1 Angular momentum algebra

1.1 The algebra

The commutation relations are
Ly, Ly = ihL,

and others obtained from cycling
Ty Sz

We also have
[Le, L] =0
We write

L.|B,a) = a|B,a), L*|B,a) = B|B, )

Thus L?, L, will be simple in our representation. We define

Ly =L,+iL,
L =L,—iL,
Then we find
LyL_=L}+L}—ilLy Ly = L2 + L + hL,
L Ly =L}+L}+i[Ly, Ly = L2 + L — hL,
This gives
L*=L,L_ —hL,+L?
L*=L Ly +hL.+L:
Thus

L L_ =1L?+hL,—L?
L L,=1L*-hL,—L?

1.2 Raising and lowering

Now we see that
L;Lila, B) = (a+ h) LB, a)

L.L_|o,B) = (o — h)L, |5, )
L?Ly|a, B) = BLL|B, @)

Positivity shows that
a? <



So there is a maximum value for a. We call this au,q.. Since we cannot raise « any higher
than this, we have

Li|amaz, B) =0 (17)
Then we have
L2|amama B) = (L_Ly+hL,+ L?)Iamax, B) = aZnax + hmaz (18)
Thus
/B = Umax (amax + h) (19)

1.3 Coefficients

We assume normalized states |3, «) so that

(B,alB,a) =1 (20)
Let us define
L_|B,a)=C_(B,) (21)
Li|B,a) = C1(B, ) (22)
We have
L,L_=L*4+hL, - L? (23)
We have
(B,a|Ly L_|B,a) = |C_(B, )| (24)
The LHS can be written as
(8,0l L+ L_|B, ) = (8,0l (L* + hL, — L2)|8,a) (25)
This is
(B,al(B + ha — ®)|B,a) = (B + ha — o) (26)
Using the value of 8, we find
C_(B,a) = [amaz(Cmaz + h) + ha — a?]2 (27)
Similarly we find
C+ (/87 Oé) = [amaw(@mam + h) — ha — 062]% (28)



1.4 Multiplets

For the lowest state in the multiplet, we must have

C_(8,0) =0 (20)
This gives a quadratic equation for «, with the solutions
O = Qmax + R (30)
and
O = —Qmaz (31)

The first is not an allowed value of «, so we take the second value. The change in « from
the highest to the lowest value is

Aa = Omar — (_Oémaa:) = 2Qmax (32)

This must be an integer number N times the step size hA. Thus

200maz = NR (33)
N

maxr — —h 4
Gmas = 5 (34)

We write N

l=—
) (35)

and get the allowed values
1.3
l=0,=,1,-,2,...

0) 2) 9 25 9 (36)

2 The coordinate representation of the L

2.1 The 2-d case

Consider the plane z,y with
x=rcosf, y=rsinf (37)

Perform a rotation so that the function value at the point 6 gets carried to the point 8+ da.
We write this as

0 —0+da (38)
The new function is
= 0
F(0) = f(6 = da) = f(0) + o= 55) f(0) + ... (39)
The angular momentum generator is
N 0



2.2 The 3-d case

Now we have two coordinates 6, ¢. Under a rotation, we will have

0 — 0+ cioa
¢ — ¢+ cada
F(0,6) = F(0 — erdar, 6 — ea80) = F(60, 6) + ba(—e1 2 — e 2-
) - 1 ) 2 - ) 186 28¢
Thus we should write 5 5
ﬁ = —’Lh(Cl% —+ CQ%)

Now we look at each case.

2.3 L,

We have
xr=rsinfcos¢, y=rsinfsing, z=rcosb

We need
0z=0, dy=zxda, dxr=—yla

Since we will remain on the sphere, we set » = 1 so that
or=20

Then
0z = —rsin06f = 0

which gives
00 =0

We also have
0x = rcos 806 cos ¢ — rsin fsin ¢pd¢

We set this equal to —yda getting
7 €08 060 cos ¢ — rsin 0 sin pd¢ = —r sin O sin pd«

which gives

0 = da
Thus we get

as expected.

)f(0,0)+ ...



24 I,
We need

From dx = 0 we get
which gives

From 6z = yda we get
which gives

Then we get

Thus

2.5 I,
We need

From éy = 0 we get
which gives

From 6z = —zda we get
which gives

Then we get

Thus

ox =0, dz=yda, Jdy=—z0a
r cos 0660 cos ¢ — 7 sin 0 sin pd P
d¢ = cot 6 cot ¢l
—rsin#660 = r sin 0 sin pda
60 = —sin pda

d¢ = cot 6 cot p66 = — cot A cos pda

[:x = —ih(—sin qbaae — cot 6 cos d’%)

oy=0, dxr=zda, Jz=—xda
7 cos 600 sin ¢ + 7 sin 0 cos o ¢
d0¢ = — cot B tan ¢po
—rsin 000 = —rsin 6 cos poa
00 = cos pda
d¢ = — cot B tan ¢pdf = — cot 0 sin pda

L, = —ih(cos ¢889 — cot 6 sin (ﬁ;;)



2.6 Computing L,

We have
- 5 - 0 0 i 0 o O
= ) = —9 — si ) _ 7 Q] - — 9 'ld)i_ Z¢7
Ly =L,+iL, ih (( sin ¢ + i cos ¢) 20 cot §(cos ¢ + isin @) 6¢> ih (ze 20 cot fe 8¢>
(68)
This gives
Ly = he'® 92 +icot 92 (69)
00 0¢

Similarly, we have

A A ~

L_ = L,+iL, = —ih ((— sin ¢ — i cos g[))2 — cot f(cos ¢ — isin gb)aad)) = —ih (—ie_i¢8 — cot 96_i¢£

00 00
(70)
This gives
. , 0 0
— R0 _ 2 —
L_=he ( 89+ZCOt98¢> (71)
3 Spin
3.1 The problem with spin
We have, under a rotation about the z axis by angle da
¢ —= ¢+ da (72)
We get the change of functions 3
f(@) = f(®) (73)
where 5
f(@) = (¢ —da) = f(o) — 501875]0(925) (74)
We get this from
fo bl = - isatcin g - (1- 60l (75)
Wba—")f = o (= 25 = aa¢
For finite rotations, we get )
fof=erf (76)
Suppose that R
L.f =hmf (77)



Then we get )
f N f _ efiaLTzf _ efia%f — efiamf
If m is an integer then o = 27 gives

e tom _ e27rmz -1

But if « is a half integer, then o = 27 gives

e toam _ eQﬂ'mz —

3.2 Making a matrix representation of the Li

We start with the normalized basis
|1, m)

Thus
(', m/|l,m) = 01,11 O/

Then we have A
L.|l,m) = hm|l,m)

Li|l,m) = /([ —m)(I+m+1)|l,m+1)
L |l,m) =/ +m)(l —m+1)|l,m—1)

3.3 The matrices for [ = %
We write

11, (1

33~ (o)

1 1 0

273 = (1)
Thus 1 , X

o
[v) = a]§,§> +5‘§,—§> = <5>
We have
(W) = |af* + |8

If the state is normalized, then

(W) = lal*+ 8P =1
Then



We can also define

which gives

In short,

1
§ = iﬁai, 1=2x,Y,2

3.4 The algebra of Pauli matrices
We have

Op0y =10, O0y0, =10y, 0,0, =10y

Thus
(02, 0y] = 2i0,, [0y,0;] =2i0,, [0:,0,] = 2i0y

Now we compute

ei(amaz—ﬁ-ayay-l—azaz) = eio?-&‘

We can also write this as
(0, ay, ) = a(ng,ny,n;), a=an
where 7 is a unit vector. We note that
(ngow + nyoy + nzaz)2 = ni + nz + nz =1

Thus we get

2 3
Teted i ., @ a7, o oy
eza":e“”“’:l—i—zan-a—y—zgnwf—i—...:cosa—i—z(n-a)sma

(99)
(100)

(101)

(102)

(103)

(104)

(105)



3.5 Rotations

For rotations about the z axis we have

) = |9) = e ) (106)

For rotations about the x axis we have

) = 10} = e 4 o) = (os 3 — isin Golv) = (55, TIRE )y qon

.. % o
2 1sin 5 Cos 5

3.6 Measurements

We write

!%é> = ((1)) (108)

I%,—; = (?) (109)

(OB‘) (110)

If the wavefunction (spinor) is normalized, we have

In general we have

of? + 187 =1 (111)

<§> :Cl<c11)+c2<(1)> (112)

If we measure $, we will get %h with probability |c1|? and —h with probability |cz|?.
If we measure §,, we will again get two possibilities %h and —%h. But we need the
eigenfunctions:

We can write

6 = %hox (113)
1 1
A=ohi ) = (() (114)
V2
. 1
A=—gh: [)o) = (@) (115)
V2
Suppose we are given ,
) = (g) (116)



Then we should write this as

3 1 1
<i>201<“1§>+62< @) (117)
5 V2 V2

If we measure §, we will get %h with probability |c1|? and —h with probability |cz|?.
An easy way to compute c¢;, co is to note that the eigenvectors are orthonormal. Thus
wee have

) = c1|lvg)e + c2th-)a (118)
where |¢)4), are the eigenstates of s, with eigenvalues i%h. Then we have
(V) = a1 oW ¥4 )s + 2 o (WY )2 = 1 (119)
2{V-[¥) = 1 oW |¥1)a + 2 (V- [tp-)o = 2 (120)
Thus we will get 5
1 \x 1 \x 5 7
o = (L), (L - 121
L= (%) @)(g) — (121)
Similarly,
2 1
(A (L« _
e = ((5) (%) )<§>——5\/§ (122)
As a check, we see that the probabilities add up to unity
1] + leof* = 1 (123)
4 Hamiltonians
The Schrodinger equation is
oy 4
h— =H 124
" = fy (124)
This gives
L1 £
¢ =e"ntlypy, g = o(t =0) (125)
For spin systems, we have a 2-dimensional Hilbert space, and so we can write
fI:AI+Bal+Cag+D03 (126)
We need ) R
H=H' (127)
We have
I'=1, ol =0 (128)



Thus A, B,C, D are real.
In particular for a spin placed in a magnetic field, we have

H=—ji-B (129)
We have
fj=-vS (130)
But 1
S = o (131)
Thus 1
H= V§h§ g (132)
4.1 Problem 10-8
We start with the spin in the state
1
vo = ( “P) (133)
V2
The first evolution gives
—LmT —itvBo.T 1 ——
P = e wi by = e 2VP%E gy = cos(il/BT) - ZSIH(§VBT)O'Z o (134)
_ (cos(3BT) —isin(3vBT) 0
N < 0 cos(3vBT) + isin(3vBT) Yo (135)
The second evolution gives
—LH,T —itvBoyT 1 ——
o =e RN qhy = e 2VP ) = cos(iuBT) - 151n(§1/BT)ay 1 (136)
_ ( cos(3BT) —sin(3vBT)
N <sin(%1/BT) cos(3vBT) V1 (137)
Thus the final wavefunction is
by = cos(3BT) —sin(3vBT) cos(3BT) — isin(3vBT) 0
= sin(3vBT)  cos(3vBT) 0 cos(3vBT) + isin(3vBT)
(138)

11
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The probability amplitude to get o, = %h is

A= (£ 4 cos(3BT) —sin(3vBT)
T2 V2 Sin(%uBT) cos(%uBT)

cos(1BT) — isin(LvBT) 0 N (139)
0 cos(3vBT) + isin(3vBT) %
1 1
= cos2(§1/BT) - isinQ(inT) (140)
and the probability is
1 1
P=|AP?= cos4(§BT) + sin4(§BT) (141)
We can simplify this further by using the identities
1 1
cos? 0 = 5(1 +cos(20)), sin*6 = 5(1 — cos(20)) (142)
which give
1 1 1
cos? 0 + sint 9 = Z(l + cos(26))% + 1(1 — cos(26))? = 5(1 + cos?(26)) (143)
Thus we get
1
P= 5(1 + cos?(vBT)) (144)
This can b mapped to the text through
€g
= 2 145
5 (145)

