Lψ

(425)

23.5 Problem 16-1

We have the for the 3-d oscillator

H = − ~2

2m
4+

1

2
mω2r2 (426)
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This is spherically symmetric, and we can write its solutions as

ψ = Rnr,l(r)Ylm(θ, φ), n = 0, 1, 2, . . . (427)

The energy levels are

E = ~ω(2nr + l +
3

2
) (428)

where n, l are independent integers.
Now the Hamiltonian is

H ′ = H − q

2m
BzLz (429)

Thus the energy levels are

E = ~ω(2n+ l +
3

2
)− q~

2m
Bzmz (430)

23.6 Radial equation for 3-d Harmonic oscillator

The equation is

d2H(y)

dy2
+ (

l + 3
2

y
− 1)

dH(y)

dy
+
λ− 2l − 3

4y
H(y) = 0 (431)

We let
H =

∑
n≥0

any
n (432)

This gives

n(n− 1)any
n−2 + (

l + 3
2

y
− 1)nany

n−1 + (
λ− 2l − 3

4
)anyn−1 = 0 (433)

The coefficient of yn−1 is

(n+ 1)nan+1 + (l +
3

2
)(n+ 1)an+1 − nan +

lambda− 2l − 3

4
an = 0 (434)

This gives
an+1

an
=
n− λ−2l−3

4

l + 3
2 + n

(435)

Thus we need

nr −
λ− 2l − 3

4
= 0 (436)

for some nr = 0, 1, 2, . . .. This gives

λ = 4n4 + 2l + 3 (437)
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24 Landau levels

24.1 Classical particle in a constant magnetic field

We had

H =
(~p+ e ~A)2

2m
(438)

Thus

ẋ =
∂H

∂px
= px + eAx (439)

etc. Thus

~v =
1

m
(~p+ e ~A) (440)

Thus the mechanical angular momentum is

m~r × ~v = ~r × ~p+ e~r × ~A (441)

In the gauge

~A = −1

2
~r × ~B (442)

we have

m~r × ~v = ~r × ~p− 1

2
e~r × (~r × ~B) = ~L− 1

2
e
(

(~r · ~B)~r − r2 ~B
)

(443)

We take the z component and assume that we are in the z = 0 plane. Then we get

mrv = Lz +
eB

2
r2 (444)

From the rotation equation, we have

m
v2

r
= evB, v =

erB

m
, mvr = eBr2 (445)

Thus we have

eBr2 = Lz +
1

2
eBr2, Lz =

1

2
eBr2 (446)

We now set
Lz = n~ (447)

Thuis gives
1

2
eBr2 = n~, r2 =

2n~
eB

(448)

The energy is

E =
1

2
mv2 =

1

2
m
e2r2B2

m2
=

1

2

eB2n~
m

=
eM

m
n~ (449)
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Writing
eB

m
= ω (450)

we have
E = n~ω (451)

so the level spacing is ~ω though the levels are highly degenerate because of the arbitrary
choice of position.

If we do all this in the gauge
~A = Bxŷ (452)

then instead of

mrv = Lz +
eB

2
r2 (453)

we get
mrv = Lz + eBx2 (454)

If we average over a circular orbit, we see that we get the same numbers.

24.2 The constant magnetic field in different gauges

We have taken
~A = −1

2
~r × ~B (455)

This gave

~A = −1

2
B(yx̂− xŷ) (456)

When we take the curl of this we get

(~∇× ~A)z = ∂xAy − ∂yAx =
1

2
B +

1

2
B = B (457)

We could also take
~A = −Byx̂ (458)

or
~A = Bxŷ (459)

We will take the latter.
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24.3 The Hamiltonian

In the gauge
~A = Bxŷ (460)

we have
Ax = 0, Ay = Bx, Az = 0 (461)

Thus we have

H =
1

2m
(~p+ e ~A)2 =

1

2m
(p2
x+ (py + eBx)2 +p2

z) =
1

2m
(p2
x+ 2eBpyx+ e2B2x2 +p2

z) (462)

Here the order of py, x did not matter since they commute. We see that

[H, py] = 0, [H, pz] = 0 (463)

Thus we can choose simultaneous eigenfunctions of H, py, pz. This can be seen more directly
from the equation, where we can take

ψ = eikyyeikzz (464)

We will set
ky ≡ k, kz = 0 (465)

Then
py = −i~∂y → −i~(ik)→ ~k (466)

Then we get

Hψ =
1

2m
(p2
x + ~2k2 + 2eBx~k + e2B2x2) =

1

2m
(p2
x + e2B2(x+

~k
eB

)2) (467)

This is a harmonic oscillator, with

1

2
mω2 =

1

2m
e2B2, ω =

eB

m
(468)

Thus the energy levels are

(n+
1

2
)~ω (469)

But note that k is arbitrary, so the levels are highly degenerate.
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24.4 Relation to classical frequencies

In the classical theory, we have the force

~F = −e~v ×B (470)

This gives rise to circular motion with

mv2

r
= F = evB, v =

erB

m
(471)

This gives a time period

T =
2πr

v
=

2πrm

erB
=

2πm

eB
(472)

The frequency and angular frequency are then

ν =
1

T
=

eB

2πm
, ω = 2πν =

eB

m
(473)

24.5 Boundary conditions

We have a strip of length L2 in the y direction. It is better to use a periodic box. Then

k =
2πn

L2
(474)

Thus the x locations, for a given value of the excitation of the harmonic oscillator, are

xn = − ~k
eB

= −2π~n∗

L2eB
(475)

This has the range 0 ≤ x ≤ L1. Thus

2π~|n∗max|
L2eB

= L1 (476)

which gives

|n∗max| =
eBL1L2

2π~
=
eBL1L2

h
(477)

We see that ~
eB has the dimensions of an area, so we define a magnetic length

lB =

√
~
eB

(478)

Thus the number of states in the sample per unit area for each Landau level are

nB =
1

2πl2B
(479)
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24.6 Problem 16-2

We have

H =
1

2I
(~L)2 =

1

2I
(~r × ~p)2 (480)

In a magnetic field ~p changes to
~p→ ~p− q ~A (481)

In a constant magnetic field this is, using ~A = −1
2~r × ~B,

~p→ ~p+
1

2
q~r × ~B (482)

Thus

~r × ~p→ ~r × (~p+
1

2
q~r × ~B) = ~L+

1

2
q
(
~r · ~B)~r − r2 ~B

)
(483)

The full Hamiltonian is given by

H =
1

2I

(
~L+

1

2
q
(
~r · ~B)~r − r2 ~B

))2

(484)

In the limit of small B, we have

(~L+
1

2
q
(
~r · ~B)~r − r2 ~B

)
)2 ≈ ~L2 − qr2 ~B · ~L (485)

where we have noted that in computing

~L · ~r → (ŷp̂z − ẑp̂y)x̂+ . . . (486)

we never get any terms that do not commute, and so ~L · ~r = 0. The same is true for ~r · ~L.
Thus we set

~L · ~r = 0, ~r · ~L = 0 (487)

and also note that we can write our terms so that the term (~r ·B) is to the left or right of
the above terms.

Thus we get

H ≈ 1

2I
~L2 − q

2M
~B · ~L (488)

where we have used that
I = Mr2 (489)

The spectrum is
~2

2I
l(l + 1)− qB~mz

2M
(490)
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25 The Hall effect

25.1 Conductivity

Ohm’s law says
V = IR (491)

Let the resistor have cross sectional area A ad length L. Then we have

R ∝ 1

A
, R ∝ L (492)

so we can write

R = ρ
L

A
(493)

where ρ is called the resistivity. We can write for the potential drop across the resistor

V = EL (494)

where E is the electric field. The current can be written in terms of the current density j
which gives the current per unit area

I = Aj (495)

Thus we have

EL = (Aj)(ρ
L

A
) (496)

which is

j =
1

ρ
E (497)

We define the conductivity σ as

σ =
1

ρ
(498)

which gives
j = σE (499)

For simple cases, j will have the same direction as E . Thus we can write

~j = σ~E (500)

But more generally, the two vectors will be proportional, but not necessarily in the same
direction. This can happen if there is a magnetic field, since the magnetic field will try to
drive the electrons sideways as they move forward along the direction of E . Thus we write

ji =
∑
j

σijEj (501)
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Thinking of σij as a matrix σ̂, we can write this as

~j = σ̂ ~E (502)

The resistivity is defined as
ρ̂ = σ̂−1 (503)

so we have
~E = ρ̂~j (504)

25.2 The physics of conductivity

The force on a charge q is
~F = q~E + q~v × ~B (505)

Suppose first that we have B = 0. In a constant electric field, it would seem that electrons
will continue to speed up with time. But these electrons collide with the ions in the
material, and after every collision we can assume that their velocity gets set back to zero.
Between collisions, we have

m
dv

dt
= qE , v =

qEt
m

(506)

Let the time between collisions be τ . The maximum velocity will be

vmax =
qEτ
m

(507)

and the average velocity will be

vav =
qEτ
2m

(508)

The current density is then

j = qnvav =
q2nEτ

2m
(509)

where n is the number density of charges. We thus get

σ =
q2nτ

2m
(510)

We can write the effect of the collisions as an effective force Feff . This force applies a
momentum change

∆p = −mvmax = −mqEτ
m

= −qEτ (511)

after every interval τ . Thus the average force is

Fav =
∆p

τ
= −qE (512)
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This is as expected; the average frictional force from collisions has to cancel the force from
the electric field.

Now let us do this more abstractly, so that we can use this when a magnetic field is
also present. The frictional force changes the velocity from vmax to zero after every time
interval τ . Thus

|f | ∝ mvmax
τ

(513)

Since vmax ∝ vav, we can write

~f = −cm~vav
τ

(514)

where c is a constant of order unity. If the collisions happen very frequently (i.e., τ is
small) then we can write vav = v where v is the velocity of the particle. Then we have

~f = −cm~v
τ

(515)

Since τ is not a very precisely defined quantity, we can redefine c
τ → τ , which gives c = 1

and
~f = −m~v

τ
(516)

Now consider the charge in a region with both electric and magnetic fields. We have

m
d~v

dt
= q~E + q~v × ~B − m

τ
~v (517)

In steady state, we will have
d~v

dt
= 0 (518)

Then we get

q~E + q~v × ~B − m

τ
~v = 0 (519)

Let us assume that we are in a 2-d plane x− y and

~E = E x̂, ~B = Bẑ (520)

Then
qEx + qvyB −

m

τ
vx = 0 (521)

qEy − qvxB −
m

τ
vy = 0 (522)

Thus (
−m

τ qB
−qB −m

τ

)(
vx
vy

)
=

(
−qEx
−qEy

)
(523)

The current density is
~j = qn~v (524)
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Thus (
m
τ −qB
qB m

τ

)(
jx
jy

)
=

(
q2nEx
q2nEy

)
(525)

which is
1

q2n

(
m
τ −qB
qB m

τ

)(
jx
jy

)
=

(
Ex
Ey

)
(526)

Thus

ρ̂ =
1

q2n

(
m
τ −qB
qB m

τ

)
(527)

σ̂ =
q2n

(mτ )2 + q2B2

(
m
τ qB
−qB m

τ

)
(528)

We note that

ρxy = − B
qn

=
B

en
(529)

is independent of τ . (In the second step we have replaced q = −e.)
With quantum effects, we had seen that if we fill the lowest Landau level

n =
eB

h
(530)

Thus

ρxy =
h

e2
(531)

If we fill ν Landau levels, then

n =
eB

h
ν (532)

and

ρxy =
h

e2

1

ν
(533)

We have

B =
n

ν

h

e
(534)

Here n is the number density, so it has units of (Area)−1. Thus h
e has units of B ×Area,

which are the units of flux. We define the basic flux quantum as

Φ0 =
h

e
(535)

54



26 Time dependent perturbation theory

Let the Hamiltonian be
Ĥ = Ĥ0 + λV (t) (536)

We define
Ĥ0|φk〉 = Ek|φk〉 (537)

The Schrodinger equation is

i~∂t|ψ(t)〉 = (Ĥ0 + λV (t))|ψ(t)〉 (538)

We expand

|ψ(t)〉 =
∑
k

ck(t)e
−iEk~ t|φk〉 (539)

Then

i~
∑
k

ċk(t)e
−iEk~ t|φk〉+

∑
k

ck(t)Eke
−iEk~ t|φk〉 =

∑
k

ck(t)Eke
−iEk~ t|φk〉+λ

∑
k

ck(t)V (t)e−i
Ek
~ t|φk〉

(540)

i~
∑
k

ċk(t)e
−iEk~ t|φk〉 = λ

∑
k

ck(t)V (t)e−i
Ek
~ t|φk〉 (541)

We take the inner product with 〈φl| on each side. This gives

i~ċl(t)e−i
El
~ t = λ

∑
k

ck(t)e
−iEk~ t〈φl|V (t)|φk〉 (542)

ċl(t) = − i
~
λ
∑
k

ck(t)e
−i (Ek−El)~ t〈φl|V (t)|φk〉 (543)

Thus

cl(t) = cl(0)− i

~
λ
∑
k

∫ t

t′=0
dt′ck(t

′)e−i
(Ek−El)

~ t′〈φl|V (t′)|φk〉 (544)

This is all exact, but since we have cn(t) on both sides we cannot solve this equation. Thus
we insert

ck(t)→ ck(0) (545)

on the RHS, Then we get

cl(t) = cl(0)− i

~
λ
∑
k

∫ t

t′=0
dt′ck(0)e−i

(Ek−El)
~ t′〈φl|V (t′)|φk〉 (546)

cl(t) = cl(0)− i

~
λ
∑
k

ck(0)

∫ t

t′=0
dt′e−i

(Ek−El)
~ t′〈φl|V (t′)|φk〉 (547)
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26.1 Harmonic oscillator with a time-dependent frequency

We write
ω2(t) = ω2

0 + λq(t) (548)

We have

Ĥ =
p̂2

2m
+

1

2
mω2(t)x̂2 =

p̂2

2m
+

1

2
mω2

0x̂
2 +

1

2
mλq(t)x̂2 (549)

Thus

V (t) =
1

2
mq(t)x̂2 (550)

We have

|φk〉 =
1√
k!

(Â†)k|0〉 (551)

We also have

A =

√
mω

2~
x+ i

1√
2mω~

p (552)

A† =

√
mω

2~
x− i 1√

2mω~
p (553)

Thus

x̂ =

√
~

2mω
(Â+ Â†) (554)

x̂2 =
~

2mω
(Â+ Â†)2 (555)

Thus

V (t) =
1

2
mq(t)

~
2mω

(Â+ Â†)2 = q(t)
~

4ω
(Â+ Â†)2 (556)

Thus we get

〈φl|V (t)|φk〉 = q(t)
~

4ω

1√
l!