5 The Hydrogen atom

In 3-d we have

R:o9* 9% 02
(S — 14

0
th—Y(x,y,2z,t) =
5 V@9, 2,1)
We wish to write this in polar coordinates:
x=rsinfcos¢, y=rsinfsing, z=rcosb (147)

We can write )
w(xvyuz7t) — ¢(7“797¢7t) (148)

(We will write the ¢) — 1 from now on.) Similarly, we can write

V(z,y,2,t) = V(r,0,¢,t) (149)

12



and write V — V from now on. But we have

oY _ovor 0vol  0y0s
dr Ordx 00 0x 0¢O0x
Thus we need the inverse relations
21 .2
r= (x2+y2+z2)% = tan—t VI TV z+y qﬁ:tan_l%
For the second derivative
Pu_ 000 D 0vor  0bd0  dvds o
0z2  QxOx  Or'ordz 000xr 0¢dx Ox
L D 0vor w00 | 9b 0000
00 0r 0x 00 0r  0¢ Ox Oz
L 0Duor 0000 9vds 00
0¢p Or dx 00 0x  0¢ Oxr Ox
For this we will need to write
or 0 0o
ox’ O0x’ Ox
in terms of r, 0, ¢.
We can simplify this by computing
dx 9y 9z
e On o
M = (ae a0 ae)
dx 9y 9z
96 96 09
Then or or or
or Oy 0z
i
06 00 09
oxr 0Oy 0z
and now the derivatives will automatically be in terms of 7,8, ¢.
With all this we find (using the Mathematica file)
0? 0? 0? 9% 20 1,07 0 1 0?
Gz tap oV = Ga e T alae T e T g as)Y

6 Solving the Hydrogen atom

We have

(150)

(151)

(152)

(153)

(154)

(155)

(156)

(157)



where

62

k= 15
47’['60 ( 8)
Then
9] oo 20 1. .07 0 1 02 k
h—t = ——(== + —= t0— —|)v - - 159
hoY = “amar T rar T lag TV T Gzgag )V T Y (159)
There is no explicit ¢ dependence anywhere. Just as in an algebraic equation
d?y
92 Y (160)

we can write y = e, getting a® = «, we can try an exponential ansatz. Thus we write

¥ = x(r,0, ¢)e 5" (161)
getting
B R oo? 20 1 09 0 1 02 k B
E -t = — JR . I A Y —th
x(r0.0)e 7 R =[5 (54 D5+ g +eotfgg+ o) = (e 0, 0)e
(162)
Now the ¢ dependence drops out
R 0% 20 1 07 5, 1 02 k
—— (= — = — E
2m(6r2 T ror + [892 teo t989 + sin298q§2]) x(r,0,0) = (r 6:9) = Ex(r,,9)

(163)
If we solve this, we will get an energy eigenstate with energy E. But not all E values may
be allowed; thus we have to find the spectrum.
No we notice that the terms with derivatives in r separate out from terms with deriva-
tives in 6, ¢. Thus we try

x(r,0,9) = A(r)B(0, ¢) (164)

2 2 T T 2
—;71(3(97@8;2)+B(9,¢)i&;£,)+z4(r)12[§02+ to; 5111129(3452]3(9’@) (165)
R A(r)B0.0) = BAGBO.0) (166)

We divide both sides by A(r)B(#, ¢) and multiply by r2

R2 2 02A(r)  20A(r)  2mk
_%A(r)[ 87’2) r 85')+7#A( ) (167)

1 0? o) 1 0 5
_m%[802 +c 9%+m?¢)g]3(0,¢))+ET (168)

14



7 The angular Laplacian

We had
=L+ L)+ L2 (169)
This is
I’=L,L_—hL,+1L? (170)
. (0 0
_peit (9 9
Ly = he (89+zcot96¢> (171)
. . 0 0
—heio (Y9 9
L_=he <80+ZCOt08¢> (172)
Thus 5 5 5 5
LiL_=h[e? = +icotf—=— |][e ™ ( —=- +icotf—— 1
+ hle <89+ZCOt06¢>][6 < 89+ZCOt08¢>] (173)
—h2[——2+' t6 i —icosc?— —i te—Q— 02 _ tQHa—Q—I—i t29£]
= 692 7 CO 898¢ COSC 6¢ 7 CO 8¢60 CO 89 CO 8¢2 CO 8¢
(174)
0? 0 0? 0
_ 521 Y v 209 O 1
h [892+00t089+mt 98¢>2+18¢] (175)
0 0?
—hL.+L?=h— —h— 1
hL.+ L7 ﬁza¢ h8¢2 (176)
Therefore
L*=L.L_—hL +L2——fﬂ[a—Q+cot9§+cot208—2+i3+—i3+8—2} (177)
s R FT'E a0 992 9 dp ' 9¢?
0? 0 1 02
= R [== +cotb— 4+ ———— 1
(g2 + % * snzg 067 (178)

Thus this operator should take the eigenvalues

R21(1+ 1) (179)

8 The radial equation

e Wor? 9PA(r) | 20A(r) k
r r) 2 r)  2m
_%A(r)[ oz oo Tz A (180)
1 K2 92 o 1 2 )
= Bo.d) amloee T 05 T mzgag B9 + Er (181)

15



We write

n? o2 0 1 92

2 2
—h2[§92 + cot 9889 + szg(%g]B(e, $)) = 2mCB(0, ¢)
Thus )
omC = 11 +1), ¢ =D
2m
Thus we get

K2 12 82A(r)  20A(F)  2mk ) ;
_%A(r)[ 52 tog Tz Al =B - C=Ert -

This is G2 A(r) ne ( )
r) 2 r)  2mk 2mE (I +1
o T e TR AN e - T A =0
This is o2 5 21 )
2 2m [k PPl +1
ot it (B ) A0 =0

9 Long distance limit

[82 L20  m <'I:+E_th(l+1)>]A(r)—O

We have

o2 ror K2 2mr?
In the limit » — co we get

0? 2mE
|:(97"2 + 777,2 :| A(T‘) =0

Since we have E < 0 for a bound state, we write this as

PA(r) _ (_2mE> A

or? h2

which gives

)= e T

16

B2+ 1)

(182)

(183)

(184)

(185)

(186)

(187)

(188)

(189)

(190)

(191)



10 Short distance limit

For r ~ 0 we have
0?2 +28 I(1+1)

or?2  ror 72

A(r)=0

We try A ~ r®. This gives
ala—1)+2a—-1(l+1)=0

a>+a—1(1+1)=0
1 1
azi[—li 1+4l2+4l]:5[—11(2l+1)]:l,—l—1
Thus we get
A(r) ~ 7t

11 Simplifying the equation

0?2 20 2m [k R+ 1)
aﬂ+r&ﬂ‘m(r+E‘mmz>]“”—0

The constant term is, noting that £ < 0

We have

2m(-E), _
=6
We write
r=ap

202 T Zpap T \ap

[1 ? 129 2m<1k 1W>_C]A(p)=0

ap o 2mp?
We multiply through by o?

02 20 2m(ak RAI+1) 9
_— _—— _— _—_— — A =
[602 WG ( ? ) ) C] ()) =0

oo oL L
CO=1 =\ aE T\ s

h2
9 L20 G (R VAN
dp*>  pIp h2p p? 4

17

P 2mp

We set

The equation is

A(p) =0

(192)

(193)
(194)

(195)

(196)

(197)

(198)

(199)

(200)

(201)

(202)

(203)



0? 290 2m k1 I(l+1) 1
—_ 42z Sl ——|A(p)=0 204
[302 Toap " ( (—E)2hp p? 1|40 (204
Writing
2m k
A=y —= == 205
(—F)2h (205)
this is o 5 N )
2 +1 1
— + —= - — ——1A(p) =0 206
[apz o T <p p? > 4] (®) (200)
In this notation, the behavior at infinity is
m m L2
Awe_V_zﬁTET Ne_V_Z’ﬂEVmpwe*%p (207)
The behavior near the origin is
A~ (208)

12 Separating out the behavior at infinity

We write

A=e20G (200)

920 (A 1+DY 1] _
[8p2 "o (p p? > 4] "Glo) =0 ®10)
ie%pG(p)_e%pG’(p)+e%PG”(p)+/2)(—;eépG(p)+eépG’(p))+ [(2 - l(l; 1)> - ﬂ
(211)

, " 2 1 , A U(I+1) _
G+ 6+ 2560+ o+ | (5 -1 a0 e
2 A—1) I1+1) -

6(p)+ 2 116+ | (P2 - ) i =0 (213)

13 Separating out the behavior at the origin

We write
G=pH (214)

G'(5) + 12~ 16 (p) + [((A 1 ”)] Gp) =0 (215)

18
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A=1) 1(+1)

2
le”—l—l(l—1)pl_2H+2lpl_1H/+[;—1](lpl_1H—|—le,)—|— |:< _ -

2 -1
le//+2lpl_1H,+;le/—(lpl_1H+le/)+ |:<()\ )):| pZHZO

B aim i - i w) ¢ [<M>} H=0
p p p p

H”+(M—1)H'+[(/\_71_D]H:O
p p
14 Getting the lowest levels for each [
We can set H = const. if
A=1+1
Thus
2m k
——=10+1
S
2m ko 9
@(ﬁ) =(+1)
mk? mZ2et

E =

ToR2(I+ 12 2(4meo)2R2(l + 1)2

Py~ rle”V N

The wavefunctions are

15 Series solution for H

We write
H = Zakpk
E>0
H//+(2l:2_1)H/+[(/\_1_l)]H:0
_ 20 4 2 _ A—1-1
k(k‘ — 1)akpk 2 + (7 - 1)/€akpk ! + [( P )]akpk =0

We look at the coefficient of p*~1

(k+ Dkagsr + (204 2)(k+ V)agr1 — kag + [(A—1—=1)]ar =0

19
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(221)

(222)

(223)

(224)

(225)

(226)

(227)

(228)



(k+ 1)k + 20 + 2)apsy = (k— A+ 1+ Day, (229)
(k—A+1+1)

_ 230
Wt = Tkt 2+ ) (230)
Thus we get
A=Il+1+k k=0,1,2,... (231)
We define
n=I0+1+k (232)
Then
2m k
IR 2
—E) o n (233)
2m k2 9
A 234
(—EByan2 " (234)
2 2.4
o mk _ mZ-e 1 (235)

C2R2n? T 2(4meg)?h2 n?

16 Perturbation theory

We begin by recalling the perturbation theory for a general Hamiltonian. The details of
the perturbation expansion depends on the level of degeneracy that exists in the problem.
Consider a Hamiltonian

H=H® 4+ gD (236)

The eigenvalue condition is
Hy = Evy (237)

This condition will be solved by a state of the form

=@ 4 A £ 2293 4 (238)
and the eigenvalue will be given by an expression of the form

E=EO 4 xEM £ X2E@) 4 (239)
Now consider different levels of degeneracy:

(i) The unperturbed Hamiltonian H(® is nondegenerate for the energy level E(¥) that
we are seeking to perturb.

(ii) The unperturbed Hamiltonian H(®) is degenerate for the energy level E(9), but the
perturbing Hamiltonian H() lifts this degeneracy at first order in the perturbation.
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(iii) The unperturbed Hamiltonian H©) is degenerate for the energy level E(®) and the
perturbing Hamiltonian H™) fails to lift the degeneracy to first order in the perturbation.
The degeneracy is however lifted to second order.

We can continue in this fashion to more complicated situations. The standard text-
book treatment of perturbation theory terms (i) as the nondegenerate case and (ii) as the
degenerate case. In our problem however we will find that we are in case (iii). While
perturbation theory for all kinds of degeneracy is of course fully understood, we will review
in this section the theory for case (iii). This will help set notation, as well as remind us of
the expressions for lifting when we are not in either of cases (i) or (ii).