1√
k!
〈0|Âl(Â+ Â†)2(Â†)k|0〉 (557)

For a given l, we have three possibilities:

(i) k = l + 2. Then we have

〈0|Âl(Â+ Â†)2(Â†)k|0〉 = 〈0|Âl(Â)2(Â†)l+2|0〉 (558)

= 〈0|Âl+2(Â†)l+2|0〉 = (l + 2)! (559)

(ii) k = l. Then we have

〈0|Âl(Â+ Â†)2(Â†)k|0〉 = 〈0|Âl(ÂÂ† + Â†Â)2(Â†)l|0〉 = 〈0|Âl(2ÂÂ† − 1)2(Â†)l|0〉 (560)
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= 2〈0|Âl+1(Â†)l+1|0〉 − 〈0|Âl(Â†)l|0〉 = 2(l + 1)!− l! = [2(l + 1)− 1]l! = (2l + 1)l! (561)

(iii) k = l − 2. This needs l ≥ 2. Then we have

〈0|Âl(Â+ Â†)2(Â†)k|0〉 = 〈0|Âl(Â†)2(Â†)l−2|0〉 (562)

= 〈0|Âl(Â†)l|0〉 = l! (563)

We have

Ek = (k +
1

2
)~ω (564)

(i) k = l + 2:∫ t

t′=0
dt′e−i

(Ek−El)
~ t′〈φl|V (t′)|φk〉 =

∫ t

t′=0
dt′e−2iωt′q(t′)

~
4ω

1√
l!

1√
(l + 2)!

(l + 2)! (565)

=
~

4ω

√
(l + 2)(l + 1)

∫ t

t′=0
dt′e−2iωt′q(t′) (566)

(ii) k = l:∫ t

t′=0
dt′e−i

(Ek−El)
~ t′〈φl|V (t′)|φk〉 =

∫ t

t′=0
dt′q(t′)

~
4ω

1√
l!

1√
l!

(2l + 1)l! (567)

=
~

4ω
(2l + 1)

∫ t

t′=0
dt′q(t′) (568)

(i) k = l − 2:∫ t

t′=0
dt′e−i

(Ek−El)
~ t′〈φl|V (t′)|φk〉 =

∫ t

t′=0
dt′e2iωt′q(t′)

~
4ω

1√
l!

1√
(l − 2)!

l! (569)

=
~

4ω

√
l(l − 1)

∫ t

t′=0
dt′e2iωt′q(t′) (570)
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27 The Fermi Golden Rule

27.1 The 2-level system

Consider a 2-level system
i~∂tψ = ασ1ψ (571)

Suppose we start with the state |ψ+〉 = (1, 0). Then we see that

∂tψ = − i
~
σ1|ψ+〉 = − i

~
|ψ−〉 (572)

But since the Hamiltonian is Hermitian, we will oscillate between these two states. To see
this, we look at the eigenstates

|ψ+〉 =
1√
2

(1, 1), |ψ−〉 =
1√
2

(1,−1), |ψi〉 = (1, 0) =
1√
2

(|ψ+〉+ |ψ−〉) (573)

The eigenvalues of the Hamiltonian are

E+ = α, E− = −α (574)

Thus the state at any later time is

|ψ(t)〉 =
1√
2

(
e−

i
~αt|ψ+〉+ e

i
~αt|ψ−〉

)
(575)

In particular, at
α

~
t = 2nπ (576)

the state returns to its initial form |ψ+〉.

27.2 The exponential

We have
i~∂tΨ = HΨ (577)

Thus

∂tΨ = − i
~
HΨ (578)

If H is time independent, we get

Ψ(t) = e−
i
~HtΨ(0) (579)

We can break this into steps

e−
i
~Ht = e−

i
~H∆te−

i
~H∆t . . . e−

i
~H∆t (580)
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Suppose we have
H = H0 +H1 (581)

with H1 small. Then we have at first order

e−
i
~Ht = e−

i
~H0∆t(1− i

~
H1∆t)e−

i
~H0∆t . . . e−

i
~H0∆t (582)

The first order term is

e−
i
~H0(t−t′)(− i

~
H1∆t)e−

i
~H0t′ = e−

i
~H0(t−t′)(− i

~
H1dt

′)e−
i
~H0t′ (583)

Suppose this acts on a state with energy E1 and transitions it to a state with energy E2.
Then we have

e−
i
~E2(t−t′)(− i

~
H1∆t)e−

i
~H0t′ = e−

i
~H0(t−t′)(− i

~
〈ψ2|H1ψ1〉dt′)e−

i
~E1t′ (584)

The amplitude in state |ψ2〉 at time t is

c̃(t) =

∫ t

t′=0
e−

i
~H0(t−t′)(− i

~
〈ψ2|H1|ψ1〉dt′)e−

i
~E1t′ (585)

27.3 Transition to a band

But in a special case we can have a behavior where the amplitude in an initial state leaves
and does not come back, at least for very large times. Suppose e start in a state with energy
E0. Consider a band of states |ψn〉 with energies En. Let the amplitude to transition, per
unit time, into the state |ψn〉 be − i

~Rn; thus the amplitude to transition back per unit
time will be − i

~R
∗
n. Then the amplitude in state |ψn〉 at time t is

c̃n(t) =

∫ t

t′=0
e−i

E0
~ t′(− i

~
Rndt

′)e−i
En
~ (t−t′) = − i

~
Rne

−iEn~ t

∫ t

t′=0
dt′e

i(En−E0)
~ t′ (586)

This gives

c̃n(t) = − i
~
Rne

−iEn~ t ~
i(En − E0)

(e
i(En−E0)

~ t − 1)

= − i
~
Rne

− 1
2
i
(En+E0)

~ t ~
i(En − E0)

2i sin
(En − E0)t

2~

= −Rne−
1
2
i
(En+E0)

~ t

(
sin (En−E0)t

2~
(En−E0)

2~

)
(587)

The probability at time t is

Pn(t) = |Rn|2
(

sin (En−E0)t
2~

(En−E0)
2~

)2

(588)

59



Let the level spacing be ∆. Then we have∑
n

→ 1

∆

∫
dE (589)

Let us also assume that Rn ≈ R in the range of interest. Then we get

P (t) =
∑
n

Pn(t) → |R|2

∆

∫
dE

(
sin (E−E0)t

2~
(E−E0)

2~

)2

=
2~|R|2t

∆

∫
d

(
(E − E0)t

2~

)(
sin (E−E0)t

2~
(E−E0)t

2~

)2

(590)

We have ∫
dx

sin2 x

x2
= π (591)

Thus
P (t)

t
=

2π~|R|2

∆
= 2π~|R|2ρ (592)

where

ρ =
1

∆
(593)

is the number of energy levels per unit interval in energy; i.e., the level density.

27.4 Delta functions

We have ∫
dx

sin2 x

x2
= π (594)

Thus we can say that
1

π

sin2 x

x2
(595)

acts like a bump-function with integral unity, and width ∆x ∼ 1. We then have

1

π

sin2(xt)

(xt)2
∼ δ(xt) ∼ 1

t
δ(x) (596)

Thus
1

π

sin2(xt)

(x)2
=

1

π
t2

sin2(xt)

(xt)2
= tδ(x) (597)
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and
sin2(xt)

(x)2
= πtδ(x) (598)

Thus we can write

P (t) =
∑
states

|Rn|2
(

sin (E−E0)t
2~

(E−E0)
2~

)2

=
∑
states

|Rn|2πtδ(
(E − E0)

2~
) =

∑
states

|Rn|22π~tδ(E − E0)

(599)
With ∑

states

= ρ

∫
dE (600)

and
Rn → R (601)

we get

P (t) =

∫
dEρ|R|22π~tδ(E − E0) (602)

P (t)

t
= 2π~|R|2ρ

∫
dEδ(E − E0) = 2π~|R|2ρ (603)