16.1 Zeroth order

The eigenstates of H(® yield a complete orthonormal basis ]1/1,(€O)>

(Vr k) = bij (240)

We will let the starting eigenvector for our perturbation theory have the index kg. At the
zeroth order in A we have

HOWOY = BD|y) (241)
16.2 First order
At the first order we get
(HO — EO)pMy = —HO ) + EO ) (242)
We write
Wy = 3" Crlel”) (243)
k#ko

where we have choosen to not include the k = kg term since that is already present in the
zeroth order wavefunction.
Substituting this in (242) gives

Y G(EY - ED)? = —HOO 1+ O 0) (244)
k+ko

Taking the inner product of both sides with (11),(;;)| we find

BN = (17O ) (245)
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Now we ask for the expansion coefficients Cj. To get these, we return to (244) and take
the inner product of both sides with <1/J,(€(,))| with k' # kg. This gives

3 OB — EODVoiw = — (D HD ) (246)
k+£kg

Now we have two cases:

16.2.1 Nondegenerate level E,(Cg)

Suppose that the energy level E,(cg) is nondegenerate for the Hamiltonian H(). Then (246)
gives

)} 77(1)1,,(0)
(o [HOly,))

0 0
)

Cp = . k#ko (247)

16.2.2 Degenerate level E,(Cg)

Suppose that the eigenvalue E,Eg) is degenerate; then |’QZJ’(€(;)> is one vector in a subspace
corresponding to this eigenvalue. We decompose this subspace into the vector |1/J](€2)> and
the vectors |ng_’)) orthogonal to ]1/1,22)) Then (246) gives a contradiction for the values
k' = k;, unless

(W HO ) =0 (248)

To resolve this difficulty we note that since the energy level E,gg) is degenerate, there is

no unique choice of the starting eigenvector |¢,(€2)). Thus we first diagonalize H) in the
subspace formed by these degenerate states with eigenvalue E,(C(O]), and let the starting state

W,g?) be one of these eigenstates. Then (248) is true. For k # ko, k; we get

O)| 7 (1)14,(©)
o= W)y (249)

(B~ E")

while for the coefficients Cy, are undetermined at this stage.

16.3 Second order

At second order in A we have

(HO — E;ES))W@)) = —HO|pWy 4 EOpM0y 4 E(2)]1/1,i(;)> (250)
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We can expand as before

=3 D) (251)
k#ko
getting
3" Dp(EY — EDY) = —HO[p®) + EO[p®) + By (252)

k'#ko

We take the inner product of each side with \1/1,&?% getting

E® = | HO W) = 37 Culwy 15 0”) (253)

kko

To find the Dy we take the inner product of both sides of (252) with <1/),(€O)| with &k # ko.
Note that <@Z),(€O)|1/)(1)> = 0 due to the expansion (243). We find

DEY ~E) == Y Co@HO WD) + EVC, (254)
k' ko

Now we consider different cases.

16.3.1 Nondegenerate level E(O)

Suppose that the energy level E,(CO)

(247) we can write

is nondegenerate for the Hamiltonian H(®). Then using

YO HO ) 2

gy 0

(255)
0 0
i (B - EBY)
**This is the point till which you need to know for this course **
Now we find the Dj. Substituting the value of Cj, from (247) into (254) we get
0 0 0 0 0 0
D= 3 WO WEO)  IHOw W E )
- 0 0 0 - 0 ’ 0
a7 (Eéo) EX) (B — EL) (B — B2
(256)
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16.3.2 Degenerate level E,gg), degeneracy lifted at first order

First consider the relation (253) for the perturbed energy. The coefficients Ck appearing

on the RHS are undetermined. But these coefficients multiply the factor (@Dk |H( |@Z) )
which vanishes due to the choice (248). Thus we can write

|<1/1 |H |¢ >’

2) _ k k

E(2) E © (0;) (257)
k#{ko,k:} (Eko £ )

Now let us come to the determination of the wavefunction. Let us set k = k;. Then
the LHS of (254) vanishes, and we get

- > G HOWE) = O I HOW) + BOC =0 (258)
k" #£{ko,k;} k;

where we have separated the contribution of the k; from the other states. Note that H()
has already been diagonalized on the space k = k;, and its eigenvalues are real. Thus we
have

W HO ) = By (259)
Thus 0
ch Wi 1HO ) = ECOCy 6 (260)
The relation (258) then gives
(BO - EMNCE = 3 Gl [HO ) (261)
k" #{ ko ki }

Suppose that the degeneracy of the level E,gg)

order; i.e.,

at leading order is lifted completely at first

EW — g1 £ (262)
for all 4. Then (261) gives

(WO | HO [y (0 [HO )
(B — B

1
Cl_ci = ‘(E(l) _ E(l,i)) k"#%:k } (263)
0,ki

Now consider the Dy given through (254). Using the Cy, k # ko, k; from (607), the Cr,
from (263) and the E! from (245) we get
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(o [HO [ O HO 0 (00 HO )
(Bl = Ep)

1
Z(Em_—E(u))Z

ki k£ {ko ki }
Ly (e HOPO) @ Oy @ [HOW) () [HO )
(B — B) (B — EY)
#ho ki

(264)

16.3.3 Degenerate level E,gg), degeneracy not lifted at first order

Now we assume that the energy level E,i(o)) is degenerate for the Hamiltonian H©), and
further, that H™® does not lift this degeneracy at first order. Let the indices kg, Ky, . . . run
over the entire degenerate subspace of H(® with energy EI(C?)); i.e., these indices run over
ko as well as the k;. Thus in place of (259) we have

(i |HO ) = BEW 4y, (265)

The difficulty this leads to can be seen as follows. Consider the relation (258). From (265)

we have <¢g_)) |HD WI%O_)> = EW§;;, and we find that the last two terms cancel. Substituting
i Jj

the value of the Cj from (607), we get

2.

k" #{ko.ki}

(i [HOW) (2 HO )
0 0 -
(EY ~ EW)

(266)

But there is no reason for this relation to be true in general. Thus we have a contradiction,
and need to find a different way to proceed.

The essential point is that if H(1) fails to lift the degeneracy of the level E,gg) at first
order, then we have no way of selecting the starting vector |iy,) from the degenerate sub-
space at the present stage. Thus we must postpose the selection of the eventual eigenvector
to the time when we have solved the perturbation to second order. Let us carry out this
step.

We define
ef O ) i | HO )

05, = My, (267)
0

2.

k' #{ke}

So far we have no particular reason to choose any preferred orthonormal basis in the space
of the k., but now we choose one that diagonalizes Mp,. Thus we have

My, = B85, (268)
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and the |1/)]%0)) are the eigenvectors of Mp,. Let us focus on one of the k,, and this will be

our starting vector kg in what follows. The k, orthogonal to ko will be termed k; as before.
Let us return to the relation (253). We have

0 0 0

PIRACHERITOEEDY <”mw%+zcmwwm>@w
k#ko k#{ko,ki} =Fk;

The last term on the RHS vanishes because of (265), and we get

ZuWWW%?

(5T~ 5D

B = 3 Gy HOW) =
k#{ko,ki} k#{ko,ki}

(270)

just as in (257). But note that we had to first compute and diagonalize the matrix My, to
find the vectors |¢,(£)>, |¢’$)> before the above relation could be written down for the case

where H®) fails to lift the degeneracy at first order.
Let us now consider the wavefunction. In place of (243) we write the more general
relation

=Y ) (271)

ktkq

Following the steps leading to (247) we get

w(o) H(l) ,(/}EO) -
Wi ((l) | o8 >, k # ke (272)

cp =

while the C7 remain undetermined at this stage. These undetermined coefficients will be
determined at the next order in perturbation theory if the degeneracy is lifted at that level,
and at a later order still if the degeneracy persists at the next level. The undetermined C}
lead to indeterminate coefficients Df at second order so the Df will have to be determlne(ﬁ
at a later stage as well.

17 The Stark effect

17.1 Dipole moments

Suppose we have charges q, —q separated by a distance d. Then the dipole moment is

Pl = qd (273)
with direction that points from the negative to the positive charge The electric field is

-

£=-Vd (274)
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where ® is the electric potential. For E=¢ z, we have ® = —Fz. For the dipole centered
at z = 0, aligned along %, we have charge ¢ at (0,0, %) and charge —¢q at (0,0, —%). The
energy is

d d
B = q®(5) ~ qB(~5) = —qde (275)
More generally,
E=—-p-& (276)

Energy eigenstates of the Hydrogen atom do not have dipole moments if we take definite
n, [, m. But we can make states with nonzero dipole moments if we take linear combinations
of degenerate states with the same n but different [, m. For example, note that

1
Yo0 = W (277)
3
Yio= e cos 0 (278)

While Yy o is invariant under z — —z, we find that Y7 ¢ changes sign. Thus in a sum like
Y00 + Y1,0 the amplitudes will add for z > 0 and partially cancel for z < 0. Of course in
our actual problem these spherical harmonics will be multiplied by functions of r, but we
see that in general the probability for the electron to be at z > 0 need not be the same as
the probability for the electron to be at z < 0. This gives the atom a dipolee moment in
such states.

17.2 The matrix of D

We have R
HWY = ¢& = ez = eErcos b (279)
We find o
(L., HD] =0 (280)

Thus H® can only connect states with the same m. Since the ground state has m = 0,
we look at the matrix

(2,0,0[H1M[2,0,0) (2,0,0[H1)|2,1,0)
(1) (1) (281)
<2,1,0\H ]2,0,0) (2,1,0\H ]2,1,0)
17.3 The wavefunctions
We have a form )
Y =Cple 2P A(p) (282)
Recall that (o At1+1)
—A+1+
_ 283
= Dkt 20 +2)™ (283)
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A=l+1+k=n
To compute A(p), we note that with n =21 =1

=0

=0

1 0-2+1+1
ap = ag=——=
0 ) 1 1 x 4
giving A(p) = 1.
With n = 2,0 =0
0-2+1+0
ag = ]-7 ) = ———_5 =
1x2
giving A(p) =1 - §p.
We have
A2
r=ap, «a= Sn(—E)
o _ mZ%et 1
2(4meg)?h? n?
Thus
\/h22(47760)2h2n2 h?(4meq)n
a = =
8mmZ2et 2mZ 2
1 2mZe?
a =
h2(4meo)n
Thus we have
1 2mZe?
=a r=———r
P h2(4meg)n
We define
h?(4meq)
ap = ——5—-
me

Then we have as the falloff

e_%p = 6_20‘ r = eiTLZTTO
We also have, for n = 2
1 zr
1—=p)=1-——
(1350 S

Let us now compute the wavefunctions. We have
_Zr
A(10) = Ce o

We have

> a2 (> d? 1 2
2 —br —br _
/0 drre db? /0 dre d2b b3
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(286)

(287)

(288)

(289)

(290)

(291)

(292)

(293)

(294)
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Thus

o [ o —2Zr 26, 00 \3 Z 3
d w0 =|C122(=2)% = 1 =22 2
CF [~ a5 < PagEy =1, € =2} (297)
Thus the wavefunction is
Z 3 _Zr
1/1100 S 2(*)26 @0 (298)
ag
We find 7 ; 7
T _4r 3
Ay =C(1 - —)e 2 C=2(—7)2 299
20 ( 2@0)6 o, (2a0)2 ( )
Thus the wavefunction is 7 7 .
3 r. _2Z2r
=2(2 )3 (1— 2
Y200 (2a0 )2 ( Sag Je 20 (300)
We have
Aot = Cre 3, = 2 (23 (301)
2\/6 ap

Thus the wavefunction is

1  Z s3Zr _2r
Vo1m = %(%)2?06 2ag Y1m<97 ¢) (302)

The spherical harmonics are

Yoo =—— (303)
sin fe'? (304)
Vi1 = —{/ — sinfe " (305)

3

0

3

m
Yio = /- cosh (306)
1,0 = ir COS

17.4 Elements of the () matrix
We have
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We have

27
/ do = 2w
0

(308)
/d@sinﬁcosH:O (309)
0
Thus we get
(20()|H |200)—0 (310)
We have
00 ™ 2m
(2,0,0/[HM|2,1,0) = / drr desme/ do
0 0 0
Z 3 Zr, 2~ 1 1  Z sZr _z- |3
2(=—)2(1 — —)e 200 —— Ol[—=(=—)2—e 2904/ —cosf
25,004 (1= 5o )e 0 o lleereosl (5 oLy | cont)
(311)
We have )
/d¢:27r (312)
0
/ df sin 0 cos” 6 = (313)
0 3
& Zr, _Zr Jr _Zr ap
2 a, a, P— 0
/0 drr (1—%)6 20ra—oe 2aq __36ﬁ (314)
. Z 3 1 1  Z 3 /3 2 a
2,0,0[HM|2,1,0) = [2 2 — ()24 2 (2m) (2 =32
20,01V, 1,0) = () el =)ty 2 (em () (-365) = ~3%0ee
We have

(315)
(2,1,0/HM|2,1,0)

2
/ drr? / d@sm@/

3 4r _Zr 1 Z 3Zr _zr |3
Y - 2a, 5
[\/§(2a0)2 aoe 0”47r cos 0][e€r cos 0] \/—7{ cos 0]

—)2—¢ 2a(
\/§(2a0) ag
(316)
2

/ d¢ = 2w (317)
0

/ dfsinfcos®>d =0 (318)

0
Thus we get
(2, 1,0|H |2, 1,0) =0 (319)
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17.5 The matrix

Thus we have

(2,0,0lHM[2,0,0) (2,0,0[HM[2,1,0) _ 3agef (0 1 (320)
(2,1,0lHM|2,0,0) (2,1,0lHM|2,1,0) ) —  Z \1 0

The eigenvalues and eigenvectors of

0 1
(0 -
are . )
1 1
A=1: — , A=—-1: — 322
2 (1> V2 (—1> (322)
Thus the energies are
(0) 3CL065 1
E=FE" — ) =—(]2,0,0) + [2,1,0 323
2 7 %) \/5(\ )+ | ) (323)
(0) 3&065 1
E=FE" + ) =—(]2,0,0) — |2,1,0 324
2 7 %) \/5(‘ )~ | ) (324)

18 Two particles

Consider two particles that can move on a circle parametrized by the coordinate 8. Let
the coordinate of the first particle be 6; and of the second particle be 6. The general
wavefunction will then have the form (61, 62).

We can however start with simpler wavefunctions of the form

U =11 (01)1p2(02) (325)

The reason is that we can then take a superposition of such product wavefunctions

U = tp1(01)h2(02) + ¥3(01)a(02) + ... (326)

and thereby get any arbitrary function (61, 62).

18.1 The effect of rotations

Let us recall how we expressed the effect of rotations on functions. Consider the 2-d plane,
and a particle that lives on the unit circle parametrized by 0 < 6 < 27.
Suppose we perform a rotation so that the function value at the point 6 gets carried to
the point 6 + da. We write this as
0 — 0+ (327)
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For any function f(#), the new function is

z 0
f(9):f(9—5a):f(0)+5a(—%)f(9)+... (328)
We define the angular momentum generator is
N 0
L= —zh% (329)

Now let us consider the effect of rotations on a function ¥ = 11 (0;1)12(02). We have
U — \i/ = wl(el — (50&)¢2(92 — 50&) (330)

We assume that da is small. Then (1) changes as

V1(01) = 1(01) = 1 (61 — dar) = 1 (01) + 50((—8(21)1,01(91) +... (331)
Similarly, 12(62) changes as
Yo (02) — Yo (02) = o0y — ar) = 1ha(6a) + 5a(—8892)¢2(02) +... (332)

Thus ¥ changes as
U0 = y(61)da(02) = (61 — 6a)a(fr — Sc)
0 0
- (zm(el) + 60— o 61) + ) (w2<92> + G0 (= Wal0:) + )

0 \n(6s) (333)

Y (01) 2(05) + 1 (01) G~

~  1(01)Y2(02) +504(—871

Let us now write these relations in terms of infinitesimal changes. The change in v (61)
is

51 (01) = T (1) — 1 (61) = 6a<—£l>wlwl> i (334)
Similarly, the change in 13(62) is
$ial0s) = 2(02) — balls) = B yballe) + .. (335)

The change in ¥ is

o = U0
(5oz(—8891)¢1(91) P2(02) + 1(61) 5“(_(9802)¢2(02)

Q

(336)
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We see that in the first term we have a derivative acting on ;(6;), but we leave 12(62)
untouched, while in the second term we have a derivative acting on (63), but we leave
11(61) untouched. When we leave a function untouched we say that we acted on the
function with the identity operator I. Thus we would write

52051 (6) () = (6a<—8>®z> $1(61) n(602) (337)

96 96,
Here the operator is in the brackets (...). The full wavefunction ;(6;) ¥2(62) is placed
on the right, and the symbol ® separates the two parts of the operator so that we know
that the part of the left of this symbol will act on 11(6;1) and the part on the right of this
symbol will act on 12(62).

Finally we can write all this with a small change of notation where we define
0

L= iz (338)

Then we get for any wavefunction, under an infinitesimal rotation da

o = —%mw (339)

We then find that
LD = (LD @ 1) v (B1)2(602) + (10 L) 01 (01)v2(62) (340)
19 Decomposing the product of two spin % representations

Suppose we have two systems each with spin % Thus the states are

11 11
59015050
1 1, 11
PRI
11,1 1
575)1‘57_§>2

|1 1> 1 1>
97 9/llgrT9/2

(341)

where |4, 2)1 means the state of system 1, with { = 1 and m = 1 etc.

How do these four states respond to rotations? Do they fom a single representation
I,m) with [ = %, and m = %,m = %,m = —%,m = —%? Or perhaps a representation |/, m)

with [ =1 and m = 1,0, —1 and another representation with |I,m) with [ = 0,m = 07
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The total L(T) operator is given by

LD =M 4 LO® (342)

L0 — LV 4 @)
T _ r(1 2
LN =L + L?
L =M 4+ 1™
(343)
We can define, as before
LY =L £iM
LY = L® +iL®
(344)
Note that 1
5 (LS:) eIP+1Y g L@) — IV eI®+ 1M o L® (345)
Thus
1
1P @ LY + < (L‘j) Y A AN L(f)) = VL@ +LPVeL® + 1M e L®
= [W.L? (346)
Note that to avoid complicated notation, we sometimes omit the ® symbol.
19.1 Examining the states
Let us look at the state L1 11
=, =M=, = 4
The total angular momentum operator has the components
F SR A Aoy (348)
We define
1P =+ (349)
Let us compute
am, 1 1,11 (1) @), 1 1, 11
Ly’ =, ==, = = (L I+1®L -, =h|=, =
+l5gnlgge ( + e +)'2’2>1|2’2>2
(350)
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Recall that

11
;oL L
+l3gh 0
@, 1 1 11
Wiz 2y, — = =
+ ‘2’ 2>1 ’27 2>1
w11 11
Wiz 2y, — |2 =
_ ’2> 2>1 ’2> 2)1
w1 1, _
—l5 2>1 0
(351)
Similarly
oy, 1 1
LY|5 50 = 0
@1 _ 1, _ 11
Lilg =3k = I35k
11 1 1
gl 11
: !272>2 !27 2)2
@1 1
L= 2y, =
- |2, 2)2 0
(352)
20 Decomposing a product of representations
We have two spin half particles. The states are
11 11
33ty 50
1 1. 11
’57—?1 55)2
11 1 1
)l g
1 1.1 1
|§a_§>1 §a_§>2
(353)
20.1 The spin 1 (triplet) representation
Let us start with 11 11
U= !§,§>1‘§7§>2 (354)
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We see that

. . 11
LMy = (LS)®I+I®L§2)) 52501552
1,11 11 1,11 11
= aMlygnlyg iy ghls 5
11,11
= \§,§>1\§,§)2 (355)
Thus we see that mp = 1. More generally, we see that
mr = mi1 + mo (356)
Now let us check
. . A 11 11
= 04+0=0 (357)

Thus we see that I:SFT)\I/ = 0, so that it would be a m; = 1 member of a multiplet with

It = 1. Thus we write

11,11
l =11,1)=|=, )=, = 358
tromr) = [1,1) = |5, 5)1l5, 5)2 (358)
Now let us compute
. . . 11,11
iMy — (L(l) 141 L(2)> et O el
v S OIH1 LT )5, 5hlgs 5)e
1 1,11 11,1 1

= ‘57—§>1‘§, §>2 + ’57 §>1|§7 —§>2

(359)
We see that this is a state with mp = 0. Thus we expect this to be a lp =1, mp =0. It is

not normalized however, and we find its norm is 1 + 1 = 2. Thus we define the normalized
state

1 1 1. 11 11,1 1
I =11.0)= — [ |=. ==)4|=. = S )
tr,mr) = 11,0) = 75 (15, phlze g2 + 5. gl ) (360)
From the above we see that
21,1y = V2|1, 0) (361)
which agrees with the algebra of the L;.
Now let us compute
(1) e A(2)> 1 (1 1,11 11 1 1
LY|1,00 = (L 141 L) — ||z, —=)1]=, = -, =)l=,—=
Doy = (1901410 27) T2 (15, -3hlg gl + I3 phlz -3
S TS S O S PR AU OOE
_\/527212722 \/527212722
1.1 1,1 1
= \6%|§7_§>1|§7_§>2 (362)
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We define
11 1.1 1

i, mp) = [1,-1) = 7\5,*§>1|§7*§>2 (363)
20.2 The spin 0 (singlet) representation

It is a general rule that states of different representation are orthogonal to each other. We
need to have mp = 0. Thus we are looking for states in the subspace

1 1. 11 1 1. .1 1
S Y g S Y 364
01|27 2>1|2a2)2+62\2,2>1|2, 2>2 (364)

We already have the state

1 1 1 11 11 1 1
1 = — —_ _— —_ —_— - - - -
‘ 70> ﬁ(‘2, 2>1‘272>2+‘272>1|27 2>2> (365)

A state orthogonal to this has to satisfy

c1+c=0 (366)
If we normalize the state we get
1 1 1, 11 11,1 1
l = = — _, — = _. = — =, = -, — =
tr.mr) = 10.0) = =5 (15 phlze 32 = 5. gl ) ) (367)

21 Computing (L())2
Let us now compute

LR =

=
N—
(V)
&
—
+
—_
&
Ve
~>
S
SN—
[N~}
+
b
o
80
=
&
~
e
N———

= LO2@1+10(L@)2+2 (LQ) o LP + I o L® + LY @ ng))
= (LY 4 (L®)2 4 2LM . L) (368)
where in the last line we have not used the ® symbol for simplicity. Thus we have

(L2 = (L2 4 (L@)2 420V . L) (369)
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22 Measurement

We have written states as kets |¢)). The conjugate states are written as bras (x|. The dot
product between these is written as (x|¢).

~

Consider a Hermitian operator O; all observables, in particular, are Hermitian opera-
tors. Let the eigenstates of O be called |n), corresponding the the eigenvalue A,,.
The eigenstates |n) form a complete orthogonal set; we can normalize them so that we
get
(nilnj) = 6 (370)
22.1 The identity operator

We can write the identity operator as follows

1= |n)(n (371)

i

To check this, suppose a general state |1)) is expanded as
) = erlng) (372)
k

Then we have

(Z |n><nz’|> ) = (Z |ni><ni’> > erlne) =D 0 erbilni) = ailng) = [¢) (373)

%

which shows that ), |n;)(n;| acts like the identity operator on every state.

22.2 [Expressing n arbitrary operator

Now we argue that the operator O can be written in terms of its eigenvalues \; and the
eigenstates |n;). We will argue that

0= Z Ailna) (ng (374)

To check this, let us compute the action of the above expression on one of the eigenstates

|ng). We get
(Z )\i|ni><n,~> Ing) = Z Aibik|ni) = Ak|ng) (375)

which agrees with the expectation O|ny) = Ag|ng). Since our expression agrees with the
action of O on all eigenstates |ny), this agreement will automatically extend to all linear
combinations of the |ng), which means the agreement extends to all states |¢).
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22.3 Measurement

Suppose we start with a state [1)) and make a measurement of an observable O. The
following are the rules of measurement:

(i) The measurement will have to yield one of the eigenvalues of O; let this eigenvalue
be A, corresponding the the eigenstate |ng).