More generally, we have∑
states

=
∑
~k

=
V

(2π)2

∫
d3k =

V

(2π~)3

∫
d3p (604)

28 Summary of perturbation methods

28.1 Time independent perturbation theory, eigenvalue method

In the time independent case we had (nondegenerate case)

H = H(0) + λH(1) (605)

We find
E(1) = 〈ψ(0)

k0
|H(1)|ψ(0)

k0
〉 (606)

Ck =
〈ψ(0)

k |H
(1)|ψ(0)

k0
〉

(E
(0)
k0
− E(0)

k )
, k 6= k0 (607)

We had to be careful to diagonalize Ĥ(1) in the degenerate case.
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28.2 Time dependent perturbation theory, evolution computation

We take
Ĥ = Ĥ0 + λV (t) (608)

|ψ(t)〉 =
∑
k

c̃k(t)|φk〉 =
∑
k

ck(t)e
−iEk~ t|φk〉 (609)

cl(t) = cl(0)− i

~
λ
∑
k

ck(0)

∫ t

t′=0
dt′e−i

(Ek−El)
~ t′〈φl|V (t′)|φk〉 (610)

As a special case, we can take a slow evolution from the time independent problem Ĥ =
Ĥ(0) to the new time independent case Ĥ = Ĥ(0)+λV . Then we get the adiabatic theorem,
that the energy eigenstate |ψk〉0 of the initial Hamiltonian changes to the corresponding
eigenstate |ψk〉λ of the final Hamiltonian.

28.3 Both time-independent and time-dependent cases, expanding ex-
ponential

We have
e−

i
~Ht = e−

i
~H∆te−

i
~H∆t . . . e−

i
~H∆t (611)

The first order term from an interval ∆t is

e−
i
~H0(t−t′)(− i

~
λH1∆t)e−

i
~H0t′ = e−

i
~H0(t−t′)(− i

~
λH1dt

′)e−
i
~H0t′ (612)

Suppose we start with energy E1 and take the inner product with a state with energy E2.
Then we get that the amplitude in state |ψ2〉 at time t is

c̃(t) =

∫ t

t′=0
e−

i
~E2(t−t′)(− i

~
〈ψ2|H1|ψ1〉dt′)e−

i
~E1t′ = − i

~
e−

i
~E2t

∫ t

t′=0
dt′〈ψ2|H1|ψ1〉e

i
~ (E2−E1)t′

(613)
If H(1) = V is time-independent, then we get

c̃(t) = − i
~
〈ψ2|H1|ψ1〉e−

i
~E2t

∫ t

t′=0
dt′e

i
~ (E2−E1)t′ (614)

28.4 Summary of the Ferni-Golden rule analysis

(i) First we assume that there is evolution under H0 from t = 0 to t = t′. Then in a time
interval dt′ we have the action of H1. Then from t′ + dt′ to t, we have evolution under H0

again.
(ii) We assume that

〈ψk|H1|ψ0〉 = Rk (615)
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〈ψ0|H1|ψ0〉 = 0 (616)

so the Hamiltonian makes transitions from |ψ0〉 to the band |ψk〉.
(iii) This gives for the first order term

|ψ(t)〉 =

∫ t

t′=0
e−

i
~H0(t−t′)(− i

~
dt′H1)e−

i
~H0t′ |ψ0〉 (617)

(iv) We write

|ψ(t)〉 = e−
i
~E0t|ψ0〉+

∑
k

c̃k(t)|ψk〉 (618)

We take the inner product with 〈ψk|. This gives

c̃k(t) = 〈ψk|
∫ t

t′=0
e−

i
~H0(t−t′)(− i

~
dt′H1)e−

i
~H0t′ |ψ0〉 (619)

c̃k(t) = 〈ψk|
∫ t

t′=0
e−

i
~Ek(t−t′)(− i

~
dt′H1)e−

i
~E0t′ |ψ0〉 (620)

c̃k(t) = − i
~

∫ t

t′=0
dt′e−

i
~Ek(t−t′)〈ψk|H1(t′)|ψ0〉e−

i
~E0t′ (621)

(v) In the time independent case we write

〈ψk|H1|ψ0〉 ≡ Rk (622)

c̃k(t) = − i
~
Rk

∫ t

t′=0
dt′e−

i
~Ek(t−t′)e−

i
~E0t′ (623)

c̃k(t) = − i
~
Rke

− i
~Ekt

∫ t

t′=0
dt′e

i
~ (Ek−E0)t′ (624)

c̃k(t) = − i
~
Rke

− 1
2
i
(Ek+E0)

~ t

(
sin (Ek−E0)t

2~
(Ek−E0)

2~

)
(625)

(vi) The probability at time t is

Pk(t) =
1

~2
|Rk|2

(
sin (Ek−E0)t

2~
(Ek−E0)

2~

)2

(626)

This oscillates with time.
(vii) Let the level spacing be ∆. Then we have∑

k

→ 1

∆

∫
dE (627)
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Let us also assume that Rk ≈ R in the range of interest. Then we get

P (t) =
∑
k

Pk(t) →
|R|2

~2∆

∫
dE

(
sin (E−E0)t

2~
(E−E0)

2~

)2

=
2|R|2t
~∆

∫
d

(
(E − E0)t

2~

)(
sin (E−E0)t

2~
(E−E0)t

2~

)2

(628)

We have ∫
dx

sin2 x

x2
= π (629)

Thus
P (t)

t
=

2π

~
|R|2

∆
=

2π

~
|R|2ρ (630)

where

ρ =
1

∆
(631)

is the number of energy levels per unit interval in energy; i.e., the level density.
(viii) We find

sin2(xt)

(x)2
= πtδ(x) (632)

(ix) Thus we can write

P (t) =
∑
states

1

~2
|Rk|2

(
sin (E−E0)t

2~
(E−E0)

2~

)2

=
∑
states

1

~2
|Rk|2πtδ(

(E − E0)

2~
) =

∑
states

|Rk|2
2π

~
tδ(E − E0)

(633)
With ∑

states

= ρ

∫
dE (634)

and
Rk → R (635)

we get

P (t) =

∫
dEρ|R|2 2π

~
tδ(E − E0) (636)

P (t)

t
=

2π|R|2ρ
~

∫
dEδ(E − E0) =

2π

~
|R|2ρ (637)

(x) More generally, we have∑
states

=
∑
~k

=
V

(2π)2

∫
d3k =

V

(2π~)3

∫
d3p (638)
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29 Scattering

29.1 The classical problem

We have a scatterer, and a beam of particles incident on it. The beam is described by a
flux F . We have

F = nv (639)

where n is the number density of particles in the beam, and v is their velocity. The flux F
gives the number of particles crossing a unit transverse area per unit time.

We define the cross section σ as the area which is cut out from this beam and scattered
in different directions. We cannot usually directly look at the scatter itself, as it is small.
Thus to find σ we will look at the particles that are scattered. Imagine a large sphere of
radius R. The particles will be leaving normal to the surface of this sphere. Suppose that
N particles are crossing this sphere per unit time. Then N particles must have been cut
out from the beam per unit time. We have

N = Fσ (640)

Thus we get

σ =
N

F
(641)

where N is the number of particles scattered per unit time and F is the flux.
We can also compute the cross section for scattering into some given solid angle. For a

circle on a 2-d plane, we define the angle in radians as

θ =
s

R
(642)

where s is the arc length and R is the radius. Similarly, in 3-d we define the solid angle in
steradians as

Ω =
A

R2
(643)

where A is the area on the surface of the sphere and R is the radius. Infinitesimal solid
angles will be denoted dΩ. If dN are the particles scattered in an infinitesimal solid angle
dΩ per unit time, then we define

dσ =
dN

F
(644)

and we write
dσ

dΩ
=

1

F

dN

dΩ
(645)

where dN
dΩ is the number of particle scattered per unit solid angle in the given direction.
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29.2 The set-up

We take a cubical box of size L on each axis. Thus the total volume is

V = L3 (646)

We assume periodic boundary conditions on the box. The leading order Hamiltonian is
that of a particle of mass m.