(ii) After the measurement, the state of the system will be this eigenstate |ng).
(iii) The probability of getting this outcome Ay is given by

P = | {n|¥)? (376)
This expression can be understood by writing
) = cilna) (377)
The probability is then
i = lexl? = [(nglp) (378)

22.4 Two systems

Suppose we have two systems, called 1 and 2. First we look at the structure of states and
dot products.
A product state of the full system can be written as

|¥) = |¥)1lx)2 (379)
Let another such state be
) = [ )1l )2 (380)
Then the dot product is
(W) = @' [P} [x) (381)

A general state that can be written as

) => ") Casltha) Ixs) (382)
@ b

where |1),)1 is an orthonormal basis for system 1 and |yp)2 is an orthonormal basis for
system 2. We have the following kinds of questions that can be asked:

(i) What is the probability that we get a state

[9) => > Dealtha)lxs) (383)
c d
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Since we have a complete states of a complete system (formed by systems 1 and 2), we just
have
P = [(W')]? (384)

(ii) What is the probability to find a state

)1 = Deltoe)s (385)
&
Now we compute
X))z = 1 (¢ ¥) (386)
to get a state is system 2. Then we have
P=x)2l* = 2X'[x)2 (387)

(iii) Suppose we measure system 1 and find the eigenvalue \j corresponding to the
eigenstate |ng) for an operator O acting on system 1. What is the probability of finding a
state |x/)o for system 2 after this first measurement?

Note that O is an observable on system 1, and does not affect system 2. Suppose the
measurement of system 1 gives the eigenstate |ny). Then the full state after measurement
will have the form

[¥') = D(|rk) (ne| @ 1) | W) (388)
where D is a constant that we will have to find to normalize |¥’). We can then proceed as
in (i) above.

22.5 Applying this to problem 10.13

(i) We can write the singlet state as

W) = é ()1 hem)z — Ixdihes)2)) (389)

By inspection, we can see that if the spin of system 1 is |x+)1, then there is no amplitude
for the spin of the second system to also be up; i..e, |x4)2. Thus the probability is zero.

Formally, we can proceed as follows. After the spin of the first system is measured an
found to be |x4)1, the state of the system is

[T = D((|nk><”k|®—r))\2(|X+>1|X—>2—|X—>1|X+>2>)

= D ((\X+>11<X+! ® El: |nl>22<nl|)> \}5 (Ix+)1lx=)2 = Ix=)1lx+)2))
= D ((Ix+)11{x+] ® (Ixa)22 (el + Ix—)22(x-1)) \}5 (Ix+21lx=)2 = Ix=)1lx+)2))
_ 0 (390)

40



(ii) We can write the spins in the y basis. Then the singlet is

W)o = —= (IXD1lx?)2 — xDlx)2)) (391)

where we noted with a superscript that these are y direction spins. The measurement of
the first spin giving the result [x%); will give the final state as

X)X )2 (392)
The probability that the second system is in spin state | Xﬁ)g is
P = ()P = (393)
where we used the explicit form of these eigenstates in the z basis

=5 (1) =25 (1) (304

To do this formally, we can proceed as follows. After the spin of the first system is
measured an found to be |x% )1, the state of the system is

W = D((m) nk|®f>>\}§<r><+>1x>2—|x>1|><+>2>>

= D < XD @ Imi)ae m!)) %(’X+)1’X—>2 — Ix=)1lx+)2))

l

= D((nlet] ® (esdanlie |+ W-daale-D) 5 (xbdz = habesa)
) } () |xi>1|><+>2+\}1<xi|><+>1|xi>1|x>2)
= D (=5t + (e
— Dt (heds+ 3hes)
(395)
The normalized state is
W) = (}( 2 + )2 >> (306)



To find the probability that the second system is in the |07 )2 state, we compute

4 - z<xﬁ!<\[(l><+>2+\x>)>

= (Fgeburl+ st ) (5 et o)
S+ (397)

Then the probability is

=14P = (398)
(iii) Suppose the first spin has the form
[)1 = cos o |xt) + sinage®t|x_) (399)
and the second spin has the form
IX)2 = cos as|x4) + sin age®?|x_) (400)
Thus the overall state is
|¥) = (cos o1 |x4)1 + sin e ’X—>1) (cos az|x4)2 + sin ager]X_)g) (401)

Let us ask for the probability for this to be in the singlet state

1
U)o = —= (Ixa)1lx—)2 — Ix-)1lx+)2) (402)
V2
The amplitude for a singlet is
Ag = (¥o|¥)
1 . ; . ;
= —= (Ol 20— 1x=l20x+]) (cosar|xs)r +sinare™ [x_)1) (cosas|x)2 + sinaze™|x_)s
V2

1 . ) 1 . :
= ——cosajsinase™ — — sinaqe™ cos as
V2

V2
(403)

The probability for a singlet is
1 ) .
Py = |Ag)* = 5] cos ay sin aze™™ — sin a1 cos ap|? (404)
The probability of a triplet is then

1 X .
PP=1-FP=1- §| cos o sin ape’™ — sin a1 cos ag|? (405)
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23 Particle in a magnetic field

23.1 The classical Hamiltonian

We have )

H=_—(5— qA)?

5 (7 —q4)
o0H 1
L (Pe — qAz)

Thus

Pr = mi + qAg
We have

oOH 1 1 1

Ny = —— = —— —qgA ) (—q)A, , — — —qgA)(—q)A, . — — —qgA,)(—
Pz O m(p:v q x)( Q) T, m(py q y)( Q) Y,T m(pz q z)( q
This is

mi + q(Azod + Avyl) + Av22) = @3 A0 e + JAy e + 2Az22)
mi = q(§(Aye — Acy) — 2(Azs — Aza))
mi = q(yB, — 2By)
mi = q(7 x B)y

23.2 General notations

Minimal coupling is

P p—qA
Thus for the electron we have .
pP—p+eA
The Hamiltonian is
H= Qi(pw eA)? — ed

The schrodinger equation is
1 . .
ihdp) = —(—ihV + eA)?h — ed1)
2m
This is

ihoph = —himp — @A’ Vi) — @(v Ay + —Asz — ed)

(Here there may be a factor of 2 error in the third term on the RHS.)

For a coulomb potential
1 Ze

dmeg T

(Here there may be a sign error in the text.)
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23.3 The gauge potential

Suppose we have a constant magnetic field B. Then we get this from

A= —%*x B (420)
As an example, let
B =DB,2 (421)
Then we have
7 x B = B,(y& — x7) (422)
and !
A= By~ ) (423)
We check that
V-A=0 (424)
23.4 Weak constant magnetic field
We have
ieh, » o ieh 1., = =
(AT = () B) - Ty
ieh 1.5 L =
= (—W)(—?Vﬂ) ("% B)
ieh 1. - = .
= (_H)(_ﬁ)B (Vi x7)
= (DB X T
ieh 1 1 = o
= N g B (i)
(& = PN _
= (%)B (7 x pi)
e .z .
= (%)B (7" x p)
e .- o
= (T)B Ly
(425)
23.5 Problem 16-1
‘We have the for the 3-d oscillator
h? I 5,
H= —%A + SMWT (426)
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This is spherically symmetric, and we can write its solutions as
w:RnT,l(T))/lm(97¢)a n:071727"'

The energy levels are

E:hw(Qnr—H—Fg)

where n,[ are independent integers.
Now the Hamiltonian is

E:H—%ﬁﬂz

Thus the energy levels are

3 h
E:hu)2 l - ) — Bz z
@nti+3) =5, Bm

23.6 Radial equation for 3-d Harmonic oscillator

The equation is

PH(y) 1+3 dH(y) A—21—-3
—1 H(y) =0
We let
H=3} aw"
n>0
This gives
n—2 I+ % n—1 A—-2l-3 n—1
n(n —1)a,y" = + (7 — Dnayy" ™ + (f)any =0
The coefficient of y?~ ! is
3 lambda — 21 — 3
(n+ Dnapt1 + (1 + 5)(71 + 1)ap+1 — na, + 1 anp =0
This gives
ni1 M- ,\filfs

an  l+3+n
Thus we need
A—20-3

T
" 4

for some n, = 0,1,2,.... This gives

A=4dng+20+3
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24 Landau levels

24.1 Classical particle in a constant magnetic field

We had ey
(P4 eA)
H=—F""—"" 438
oy (438)
Thus SH
P = = A 439
€r P Dz + €Ay ( )
etc. Thus 1
= —(F+ed 440
= (7+ed) (440)
Thus the mechanical angular momentum is
MEXT=FXP+erxA (441)
In the gauge
" 1 .
A= —577 x B (442)
we have ) 1
mit X @ = 7' x = Jer x (i x B) = L - e ((F-E)F—TQE) (443)
We take the z component and assume that we are in the z = 0 plane. Then we get
B
mrv = LZ + %TQ (444)
From the rotation equation, we have
2 B
m = evB, wv= i, mur = eBr? (445)
r m
Thus we have
2 1 2 1 2
eBre =1L, + 5637‘ , L,= §€BT‘ (446)
We now set
L, =nh (447)
Thuis gives
1 2nh
~eBr? = 2= 44
BT nh, T B (448)
The energy is
1 1 e*r?B*  1eB2nh  eM
E=-mv?=-m%" = 2 (449)

m? 2 m m
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Writing

— =w (450)
we have

E = nhw (451)

so the level spacing is iw though the levels are highly degenerate because of the arbitrary
choice of position.
If we do all this in the gauge

A = Bxj (452)
then instead of
eB 5
mrv= L, + -7 (453)
we get
mrv = L, + eBx? (454)

If we average over a circular orbit, we see that we get the same numbers.

24.2 The constant magnetic field in different gauges

We have taken

. 1 .
A= —577 x B (455)
This gave
. 1
A= —§B(y§c —z7) (456)
When we take the curl of this we get
- 1 1
(VxA), =0,Ay —0yA, = §B + §B =B (457)
We could also take
A= —Byzx (458)
or
A = By (459)

We will take the latter.
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24.3 The Hamiltonian
In the gauge

A = Bxj (460)
we have
A, =0, A,=Bz, A, =0 (461)
Thus we have
1 — ™2 1 2 2 2 1 2 22 2 2
H = %(ereA) = %(pﬁ(pﬁeBﬂﬁ) +p;) = %(prr?eprHe Bxz® +p;) (462)

Here the order of py, x did not matter since they commute. We see that
[Hv py] = 07 [Hv pz] = O (463)

Thus we can choose simultaneous eigenfunctions of H, p,, p.. This can be seen more directly
from the equation, where we can take

1/] — eikyyeikzz (464)
We will set
ky=Fk k.=0 (465)
Then
py = —ih0y — —ih(ik) — hk (466)
Then we get
Hy = L(p2 + W2k? + 2eBxhk + ¢*B%2?) = —(p2 + 2B (x + %)2) (467)
2m " 2m " eB
This is a harmonic oscillator, with
1, 1 5 9 eB
= = —e°B = — 4
g =g etBh w= (468)
Thus the energy levels are
1
(n+ i)ﬁw (469)

But note that k is arbitrary, so the levels are highly degenerate.
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24.4 Relation to classical frequencies

In the classical theory, we have the force
F=—¢etixB

This gives rise to circular motion with

2
mu erB
=F=evB, v=——
r m

This gives a time period
2rr  2mrm 2mm

v erB  eB
The frequency and angular frequency are then
1 eB eB

V= — = , w=2mv=—
T 2mm m

24.5 Boundary conditions

(470)

(471)

(472)

(473)

We have a strip of length Lo in the y direction. It is better to use a periodic box. Then

_ 2mn

=2
Lo

(474)

Thus the = locations, for a given value of the excitation of the harmonic oscillator, are

B hk B 2mhn*
T TUB T LyeB
This has the range 0 < x < L;. Thus
bl
L2€B

which gives
eBLi1Ly eBLiLs

ma:p| = 27Tﬁ - h

We see that % has the dimensions of an area, so we define a magnetic length

0
B= eB

Thus the number of states in the sample per unit area for each Landau level are

1
27rl23

|n.

np
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24.6 Problem 16-2

We have 1 1
H= (L= =(Fxp)? 4
S (D = 527 %7 (450)
In a magnetic field p changes to
p—op—qA (481)
In a constant magnetic field this is, using A= —%F x B ,
T SR
p— P+ §q7"><B (482)
Thus 1 1
Fx§— 7 x (F+ 507 x B) = L+ 5q (7 B)F = rB) (483)
The full Hamiltonian is given by
H= L (F+2 (* By# 2§> 2 (484)
= — —q(7-B)f—r
21 21
In the limit of small B, we have
L1 . . . Lo
(L+35q (F- ByF — rZB))2 ~I2—q?B- L (485)

where we have noted that in computing

A A A A

L-7— (ip. — 2py)

>

. (486)

we never get any terms that do not commute, and so L -7 =0. The same is true for 7 L.
Thus we set

L-7=0, 7-L=0 (487)
and also note that we can write our terms so that the term (7 B) is to the left or right of
the above terms.