H0 =
~̂p

2

2m
(647)

We have a potential λV (~r) localized somewhere in this box, where λ is small. We start
with a wavefunction

|ψi〉 =
1√
V
ei
~k·~r (648)

We take a final wavefunction of the form

|ψf 〉 =
1√
V
ei
~k′·~r (649)

The energies under H0 of the initial wavefunction is

E0 =
p2

2m
=

~2k2

2m
(650)

29.3 Flux

We have

~F =
~

2im

(
ψ∗(x)~∇ψ(x)− (~∇ψ∗(x))ψ(x)

)
=

~
2im

(
1

V
2i~k) =

~~k
V m

(651)

This agrees with the classical intuition

F = nv =
1

V

p

m
=

~k
V m

(652)

29.4 Fermi-Golden rule

Now we have to find the analogue of N , the number of particles scattered per unit time.
The probability P (t) tells us how many particle shave entered one of the scattered states
after time t. So the number of particles scattering per unit time is

N =
P (t)

t
(653)

The fermi golden rule says that

P (t) =
∑
states

|c̃~k′(t)|
2 →

∫
dE

2π

~
ρδ(E − E0)|R|2t (654)
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Here we could sum over all states ~k′, or restrict to those in a certain angular range dΩ:

PdΩ(t) =
∑

states,dΩ

|c̃~k′(t)|
2 →

∫
dE

2π

~
ρdΩδ(E − E0)|R|2t (655)

29.5 Density of states

The density of states is given by the condition

kx =
2πnx
L

, ky =
2πny
L

, kz =
2πnz
L

(656)

∑
states

=
∑
~n

→
∫
d3n =

L3

(2π)3

∫
d3k =

V d3k

(2π)3
(657)

In terms of energy,

E =
p2

2m
=

~2k2

2m
(658)

dE =
~2k

m
dk,

dE

dk
=

~2k

m
(659)

d3k = k2dkdΩ = k2 dk

dE
dEdΩ = k2 m

~2k
dEdΩ =

km

~2
dEdΩ (660)

Thus ∑
states

→ V d3k

(2π)3
=

V

(2π)3

km

~2
dEdΩ (661)

We write ∑
states

= ρdE (662)

and for a given angular range ∑
states,dΩ

=

∫
ρdΩdE (663)

We then find

ρdΩ =
V

(2π)3

km

~2
dΩ (664)

29.6 The cross section

The cross section is defined by the number of particles that scatter per unit time. Thus
this is

σ =
1

F

1

t
P (t) =

1

F

1

t

∑
states

|c̃~k′(t)|
2 (665)
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The Fermi-Golden rule says that∑
states

|c̃~k′(t)|
2 → 2π

~

∫
dEρδ(E − E0)|R|2 t (666)

Here we note that in our case R can depend on the angle of scattering θs. in our case it
does not as the density of states in the box is isotropic. Thus we write∑

states

|c̃~k′(t)|
2 → 2π

~

∫
E,θs

dEρ(θs)δ(E − E0)|R(θs)|2 t (667)

Thus we get

σ =
1

F

1

t

∑
states

|c̃~k′(t)|
2 → 1

F

2π

~

∫
E,θs

dEρ(θs)δ(E − E0)|R(θs)|2 (668)

If we limit both sides to a small angular direction dΩ, then we write

dσ =
1

F

1

t
PdΩ(t) =

1

F

1

t

∑
states,dΩ

|c̃~k′(t)|
2

→ 1

F

2π

~

∫
E
dEρdΩ(θs)δ(E − E0)|R(θs)|2

=
1

F

2π

~
ρdΩ(θs)|R(θs)|2

(669)

Thus we write
dσ

dΩ
=

1

F

2π

~
dρ

dΩ
(θs)|R(θs)|2 (670)

29.7 Putting it together

We have

dσ =
1

F

1

t
PdΩ(t) =

1

F

1

t

∑
states,dΩ

|c̃~k′(t)|
2 (671)

Using the Fermi Golden rule we get

dσ → 1

F

2π

~

∫
dEδ(E − E0)ρdΩ|R|2 =

1

F

2π

~
ρdΩ|R|2 (672)

We can use

ρdΩ =
V

(2π)3

km

~2
dΩ (673)
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This gives

dσ =
1

F

2π

~
V

(2π)3

km

~2
dΩ|R|2 (674)

This can be written as
dσ

dΩ
=

1

F

2π

~
V

(2π)3

km

~2
|R|2 (675)

We had

F =
~k
V m

(676)

This gives
dσ

dΩ
=
V m

~k
2π

~
V

(2π)3

km

~2
|R|2 (677)

29.8 Computing R

We have
R = λ〈ψ~k′ |V |ψ~k〉 (678)

This gives

R = λ

∫
d3~r

1

V
e−i

~k′·~rV (~r)ei
~k·~r = λ

1

V

∫
d3~rei∆

~k·~rV (~r) (679)

where
∆~k = ~k′ − ~k (680)

Thus we see that R has the form

R =
λA

V
(681)

where

A =

∫
d3~re−i∆

~k·~rV (~r) (682)

We then find that

dσ

dΩ
=
V m

~k
2π

~
V

(2π)3

km

~2

λ2|A|2

V 2
=

λ2m2

(2π)2~4
|A|2 (683)

29.9 An example

As an example, we take the Yukawa potential

V =
1

r
e−µr (684)

Then we have to compute

A =

∫
d3~re−i∆

~k·~rV (~r) (685)
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We have, writing the angle through which we scatter as θs

|∆~k|2 = |~k′ − ~k|2 = k′2 + k2 − 2k′k cos θs = 2k2 − 2k2 cos θs = 2k2(1− cos θs) = 4k2 sin2 θs
2

(686)
Thus

|∆~k| = 2k sin
θs
2

(687)

We have

A =

∫ 2π

0
dφ

∫ π

0
sin θdθ

∫ ∞
0

r2dr
1

r
e−µre−i|∆

~k|r cos θ (688)

This is

A =

∫ 2π

0
dφ

∫ 1

0
d(cos θ)

∫ ∞
0

r2dr
1

r
e−µre−i|∆

~k|r cos θ (689)

A = 2π

∫ ∞
0

r2dr
1

r
e−µr

(e−i|∆
~k|r − ei|∆~k|r)

(−i|∆~k|r)
(690)

This is

A = 2π

∫ ∞
0

r2dr
1

r
e−µr

(−2i) sin |∆~k|r
(−i|∆~k|r)

= 4π

∫ ∞
0

r2dr
1

r
e−µr

sin |∆~k|r
(|∆~k|r)

(691)

This gives

A =
4π

|∆~k|

∫ ∞
0

dre−µrsin |∆~k|r =
4π

|∆~k|

(
|∆~k|

|∆~k|2 + µ2

)
=

4π

|∆~k|2 + µ2
(692)

We had
dσ

dΩ
=

λ2m2

(2π)2~4
|A|2 (693)

This gives
dσ

dΩ
=

λ2m2

(2π)2~4

(4π)2

(|∆~k|2 + µ2)2
=

4λ2m2

~4

1

(|∆~k|2 + µ2)2
(694)

We had

|∆~k| = 2k sin
θs
2

(695)

Using this gives

dσ

dΩ
=

4λ2m2

~4

1

(4k2 sin2 θs
2 + µ2)2

= 4λ2m2 1

(4~2k2 sin2 θs
2 + ~2µ2)2

(696)

We had

E0 =
p2

2m
=

~2k2

2m
(697)
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Thus
~2k2 = 2mE0 (698)

dσ

dΩ
=

4λ2m2

(8mE0 sin2 θs
2 + ~2µ2)2

=
λ2

(4E0 sin2 θs
2 + ~2µ2

2m )2
(699)

Integrating gives

σ =
4πλ2

~2µ2
2m (4E + ~2µ2

2m )
(700)

30 The photoelectric effect

We have a photon with energy
E = hν (701)

incident on an atom. The atom has an electron in the wavefunction

|ψi〉 → ψ(r, θ, φ) (702)

with energy Ee,i.The photon gets absorbed, and its energy gets transferred to the electron
which is ejected. Let the final wavefunction of the electron be

|ψf 〉 →
1√
V
ei
~kf ·~r (703)

30.1 The photon wavefunction

The photon is a transverse wave, with a polarization given by a unit vector ~ε. The transverse
nature is given through

~ε · ~kγ = 0 (704)

The main thing we need to know is the strength of the ~A field for a single photon. This
is given by computing the energy density of the ~E, ~B fields found from ~A, multiplying by
the volume V , and setting this equal to ~ω. We will derive this in the subsection below,
but for now we note the result:

|ψγ〉 → ~ε
1√
V

√
~

2ωε0
ei
~kγ ·~r (705)

The flux is given by noting that we have one particle in volume V , so ρ = 1
V and the

speed is v = c.

F = ρv =
1

V
c (706)
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30.2 Deriving the amplitude of the photon field

For a nonrelativistic particle we had taken a wavefunction of the form

|ψ〉 =
1√
V
ei
~k·~r (707)

But the photon is a relativistic particle: it moves ta the speed of light. We can still expand
it as a plane wave

~A =
∑
~k

(
~A~ke

i~k·~r
)

(708)

But we have to do more work to see exactly what the coefficient A~k is. To do this we will
use the fact that the energy of the photon should be

Eγ = hν = ~ω (709)

To get this energy we will use the fact that for a classical electromagnetic field, the energy
density is

U =
ε0
2
| ~E|2 +

1

2µ0
| ~B|2 (710)

The fields themselves are given in terms of the vector potential ~A as

~B = ~∇× ~A (711)

~E = − ~̇A− ~∇Φ→ − ~̇A (712)

where we have noted that in our situation we have no scalar potential; thus Φ = 0.
First we note that the energy is E = ~ω, so the time dependence of the wavefunction

must be
~A =

∑
~k

(
~A~ke

i~k·~re−i
E
~ t
)

=
∑
~k

(
~A∗~ke

i~k·~re−iωt
)

(713)

To use the above classical relations, we note that the classical vector potential ~A is real,
so we must add in the complex conjugate of the form we had taken above

~A =
∑
~k

(
~A~ke

i~k·~re−iωt + ~A∗~ke
i~k·~reiωt

)
(714)

We consider a given Fourier mode ~k and consider it at time t = 0

~B = ~∇× ~A = i~k × ~A~ke
i~k·~r − i~k × ~A~k

∗
e−i

~k·~r (715)

~E = − ~̇A = iω ~A~ke
i~k·~r − iω ~A∗~ke

−i~k·~r (716)
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We have to compute | ~E|2, | ~B|2 and integrate over all space, The integration kills all terms

that are oscillating as ei
~K·~r for any ~K. This leaves only the terms that come from one

factor having ~A~k and one factor ~A∗~k
. We get

| ~B|2 = 2(~k × ~A~k) · (~k · ~A
∗
~k

= 2k2| ~A~k|
2 (717)

where we have used that

( ~A× ~B) · (~C × ~D) = ( ~A · ~C)( ~B · ~D)− ( ~A · ~D)( ~B · ~C) (718)

and the fact that ~A os transverse
~k · ~A~k = 0 (719)

Similarly, we find
| ~E|2 = 2ω2| ~A~k|

2 (720)

the energy density is then

U =
ε0
2
| ~E|2 +

1

2µ0
| ~B|2 = ε0ω

2| ~A~k|
2 +

1

µ0
k2| ~A~k|

2 (721)

We use that

ε0µ0 =
1

c2
, ω = ck (722)

Then we get
U = 2ε0ω

2| ~A~k|
2 (723)

We set the total energy to E = ~ω

E = UV = 2ε0ω
2| ~A~k|

2V = ~ω (724)

which gives

| ~A~k| =
√

~
2ε0ωV

(725)

30.3 The interaction

The interaction between the electron and a gauge field is given by

H =
1

2m
(~p+ e ~A) · (~p · ~A) =

1

2m

(
p2 + e~p · ~A+ e ~A · ~p+ e2A2

)
(726)

We have
~p · ~A = −i~~∇ · ~A = −i~(~∇ · ~A) + ~A · ~p (727)

We have
~∇ · ~A = ~∇ · 1√

V
~ε · (i~kγ)ei

~kγ ·~r = 0 (728)
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This gives

H =
1

2m

(
p2 + e2A2 + 2e ~A · ~p

)
(729)

Thus
H = H(0) + λH(0) (730)

with
λ =

e

m
, H(1) = ~A · ~p (731)

30.4 The matrix element

We are going from an initial state containing one photon and one electron in a given
wavefunction, to a band of states which has one electron in some momentum state. The
cross section is then given by the fermi golden rule, for which we need the amplitude

R = λ〈ψf |Ĥ(1)|ψi〉 (732)

We have

R = λ

∫
d3~r

(
1√
V
e−i

~kf ·~r
)(

~ε
1√
V

√
~

2ωε0
ei
~kγ ·~r · (−i~~∇)

)
(ψi(~r)) (733)

We can integrate by parts. Note that ~ε ·~kγ = 0, so we just get the derivative acting on the
first term. This gives

R = i~λ
√

~
2ωε0

ε · (i~kf )
1

V

∫
d3~re−i

~∆k·~rψi(~r) = −~λ 1

V

√
~

2ωε0
(~ε · ~kf )

∫
d3~re−i

~∆k·~rψi(~r)

(734)
where we have defined

~∆k = ~kf − ~kγ (735)

As an example, let us take the wavefunction ψ100

ψ100 = 2(
Z

a0
)
3
2 e
−Zr
a0 (736)

The spherical harmonic is

Y00 =
1√
4π

(737)

Thus we have

ψi(~r) = 2(
Z

a0
)
3
2 e
−Zr
a0

1√
4π

=
1√
π

(
Z

a0
)
3
2 e
−Zr
a0 (738)

Thus we need to compute

I =

∫
d3~re−i

~∆k·~re
−Zr
a0 = 2π

∫ 1

−1
d(cos θ)

∫
drr2e−µre−i∆kr cos θ (739)
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We write

µ =
Z

a0
(740)

Doing the θ integral gives

I = 2π
1

−i∆k

∫
drre−µr(−2i sin ∆kr) = 4π

1

∆k

∫ ∞
0

drre−µr sin(∆kr) (741)

I = 4π
1

∆k

2∆kµ

((∆k)2 + µ2)2
= 8πµ

1

((∆k)2 + µ2)2
(742)

R = −~λ 1

V

√
~

2ωε0
(~ε · ~kf )8πµ

1√
π

(
Z

a0
)
3
2

1

((∆k)2 + µ2)2
(743)

30.5 The cross section

We have

dσ =
1

F

1

t
PdΩ(t) =

1

F

1

t

∑
states,dΩ

|c̃~k′(t)|
2 (744)