Thus we get
He~ tf2_ 1 5.7 (488)
21 2M
where we have used that
I = Mr? (489)
The spectrum is
h? qBhm,
— 1) — 4
5 Il (l+1) Wi (490)
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25 The Hall effect

25.1 Conductivity

Ohm’s law says

V=IR (491)
Let the resistor have cross sectional area A ad length L. Then we have
1
Rx—, RxL (492)
A
SO we can write I
R=p— 493
Py (493)

where p is called the resistivity. We can write for the potential drop across the resistor
V=EL (494)

where £ is the electric field. The current can be written in terms of the current density j
which gives the current per unit area

I=Aj (495)
Thus we have I
£L= (47)(p5) (196)
which is )
j=-£& 497
P (497)
We define the conductivity o as
1
p (498)
which gives
j=0c& (499)

For simple cases, j will have the same direction as £. Thus we can write
j=0€f (500)

But more generally, the two vectors will be proportional, but not necessarily in the same
direction. This can happen if there is a magnetic field, since the magnetic field will try to
drive the electrons sideways as they move forward along the direction of £. Thus we write

Ji = Zaz’jgj (501)
J
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Thinking of 0;; as a matrix &, we can write this as

j=6E (502)
The resistivity is defined as
p=6"1 (503)
so we have
£ = pj (504)

25.2 The physics of conductivity

The force on a charge q is
F=q¢€+qixB (505)

Suppose first that we have B = 0. In a constant electric field, it would seem that electrons
will continue to speed up with time. But these electrons collide with the ions in the
material, and after every collision we can assume that their velocity gets set back to zero.
Between collisions, we have

dv q&t
2 g€ == 506
m® = gg, v="L (506)
Let the time between collisions be 7. The maximum velocity will be
Er
Umas = (507)
m
and the average velocity will be
Er
Vap = g—m (508)
The current density is then
. 2nEr
J = anvey = T (509)
where n is the number density of charges. We thus get
2
q°‘nt
= 510
- (510)

We can write the effect of the collisions as an effective force Fiy;. This force applies a
momentum change

Ap = —MUpmer = —M—— = —q¢ET (511)
after every interval 7. Thus the average force is

_Ap _
=

Fay —q€ (512)
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This is as expected; the average frictional force from collisions has to cancel the force from
the electric field.

Now let us do this more abstractly, so that we can use this when a magnetic field is
also present. The frictional force changes the velocity from v,,4. to zero after every time
interval 7. Thus

mu
|f] oc —= (513)
Since Vpmazr X Vgy, We can write
f—»: MUy (514)
T

where ¢ is a constant of order unity. If the collisions happen very frequently (i.e., 7 is
small) then we can write vy, = v where v is the velocity of the particle. Then we have

Feo

(515)

T

Since 7 is not a very precisely defined quantity, we can redefine = — 7, which gives ¢ = 1
and

- mu
=—— 516
F=-= (516)
Now consider the charge in a region with both electric and magnetic fields. We have
W _ e qixB- "¢ (517)
m— = U - —
dt e 7 T
In steady state, we will have
dv
— =0 518
7 (518)
Then we get
- -~ m
g€ +qix B——v=0 (519)
T
Let us assume that we are in a 2-d plane x — y and
£=Ei,B=B: (520)
Then
m
g€z + quyB — P 0 (521)
g€y — quy B — Tvy =0 (522)
T
Thus
m
—7 qB\ (v _qu>
T = 523
(o 22) ()= (5 2
The current density is
Jj=qnv (524)



Thus

which is

Thus

We note that

B B
Poy = —7—— = —
gn en
is independent of 7. (In the second step we have replaced ¢ = —e.)

With quantum effects, we had seen that if we fill the lowest Landau level

_eB
"
Thus
Pxy = 2
If we fill v Landau levels, then
eB
n= 7V
and
h1
Py = 25,
We have
g_nh
ve

(525)

(526)

(527)

(528)

(529)

(530)

(531)

(532)

(533)

(534)

Here n is the number density, so it has units of (Area)™!. Thus % has units of B x Area,

which are the units of flux. We define the basic flux quantum as

Dy = —
e

o4
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26 Time dependent perturbation theory

Let the Hamiltonian be R R
H = Hy+ A\V(t)

We define X
Ho|pk) = Ex|dx)

The Schrodinger equation is
ihdk|y(t)) = (Ho + AV (1)) | (1))

We expand

= 3 a®)e gy

k
Then

ihZc’k(t)e*i%t\m)—i—z Ck(t)EkeiiETft‘(ﬁw = ch(t)Eke i t‘(ﬁk +/\ch
k k k

i1 a0 o) = A3 eV (e o)
k k

We take the inner product with <¢l| on each side. This gives

ihe(t —)\ch le‘v( ) Pr)

BV (1)) )

Thus

L G|V () )

(536)

(537)

(538)

(539)

eI g

(540)
(541)

(542)

(543)

(544)

This is all exact, but since we have ¢, (t) on both sides we cannot solve this equation. Thus

we insert
ck(t) — ck(0)
on the RHS, Then we get

l)t/

a(t) = a0 —*)\Z dtCk e (V) r)

S |V () o)

(545)

(546)

(547)



26.1 Harmonic oscillator with a time-dependent frequency

We write
W2(t) = W+ Aq(t) (548)
We have ) )
g_ P 1 9y P 1 9o 1 .2
H = - + 5w (t)z* = o + 5MWod + 2m)\q(t)az (549)
Thus )
V(t) = 5mq(t)ae? (550)
We have
_ L Atk 551
60) = —=(AD" ) (551)
We also have
mw 1
A=, /—x+1 552
2h 2mwhp (552)
1
A= [T 553
2h 2mwhp (553)
Thus
h o o
P =/ —— (A4 Af 554
o 2mw( +47) ( )
P2 = L(,21 + Ah)? (555)
2mw
Thus
V(t) = Sma(t) (A + A1)2 = g(t) 2= (A + AT)? (556)
2mw 4w
Thus we get
ho 1 1 Al A AT\2( AT\E
(o|V ()l or) = q<t>@7?<om (A+ AN (A")"|0) (557)

For a given [, we have three possibilities:
(i) k =1+ 2. Then we have
(04" (A + AT)?(AT)¥|0) = (0] A" (A)*(AT)"*?|0) (558)
= (0|A"2(AT)*2)0) = (1 +2)! (559)
(ii) K =[. Then we have
(0] A'(A + AT2(AT)¥|0) = (0] AY(AAT + ATA)?(ATY|0) = (0] A'(2AAT — 1)2(AT)|0) (560)
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= 20| AL (AN 0) — (0| AL(AD0) =201+ 1)! = 1! = [2(1 + 1) — 1JI! = (20 + 1)I! (561)

(iii) k =1 — 2. This needs [ > 2. Then we have

(0] AH(A + AT)2(AT)*|0) = (0] A (AT)*(AT)2|0) (562)
= (0|AY(ANY0) = 1! (563)
We have )
By, = (k+ 5)hw (564)
(i) k=1+2:
t (Ep—E)) ,, t _— h 1 1
dt'e ™ 7 Y|V (¥ :/ dt'e 2V g(#) — — ———— (1 + 2)! 565
/. @IVl = [ e ) o) (665)
K t -
SN/ (Y / dt'e=2t (1) (566)
4w t/IO
(ii)) k=1
3 (B — , t 1 1
e BT Ve = [ dtat) - = L @snn  (567)
=0 =0 4w /111!
h t ! !
= —(20+1
4w( I+ )/t’:Odtq(t) (568)
(i) k=1-2:
t (BB ¢ - ho1 1
dt'e "7 V|V (H = / dt' e*t () — — ——|! 569
/. IV = [ drerat) e (s60)
_ I 1(1—=1) / t dt'e* q(t) (570)
4w tlfo
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27 The Fermi Golden Rule

27.1 The 2-level system

Consider a 2-level system

ihop) = aoqy (571)
Suppose we start with the state [)1) = (1,0). Then we see that
1 1
o = —ﬁ01’¢+> = _ﬁ’¢—> (572)

But since the Hamiltonian is Hermitian, we will oscillate between these two states. To see
this, we look at the eigenstates

1 1 1
= —(1,1), | )=—=(1,-1), | =(1,0)=——= + [ 573
Y1) ﬂ( ) o) \@( ), [¥i) = (1,0) \/ﬁ(\dw =) (573)
The eigenvalues of the Hamiltonian are
E,=a FE_=-« (574)
Thus the state at any later time is
1 i i
t) = — (e‘ﬁo‘t +en®y_ ) 575
|%(t)) 7 |¥4) |9-) (575)
In particular, at
%t = 2nm (576)
the state returns to its initial form [¢).
27.2 The exponential
We have
thoy U = HY (577)
Thus .
O = —%H\IJ (578)
If H is time independent, we get
U(t) = e nH1Y(0) (579)
We can break this into steps
e #Ht _ o~ HAt —pHAt  —pHAt (580)
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Suppose we have
H=Hy+ Hy (581)

with H; small. Then we have at first order
e~ wHt = e_%HOAt(l - %HlAt)e_%HoAt ...e wHoAL (582)
The first order term is
e‘%HO(t—t/)(—%HlAt)e_%Hot/ = e_%HO(t_t/)(—%Hldt')e_%Hot/ (583)

Suppose this acts on a state with energy E; and transitions it to a state with energy Fs.
Then we have

6’_%E2(t_t,)(_%HlAt)e_%Hot/ = 6_%H0(t_t,)(_%<¢2|Hl¢1>dt/)€_%Elt/ (584)
The amplitude in state [¢)2) at time ¢ is

t . ; .
()= [ OO gl )y kY (585)
t'=0

27.3 Transition to a band

But in a special case we can have a behavior where the amplitude in an initial state leaves
and does not come back, at least for very large times. Suppose e start in a state with energy
Ey. Consider a band of states |1¢,,) with energies E,,. Let the amplitude to transition, per
unit time, into the state [t,) be —%Rn; thus the amplitude to transition back per unit
time will be — Ry. Then the amplitude in state [¢,) at time ¢ is

t ; ’ ) : Enp, ’ ) : Enp, t iW(En—Eq) 4
en(t) = / i (—andt')e_’ET(t_t) = —ZRne_ZEht/ dt'e™ (586)
=0 h h #=0
This gives
i - En h i(E’n«fEO)
E(t) = ——Re‘mt—— " (e 7 t_1
Enlt) e (B, - Eo)( )
i _ 1, (Bn+Eqp) h .. (B, — Ep)t
= ——Rpe 2" 7 '————— 2jsin—"——~—
Bt iW(En—Eo) ™™ on
. (E,L—E())t
_1.(EntEq) SN ~——557——
= —Rpe 2t n ! ((En—%;)> (587)
2h
The probability at time ¢ is
. (Ep—Eo)t\ 2
sin =2~
Py(t) = |Ral? ((En2Eho)> (588)
2h
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Let the level spacing be A. Then we have
1
— E
> a [

Let us also assume that R, ~ R in the range of interest. Then we get

=> Pu(t)

We have

Thus

where

is the number of energy levels per unit interval in energy; i.e., the level density.