Using the Fermi Golden rule we get

dσ → 1

F

2π

~

∫
dEδ(E − E0)ρdΩ|R|2 =

1

F

2π

~
ρdΩ|R|2 (745)

We can use

ρdΩ =
V

(2π)3

kfm

~2
dΩ (746)

This gives

dσ =
1

F

2π

~
V

(2π)3

kfm

~2
dΩ|R|2 (747)

This can be written as
dσ

dΩ
=

1

F

2π

~
V

(2π)3

kfm

~2
|R|2 (748)

We had
F =

c

V
(749)

This gives
dσ

dΩ
=
V

c

2π

~
V

(2π)3

kfm

~2
|R|2 (750)
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30.6 Putting it together

We get

dσ

dΩ
=
V

c

2π

~
V

(2π)3

kfm

~2

(
~2λ2 1

V 2

~
2ωε0

(~ε · ~kf )2(8π)2µ2 1

π
(
Z

a0
)3 1

((∆k)2 + µ2)4

)
(751)

dσ

dΩ
=

1

c

2π

~
1

(2π)3

kfm

~2

~2 e
2

m2

~
2ωε0

(~ε · ~kf )2(8π)2(
Z

a0
)2 1

π
(
Z

a0
)3 1

((∆k)2 + Z2

a20
)4

 (752)

dσ

dΩ
= Z5a3

0

1

c

1

~
kfm

~2

(
~2 e

2

m2

~
ωε0

(~ε · ~kf )28
1

π

1

((∆k)2a2
0 + Z2)4

)
(753)

We have

a0 =
~2(4πε0)

me2
(754)

dσ

dΩ
= Z5a2

0

~2(4πε0)

me2

1

c

1

~
kfm

~2

(
~2 e

2

m2

~
ωε0

(~ε · ~kf )28
1

π

1

((∆k)2a2
0 + Z2)4

)
(755)

dσ

dΩ
= 32Z5a2

0

(pfc
~ω

)(~ε · ~pf
mc

)2 1

((∆k)2a2
0 + Z2)4

(756)

31 Identical particles

Suppose we have two bosons which are identical, scattering in the center of mass frame.
The initial state then has the form

|ψi〉 =
1√
2

(|ψ(p1i)〉1|ψ(p2i)〉2 + |ψ(p2i)〉1|ψ(p1i)〉2) (757)

The Hamiltonian is symmetric, and thus a symmetric wavefunction evolves to a symmetric
one. The final wavefunction thus has the form

|ψf 〉 =
1√
2

(|ψ(p1f )〉1|ψ(p2f )〉2 + |ψ(p2f )〉1|ψ(p1f )〉2) (758)

Let
R1 = 1〈ψ(p1f )|2〈ψ(p2f )|λH(1)|ψ(p1f )〉1|ψ(p2f )〉2 (759)

and
R2 = 1〈ψ(p2f )|2〈ψ(p1f )|λH(1)|ψ(p1f )〉1|ψ(p2f )〉2 (760)

We note that since the particles are identical, we also have

R1 = 1〈ψ(p2f )|2〈ψ(p1f )|λH(1)|ψ(p2f )〉1|ψ(p1f )〉2 (761)
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and
R2 = 1〈ψ(p1f )|2〈ψ(p2f )|λH(1)|ψ(p2f )〉1|ψ(p1f )〉2 (762)

Consider angle 0 < θs <
π
2 . We assume that one f the particles scatters in this angle;

the other will then scatter with π
2 < θs < π. Then we find that

|R|2 →= |1
2

(2R1 + 2R2)|2 = |R1 +R2|2 (763)

Similarly, for fermions we find

|R|2 →= |1
2

(2R1 − 2R2)|2 = |R1 −R2|2 (764)

In particular, for fermions we see that scattering at θs = π
2 will vanish.

32 Quantum information

In classical theory, we can have a bit of information which can take two states 0, 1. Thus
information can be coded in a string

S = 10001011001... (765)

In quantum theory the analogue is a 2-state system, which has states of the form

|ψ〉 = α|0〉+ β|1〉 (766)

Normalization tells us that
|α|2 + |β|2 = 1 (767)

32.1 Gates

In classical theory we have operations called gates, which can change the state of bits. For
example, if we have one bit, the operation can flip the bit

0→ 1, 1→ 0 (768)

This is called the NOT gate, since it converts the bit to the state that it is ‘not’.
We can also map both states to the same state

0→ 0, 1→ 0 (769)

In quantum theory, we can manipulate the bit by acting with operators. Thus we can
apply

|ψ〉 → σx|ψ〉 (770)
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Thus will implement the flip

σx

(
1
0

)
=

(
0
1

)
, σx

(
0
1

)
=

(
1
0

)
(771)

Thus σx gives the NOT gate. But we cannot map both states to the same state, as this
would not be a unitary operation. The general unitary map is of the form

U = eiH = eiφeiαn̂·~σ (772)

where n̂ is a unit vector and φ, α are real numbers. A gate of particular importance is the
Hadamard gate

H =
1√
2

(σx + σz) =
1√
2

(
1 1
1 −1

)
(773)

If we have two bits, then we can do a joint operation on the two bits. In classical theory,
we have the Controlled Not (CNOT) gate, where if the first bit is 0 then the second bit is
left unchanged, while if the first bit is 1, then the second bit is flipped. The first bit is left
unchanged in either case. Thus we have

00→ 00, 01→ 01, 10→ 11, 11→ 10 (774)

This is a unitary map, and we can implement CNOT in the quantum theory as well.

32.2 Quantum teleportation

We start with Alice and Bob having na entangled pair

1√
2

(0A0B + 1A1B) (775)

Now Alice is given a state
ψ = α0 + β1 (776)

Thus the overall state is

Ψ =
1√
2

(α0 + β1)(0A0B + 1A1B) (777)

We first do a CNOT on Alice’s bits. This gives

Ψ1 =
1√
2
α0(0A0B + 1A1B) +

1√
2
β1(1A0B + 0A1B) (778)

We then do a Hadamard on Alice’s first bit. This gives

Ψ2 =
1

2
α(0 + 1)(0A0B + 1A1B) +

1

2
β(0− 1)(1A0B + 0A1B) (779)
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Expanding gives

Ψ2 =
1

2
00A(α0B + β1B)

+
1

2
01A(α1B + β0B)

+
1

2
10A(α0B − β1B)

+
1

2
11A(α1B − β0B)

(780)

Now Alice measures her bits:

(i) If she finds 00A, she conveys this information to Bob, and Bob knows that he already
has the state ψ.

(ii) If she finds 01A, Bob has the state α1B +β0B. She tells Bob that she has 01A, and
Bob applies the NOT σx to get ψ.

(iii) If she finds 10A, Bob has the state α0B − β1B. She tells Bob that she has 10A,
and Bob applies the Z gate σz to get ψ.

(iv) If she finds 11A, Bob has the state α1B−β0B. She tells Bob that she has 11A, and
Bob applies σzσx to get ψ.