27.4 Delta functions
We have

Thus we can say that

acts like a bump-function with integral unity, and width Az ~ 1. We then have

Thus

|7 si
" [ (S

1 sin?(xt)

[ s

7 (xt)2

1 sin?(xt)

™

2

2

1 sin

2

(E— Eo)t
PR TT9R
E

sin“ x

=T

T

T x2

~ §(xt) ~

1 ,sin®(xt)

%5(3:)

(z)?

s

60

(xt)?

= td(x)

_)
_ 20RPt [ ((E-Ey)t sin (EZEo)t
N A 2h (E—Eo)t
2h
sin®
/dx 2 =7
P(t) 27h|R|? 9
= 27h
” A |R["p
_ 5
P=A

>2

(589)

(590)

(591)

(592)

(593)

(594)

(595)

(596)

(597)



and

= Ttd(z) (598)

Thus we can write

, ((sin B30\ oo (B Ey) _ : .
=D Bl | | = D IBalPaté(— ) = D [Ral*20hito(E — o)

states 2h states states
(599)
With
Y =p / dE (600)
states
and
R,— R (601)
we get
P(t) = / dEp|R|*2rhits(E — Ep) (602)
P
it) = 27rh|R|2p/dE5(E — Ep) = 27rh|R|2p (603)
More generally, we have
v
= a3 604
2 = Z (27h)3 / b (604)

states

28 Summary of perturbation methods

28.1 Time independent perturbation theory, eigenvalue method

In the time independent case we had (nondegenerate case)
H=HO® 1 ) \HW (605)

We find
= (Y HO ) (606)
(W HO O

(50— E)

Cr = . k#Fko (607)

We had to be careful to diagonalize H® in the degenerate case.
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28.2 Time dependent perturbation theory, evolution computation

We take

H = Hy+\V(t) (608)
) = S a(®)lor) = 3 enl(t)e™ 7 gy (609)
k k
7 t ’ _Z-(Ek*Ez)t/ /
a(t) = a(0) = 22D _ex(0) / dt'e™ |V ()| ¢n) (610)
A t'=0

As a special case, we can take a slow evolution from the time independent problem H=
H©® t0 the new time independent case H = HO®4\V. Then we get the adiabatic theorem,
that the energy eigenstate |1;)o of the initial Hamiltonian changes to the corresponding
eigenstate |¢)y of the final Hamiltonian.

28.3 Both time-independent and time-dependent cases, expanding ex-
ponential

We have

i _3 _ i
e—th —e hHAte hHAt ..e hHAt (611)

The first order term from an interval At is

>

e_iHO(t_t/)(—%)\HlAt)e_%Hot/ = e—%H0<t—t’>(—%Aﬂldt/)e—%%t/ (612)

Suppose we start with energy F7 and take the inner product with a state with energy Fs.
Then we get that the amplitude in state |¢)2) at time ¢ is

. S WA _ipy i _i t i (Bo— By
c(t)Z/ et t)(—ﬁ<¢2\H1W1>dt')e nbat = e ﬁEﬁ/ dt' (1o | H [1hy ) er (P2 Bt
=0 =0
(613)
If HY = V is time-independent, then we get

; ) t )
ct) = —;<¢2|H1|¢1)e—2E2t/ﬂ_0 dt'en (B2—E1)t (614)

28.4 Summary of the Ferni-Golden rule analysis

(i) First we assume that there is evolution under Hy from ¢ = 0 to t = ¢. Then in a time
interval dt’ we have the action of Hy. Then from ¢’ + dt’ to ¢, we have evolution under H
again.
(ii) We assume that
(Vr|Hilo) = Ry (615)
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(Yol H1l1ho) =0

so the Hamiltonian makes transitions from [ig) to the band |t).
(iii) This gives for the first order term

t ) : .
it = [ e IO e e )
t

=0
(iv) We write ’
(t)) = e 150 apg) + > & (t) v
k

We take the inner product with (¢%|. This gives

t

an(t) = (o] | e RHOU (e [y
t'=0

t ) : .
aut) = (Wl [ e BB (at Hye B )
t'=0
- t ) .
u(t) = —5 [ e B B () e H
t'=0

(v) In the time independent case we write

(Y| Hi|to) = Ry

- t ) .
ck(t) = —;Rk/t/ Odtlei%Ek(tft ) e~ nkot

. ) t .
5k(t) = —;RkeﬁEkt/ dt' e (Bx=Fo)t
t'=0

. . (Ek—Eo)t
- _ 2 _li(Ek“FEO)t SIHT
Ck(t) - 7%Rke 2 k (Ek*EO)

2h
(vi) The probability at time ¢ is

. (Br—Eo)t \ 2
1 o [ sin =55
Pilt) = 751 ( (Br—Eo) )
2h

This oscillates with time.
(vii) Let the level spacing be A. Then we have

</
— — [ dE
273
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(617)

(618)

(619)

(620)

(621)

(622)
(623)

(624)

(625)

(626)

(627)



Let us also assume that Ry ~ R in the range of interest. Then we get

2
R 2 sin (E*?O)t
Pt)=> Plt) — lz?|A dE <(E—L%£)
k

2h
_ 2
_ 2ARPt [ ((E - Egt\ (sin (E—Eo)t
RA 2h (E—Eo)t
2h
(628)
We have -
sin” x
/ =t = (629)
Thus 0 R
P(t 2m |R 2w o
R (630)
where )
p=x (631)
is the number of energy levels per unit interval in energy; i.e., the level density.
(viii) We find
sin?(xt)
@) = mto(x) (632)

(ix) Thus we can write

. (E—Eo)t \ 2
1 sin 1 E — Ey 2
P(t)= ) i5|Bl’ (M) = W\Rk!%w((%)) = Y [R>S t(E — Eo)

states 2h states states
(633)
With
Y =p / dE (634)
states
and
R, — R (635)
we get
2
P(t) = /dEp\R[Q;Ttd(E — Ey) (636)
P(t) 2w R]?p 2T, 9
= dES(E — Eo) = S |R*p (637)

(x) More generally, we have

V V
> =% =G | 5y | (635

states E
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29 Scattering

29.1 The classical problem

We have a scatterer, and a beam of particles incident on it. The beam is described by a
flux F'. We have
F =nv (639)

where n is the number density of particles in the beam, and v is their velocity. The flux F'
gives the number of particles crossing a unit transverse area per unit time.

We define the cross section o as the area which is cut out from this beam and scattered
in different directions. We cannot usually directly look at the scatter itself, as it is small.
Thus to find ¢ we will look at the particles that are scattered. Imagine a large sphere of
radius R. The particles will be leaving normal to the surface of this sphere. Suppose that
N particles are crossing this sphere per unit time. Then N particles must have been cut
out from the beam per unit time. We have

N=Fo (640)
Thus we get
N
= 641
o= (641)

where N is the number of particles scattered per unit time and F is the flux.
We can also compute the cross section for scattering into some given solid angle. For a
circle on a 2-d plane, we define the angle in radians as

S
0=— 642
. (642)

where s is the arc length and R is the radius. Similarly, in 3-d we define the solid angle in
steradians as

A

where A is the area on the surface of the sphere and R is the radius. Infinitesimal solid
angles will be denoted dS2. If dN are the particles scattered in an infinitesimal solid angle

df) per unit time, then we define
_dN

44
do I (644)
and we write J L dN
o
i~ Fao (645)

where % is the number of particle scattered per unit solid angle in the given direction.
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29.2 The set-up

We take a cubical box of size L on each axis. Thus the total volume is
V=1L (646)

We assume periodic boundary conditions on the box. The leading order Hamiltonian is

that of a particle of mass m.
=2
p
Hy=— 647
07 om (647)
We have a potential AV (7) localized somewhere in this box, where X is small. We start

with a wavefunction

i) = \%em (648)

We take a final wavefunction of the form

1 -
[Ys) = We“ﬂ i (649)

The energies under Hy of the initial wavefunction is

2 21.2
P h°k
E = = —
7 om 2m (650)
29.3 Flux
We have R
. h - - h 1_ .- hk
F=— (¢ —(Vy* = —(=2ik) = — 1
o (6 @) V0) - (e @)e@) = o (2 = - (651)
This agrees with the classical intuition
1p hk
F = = —— = — 2
VM T Vm (652)

29.4 Fermi-Golden rule

Now we have to find the analogue of N, the number of particles scattered per unit time.
The probability P(t) tells us how many particle shave entered one of the scattered states
after time ¢. So the number of particles scattering per unit time is

P(t
N = i ) (653)
The fermi golden rule says that
- 2
PO = 3 lep P [ dB2Tpi(E ~ BRI (654)

states
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Here we could sum over all states &’ , or restrict to those in a certain angular range df):

- 27
P = Y [pP > [ B pud(E ~ Eo)|R
states,dS2

29.5 Density of states
The density of states is given by the condition

21N, 27y, 21N,
ho= "0 ky="7t k=g
L3 Vd3k
= — [ &Pn= / A’k =
S;;S Zﬁ: / (2m)3 (2m)3
In terms of energy,
2 21.2
po P _ MK
2m 2m
h2k dE  h%k
dE = “Zqk, — ="
m  dk m
P = 12dkd2 = 12 4Bd0 = 2 ™ apda = P apdo
- ~ " dE " B2k T OR2
Thus 3
Vd3k VvV km
= AR
; T 2R T 2 2
We write

Z = pdE

states

Z :/PdeE

states,dS)

and for a given angular range

We then find
V. km

PR = oy 2

29.6 The cross section

The cross section is defined by the number of particles that scatter per unit time.

this is ] 11
_ _ 2
o= ng(t) =77 Z |z (0]

states
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(655)

(656)

(657)

(658)
(659)

(660)

(661)

(662)

(663)

(664)

Thus

(665)



The Fermi-Golden rule says that

~ 2 | 27 2
> lep®F = == [ dEpd(E — Eo)|RI*t (666)
states

Here we note that in our case R can depend on the angle of scattering 6. in our case it
does not as the density of states in the box is isotropic. Thus we write

2
>l 2 [ aBp(0.)0(5 — IR0, (667)
states h E,0s
Thus we get
_ ]- ]- ~ 2 ]. 27T 9
o= F%;;S’C”(t)‘ =5 ), AEP0IE ~ )R, (668)

If we limit both sides to a small angular direction df2, then we write

11 11 5 9
do = FEPdQ(t) “Ft Z |C;;/(t)’
states,dS2
127 9
— =~ [ dEpaa(0s)d(E — Eo)|R(05)]
Fh Jg
127 9
= pal0)|R(05)
(669)
Thus we write p 195 d
4o _ L AT ap 2
29.7 Putting it together
We have L1 L1
_ - _ - - = 2
do= - Pialt) =57 D> Iep(®) (671)
states,dS)
Using the Fermi Golden rule we get
127 9 127 2
do— 120 [ dBS(E ~ En)puol R = 5 puol (672)
We can use vV ok
m (673)

P2 = G 12
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This gives
120 V. km
= _— 2 dQ|R|?
o= 55 @y 2 CUE

This can be written as
do 127 V. km

- = - 2
- Fh et
We had .
F=—
Vm
This gives

do _ Vm2r V. km

2 M IRI2
a2 hk h (2m)3 K2 IRl

29.8 Computing R

We have
R = glVIvp)
This gives
1 T = 7 1 AT =
R=)\ / Pr—e TV ()T = A= / dPre TV (i)
\%4 Vv
where L
Ak =k —k
Thus we see that R has the form \A
R=—
Vv

where
A= / dPre ATV (F)
We then find that

do _Vm2m V k:im)\z\AP _Xm?
a0~ Rk B 2n3 2 VE . (2n)2h

2
7l Al

29.9 An example
As an example, we take the Yukawa potential

V= l(f‘“ﬂ
r

Then we have to compute

A= / dPre ATV (7)
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(676)

(677)

(678)

(679)

(680)

(681)

(682)

(683)

(684)
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We have, writing the angle through which we scatter as 6,

|AE‘2 - W - E|2 = k2 + k? — 2K’k cos 0, = 2k* — 2k? cos 0y = 2k*(1 — cos 0,) = 4k? sin? %

A=2r /OO Terle““”M =
0

AZA%wlﬁm%mAm !