The above operations can be summarized by saying that if Alice’s bits are M1M2, then
the operation needed is

(σz)M1(σx)M2 (781)

32.3 The Deutch algorithm

(1) We start with two bits. We put the first in the state 0 and the second in the state 1.
Thus we have

ψ0 = 01 (782)

(2) We apply a Hadamard to each bit. This gives

ψ1 =
1

2
(0 + 1)(0− 1) (783)

(3) We apply the map f which does

xy → x(y + f(x)) (784)
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Thus
x0→ x(0 + f(x)) = xf(x) (785)

x1→ x(1 + f(x)) (786)

Thus
x(0− 1)→ x (f(x) + (1 + f(x)) (787)

We note that this is

f(x) = 0 → x(0− 1)

f(x) = 1 → x(1− 0)

(788)

Thus we have
x(0− 1)→ (−1)f(x)x(0− 1) (789)

(4) Thus applied to ψ2 we get

ψ3 =
1

2
(−1)f(0)0(0− 1) +

1

2
(−1)f(1)1(0− 1) (790)

Now there are two possibilities:

f(0) = f(1) → f(0) + f(1) = 0 : → ψ3 =
1

2
(−1)f(0)(0 + 1)(0− 1)

f(0) 6= f(1) → f(0) + f(1) = 1 : → ψ3 =
1

2
(−1)f(0)(0− 1)(0− 1)

(791)

(5) We do a Hadamard on the first bit, getting

f(0) + f(1) = 0 : → ψ4 =
1√
2

(−1)f(0)0(0− 1)

f(0) + f(1) = 1 : → ψ4 =
1√
2

(−1)f(0)1(0− 1)

(792)

We can write this as

ψ4 =
1√
2

(−1)f(0) (f(0) + f(1)) (0− 1) (793)

Thus if we measure the first bit, then we can find the value of

f(0) + f(1) (794)
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33 The Aharonov-Bohm effect

The goal of this effect is to see if the vector potential ~A can have physical effects even if
~∇× ~A = ~B = 0.

33.1 Solving for the wavefunction

Consider a particle of mass m with Hamiltonian

H0 =
p2

2m
(795)

Now consider this particle in a vector potential ~A(~r). The Hamiltonian is

HA =
(~p− q ~A)2

2m
(796)

Suppose we have a wavefunction at some time t = t0 given by ψ0(~r). Consider another
wavefunction

ψA(~r) = ei
q
~
∫ x
0
~A(~r′)·d~r′ ~ψ0(~r) (797)

Now we see that

(~p− q ~A)ψA(~r) = (−i~~∇− q ~A)ei
q
~
∫ x
0
~A(~r′)·d~r′ ~ψ0(~r)

= ei
q
~
∫ x
0
~A(~r′)·d~r′

(
(−i~~∇)ψ0(~r) + q ~A(~r)ψ0(~r)− q ~A(~r)ψ0(~r)

)
= ei

q
~
∫ x
0
~A(~r′)·d~r′(−i~~∇)ψ0(~r)

= ei
q
~
∫ x
0
~A(~r′)·d~r′~pψ0(~r)

(798)

Thus we see that for any function ψ(~r)

(~p− q ~A)ei
q
~
∫ x
0
~A(~r′)·d~r′ψ(~r) = ei

q
~
∫ x
0
~A(~r′)·d~r′~pψ(~r) (799)

Thus

(~p− q ~A)2ei
q
~
∫ x
0
~A(~r′)·d~r′ψ(~r) = (~p− q ~A)ei

q
~
∫ x
0
~A(~r′)·d~r′~pψ(~r)

= ei
q
~
∫ x
0
~A(~r′)·d~r′(~p)2ψ(~r)

(800)

and
(~p− q ~A)2

2m
ei
q
~
∫ x
0
~A(~r′)·d~r′ψ(~r) = ei

q
~
∫ x
0
~A(~r′)·d~r′ (~p)

2

2m
ψ(~r) (801)
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which is
HAψA = ei

q
~
∫ x
0
~A(~r′)·d~r′H0ψ0 (802)

Suppose we have an eigenfunction

H0ψ0 = E0ψ0 (803)

We wish to solve the eigenvalue problem

HAψA = EAψA (804)

We write
ψA = ei

q
~
∫ x
0
~A(~r′)·d~r′ψ0 (805)

Then
HAψA = ei

q
~
∫ x
0
~A(~r′)·d~r′H0ψ0 = ei

q
~
∫ x
0
~A(~r′)·d~r′E0ψ0 = E0ψA (806)

Thus ψA is an eigenfunction of HA with eigenvalue EA = E0.
Similarly, suppose we have solved an evolution problem

i~∂tψ0(~r, t) = H0ψ0(~r, t) (807)

We wish to find a solution to

i~∂tψA(~r, t) = HAψA(~r, t) (808)

We write
ψA = ei

q
~
∫ x
0
~A(~r′)·d~r′ψ0 (809)

Then

i~∂tψA(~r, t) = ei
q
~
∫ x
0
~A(~r′)·d~r′(i~∂t)ψ0(~r, t)

= ei
q
~
∫ x
0
~A(~r′)·d~r′H0ψ0(~r, t)

= HAe
i q~

∫ x
0
~A(~r′)·d~r′ψ0(~r, t)

= HAψA(~r, t) (810)

Thus the above constructed ψA(~r, t) solves the evolution equation for HA of ψ0(~r, t) solved
the equation for H0.
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33.2 The effect of ~B 6= 0

It may seem from this that it is always trivial to solve for HA of we can solve for H0. In
1-d this is true, but in higher dimensions, different paths in the exponent lead to different
functions. Thus this solution makes sense only if all paths give the same result. But this
means that ∫

C

~A · ~dr = 0 (811)

for all loops C. By the Stokes theorem, this means that∫ ∫
S

(~∇× ~A) · n̂dS = 0 (812)

This gives
~∇× ~A = ~B = 0 (813)

everywhere.
Consider a tube with magnetic flux B, but no flux outside. Then for a loop around the

tube ∫
C

~A · d~r =

∫ ∫
S

~B · n̂dS = F (814)

where F is the total flux through the tube. Thus ~A is not zero outside the tube.

33.3 The Aharonov-Bohm effect

Consider a two slit experiment. We first consider the wave coming out of the slit 1 alone.
We solve the waveequation first solving in the absence of any ~B to get a wavefunction ψ1.
Then in the presence of ~A, we get the solution as

ψ1A = ei
q
~
∫ x
0
~A(~r′)·d~r′ψ1 (815)

Now consider the wave from slit 2. We solve the waveequation first solving in the absence
of any ~B to get a wavefunction ψ2. Then in the presence of ~A, we get the solution as

ψ2A = ei
q
~
∫ x
0
~A(~r′)·d~r′ψ2 (816)

This time note that we have used the ~A which is correct for the other paths around the
slit.

Consider the interference pattern at any point ~r on the screen. From slit 1, with ~B = 0,
we get an amplitude

ψ1(~r, t) (817)

With ~B turned on, we get the amplitude

ψ1A(~r, t) = ei
q
~
∫ x,(1)
0

~A(~r′)·d~r′ψ1(~r, t) (818)
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From slit 2, with ~B = 0, we get an amplitude

ψ2(~r, t) (819)

With ~B turned on, we get the amplitude

ψ2A(~r, t) = ei
q
~
∫ x,(2)
0

~A(~r′)·d~r′ψ2(~r, t) (820)

where the path in the second case goes below the flux tube.
In the absence of flux the net amplitude at ~r was

ψT0 = ψ1 + ψ2 (821)

With ~B turned on, the net amplitude is

ψTA = ei
q
~
∫ x,(1)
0

~A(~r′)·d~r′ψ1 + ei
q
~
∫ x,(2)
0

~A(~r′)·d~r′ψ2 (822)

We can write this as
ψTA = ψ1 + ei

q
~
∫ x,(C)
0

~A(~r′)·d~r′ψ2 (823)

where
ei
q
~
∫ x,(C)
0

~A(~r′)·d~r′ = ei
q
~
∫ x,(2)
0

~A(~r′)·d~r′e−i
q
~
∫ x,(1)
0

~A(~r′)·d~r′ (824)

Thus we will see a shift in the interference pattern when we turn the ~B field on.
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