> 1
A= 27T/ r2dr=e
0

Thus
We have
This is
This is
This gives
_ 47 o0
IAk| Jo
We had
This gives
do _
o
We had
Using this gives
do AN2m?
Q.

We had

]Al_ﬂ =2k sin%

21 T . 1 o ‘
A — / d¢/ Sin 9d9 / ’]"erfe_l“"e—l‘Akh’ cos @
0 0 0 r

S our

T

" (—il AR|r)

dre " sin | Ak|r =

1 AT
r2dr=e Pe i|Ak|r cos

(e~ilARIr _ cilAK]r)

(—i|Ak|r)

4r /00 r2dr16_‘”w
0 r (|Ak|r)

4
IAK| \ |AK2 + p2

do A27m2

7|A|2

2 (2m)2ht

A2m? (47)?

|AK| ) dn

4N*m? 1

(2m)2hY (|ARP? + pi2)?

|AE| =2k sin%

1

(4k2 sin? %S + p2)2

R (|AR|2 4 p2)2

1

N |AE!2 + p?

(4h2k? sin? %s + h2p2)?

(686)

(687)

(688)

(689)

(690)

(691)

(692)

(693)

(694)

(695)

(696)

(697)



Thus
h2k? = 2mE, (698)
do AN2m? A2

do _ _ 699)
dQ  (8mEsin? 675 + h2p?)? (4B, sin? % + %)2 (

Integrating gives
4mA?
7= %22 il 12 112 (700)
om (4E + 500)

30 The photoelectric effect

We have a photon with energy
E=hv (701)

incident on an atom. The atom has an electron in the wavefunction

with energy E. ;. The photon gets absorbed, and its energy gets transferred to the electron
which is ejected. Let the final wavefunction of the electron be
1 .z

[Whg) — We“ff”? (703)

30.1 The photon wavefunction

The photon is a transverse wave, with a polarization given by a unit vector €. The transverse
nature is given through

& ky=0 (704)
The main thing we need to know is the strength of the A field for a single photon. This
is given by computing the energy density of the E, B fields found from ff, multiplying by
the volume V', and setting this equal to Aiw. We will derive this in the subsection below,
but for now we note the result:

bt (705)

L1
% [
|7/)7> € vV 2weo

The flux is given by noting that we have one particle in volume V', so p = % and the
speed is v = c.

F=pv=—c (706)
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30.2 Deriving the amplitude of the photon field
For a nonrelativistic particle we had taken a wavefunction of the form

) = \;Ve“_“"’? (707)

But the photon is a relativistic particle: it moves ta the speed of light. We can still expand
it as a plane wave

A= (fLeiE'F) (708)

But we have to do more work to see exactly what the coefficient A; is. To do this we will
use the fact that the energy of the photon should be

E, = hv = hw (709)

To get this energy we will use the fact that for a classical electromagnetic field, the energy
density is

U=—|F —|B 1
SIE + 5|6 (710)

The fields themselves are given in terms of the vector potential A as

—

B=VxA (711)

E=-A-Vo— A (712)

where we have noted that in our situation we have no scalar potential; thus ® = 0.
First we note that the energy is ¥ = fw, so the time dependence of the wavefunction

must be L L
A= (AEeZk'Te_ZEt) == Z (A;iem're_“"t) (713)
k k
To use the above classical relations, we note that the classical vector potential Ais real,
so we must add in the complex conjugate of the form we had taken above

A= Z (ﬁgeiE'Fe_wt + gZeiE'Fei“t) (714)
k

We consider a given Fourier mode k and consider it at time ¢ = 0

B =V x A= x Ape™T — il x A e *T (715)
E=—A=iwA " —iwdie T (716)



We have to compute |E|?,|B|? and integrate over all space, The integration kills all terms

that are oscillating as ™ for any K. This leaves only the terms that come from one

factor having EE and one factor ffz We get
B = 2(k x Ap) - (k- Az = 2k?| Ay,

where we have used that

and the fact that A os transverse

Similarly, we find
|E? = 27| AL
the energy density is then
U= DIBP + 5ol B = o gl + ok A
We use that .
€olbo = 2 w=ck

Then we get
U= 260w2]AE|2

We set the total energy to E = hw
E=UV = 2uw?|4]*V = hw

which gives
Al = d
kL 260wv

30.3 The interaction

The interaction between the electron and a gauge field is given by

I S NS YT S S
H=—(5+ed)- (5 A) = o (P + e A+ ed -+ 24?)
We have
prA=—ihV-A=—i(V-A)+A-p
We have 1 B
V-A=V —Vg-(z/%)e“wzo

(717)

(718)

(719)

(720)

(721)

(722)

(723)

(724)

(725)

(726)

(727)

(728)



This gives

"= % (v + 4% +-204 ) (729)
Thus
H=HO® 1 HO (730)
with
A=S, HO=A.p (731)
m

30.4 The matrix element

We are going from an initial state containing one photon and one electron in a given
wavefunction, to a band of states which has one electron in some momentum state. The
cross section is then given by the fermi golden rule, for which we need the amplitude

R = X HV|y;) (732)
We have

2w60

R=2\ / d3 ks F ( "‘“’ v <_m)> (1hs(7)) (733)

We can integrate by parts. Note that E = 0, so we just get the derivative acting on the
first term. This gives

h g 1 = 1 h = XN =
R= i[5 () / 73T (7) = g o @ Fy) / Pre BRT Y, (7)

(734)
where we have defined
Ak =ky — k, (735)
As an example, let us take the wavefunction 19g
Z _Zr
1/}100 = 2(*)36 @0 (736)
ao
The spherical harmonic is
1
Yoo = — 737
== (737)
Thus we have 7 ) Lz
3 _Zr 3 _Zr
(7)) =2(=)2e a0 = —(—)2e @0 738
w(f) =2k = (%) (738)
Thus we need to compute
Zr 1 .
/d?’_' —iAkT "y — 27T/ d(cos6) / drr2eHr e~ iAkr cost (739)
-1
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We write

Doing the 0 integral gives

(—2isin Akr) = 47r/ drre " sin(Akr)

1 2k 1
Ak (AR + 27~ (AR + )2

1 h . - 1 7 1
T e MR G @ e

I =4r

Njw

30.5 The cross section

We have

11 1 1
do = —-P, = > lgeP
states,d$2

Using the Fermi Golden rule we get

127 127

— == | dES(E - E —= 2
do— 7 [ ABS(E ~ EopanlRE = 5.7 pusl R
We can use vV ok
fm
= ———d
Pdr 2n)3 12
This gives
12 V k
do = " ST | R)?

Fh (21)3 R2

This can be written as
do 120 V k fm

A~ F h 2n)3 h Bl

We had

F=_
v

This gives
do  V2r V k:fm

Q¢ h (2m)3 IRl
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(741)

(742)

(743)

(744)

(745)

(746)

(747)

(748)

(749)

(750)



30.6 Putting it together

We get
— = —— —— | AN\ — ~ke)“(8 —(—) 751
Q" ¢ h (2n)3 2 ( T2 e & R BT ) A (751)
— = —— | i*— ckp)*(8 — ) (—)Y— 752
dQ ¢ h (2m)3 h? ( m2 2weo(6 £)7(87) (ag) W(ao) ((Ak)2+i§)4 (752)
o
do 11km e h | 1
R Al it Ay R S AL 753
o Weh TR ( m?2 weg (€-ks) 82 ((Ak)2a2 + Z2)4 (753)
We have 2 )
4dmeg
= 754
agp m€2 ( )
do h*(4mep) 11 kpm e h ~ g0 1 1
—— = 7% e W2 —s — (€ kf)*8— 755
Q) W me? ch B2 m2 weg 2 7 ((Ak)2a3 + Z2)* (755)
do prc €Dy 2 1
—— =327%2 (== 756
Q) % (m) ( me ) ((Ak)2a2 + Z22)3 (756)

31 Identical particles
Suppose we have two bosons which are identical, scattering in the center of mass frame.
The initial state then has the form

1
V2

The Hamiltonian is symmetric, and thus a symmetric wavefunction evolves to a symmetric
one. The final wavefunction thus has the form

1

i) = ([ (1)1l (p2i))2 + [¥(p2i))1[¥(p1i))2) (757)

Whr) = 7 ([ (1)1l (p2r))2 + [ (p2s)) 1l (p1y))2) (758)
Let
Ry = 1(¥(pry) 2 (2 INHD [y (p1s))1 [ (p2s)2 (759)
and
Ry = 1(¢(pay) 2 (b (prp) INHD [y (p1s))1 [ (p2s)2 (760)
We note that since the particles are identical, we also have
Ry = 1((pag) (8 (p1) AH D[ (pag)1 [ (p1s))2 (761)

76



and
Ry = 1((p1y) 2 (4 (P2 INH D [ (p2y))1 11 (pig))2 (762)

Consider angle 0 < #; < 5. We assume that one f the particles scatters in this angle;
the other will then scatter with § < 65 < . Then we find that

1
\RPﬁ:b@RﬁﬂRﬁP:Uﬁ+Rﬁ (763)
Similarly, for fermions we find
1
|RF%:5@RrﬂRgF:Mh—Rﬁ (764)

In particular, for fermions we see that scattering at 6, = 5 will vanish.

32 Quantum information

In classical theory, we can have a bit of information which can take two states 0,1. Thus
information can be coded in a string

S =10001011001... (765)
In quantum theory the analogue is a 2-state system, which has states of the form
[¥) = |0) + B[1) (766)

Normalization tells us that
o> + 18 =1 (767)

32.1 Gates

In classical theory we have operations called gates, which can change the state of bits. For
example, if we have one bit, the operation can flip the bit

0—1, 1—-0 (768)

This is called the NOT gate, since it converts the bit to the state that it is ‘not’.
We can also map both states to the same state

00, 10 (769)

In quantum theory, we can manipulate the bit by acting with operators. Thus we can
apply
) = %) (770)
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Thus will implement the flip

()-(0) =()-(0)

Thus o% gives the NOT gate. But we cannot map both states to the same state, as this
would not be a unitary operation. The general unitary map is of the form

U = eiH _ ei¢eiaﬁ~5 (772)

where 7 is a unit vector and ¢, a are real numbers. A gate of particular importance is the
Hadamard gate

L e 111
H:E(J +0)—\/§<1 _1> (773)

If we have two bits, then we can do a joint operation on the two bits. In classical theory,
we have the Controlled Not (CNOT) gate, where if the first bit is 0 then the second bit is
left unchanged, while if the first bit is 1, then the second bit is flipped. The first bit is left
unchanged in either case. Thus we have

00 —» 00, 01 —-01, 10—11, 11 —=10 (774)
This is a unitary map, and we can implement CNOT in the quantum theory as well.

32.2 Quantum teleportation

We start with Alice and Bob having na entangled pair

1
—(040p + 141 775
\/5( A0 +141B) (775)
Now Alice is given a state
= a0+ [1 (776)
Thus the overall state is
1
U =—(a0+ 51)(040p + 141 7
ﬁ( $1)(040B + 141p) (777)
We first do a CNOT on Alice’s bits. This gives
1 1
Uy = —a0(040p +141p) + —=B1(1405 + 041 778
1 \@(AB Alp) \/EB(AB AlB) (778)

We then do a Hadamard on Alice’s first bit. This gives
1 1
Uy = 504(0 +1)(040p +141p) + 55(0 —1)(1405 +041p) (779)
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Expanding gives

Wy = L004(005 + Bp)
+ %OlA(O‘lB + 80p)
+ %1014((103 — Blp)
+ %11,4(0413 — B0pR)

(780)
Now Alice measures her bits:

(i) If she finds 00 4, she conveys this information to Bob, and Bob knows that he already
has the state .

(ii) If she finds 01 4, Bob has the state alp + S0p. She tells Bob that she has 01 4, and
Bob applies the NOT % to get 1.

(iii) If she finds 104, Bob has the state a0p — S1p. She tells Bob that she has 104,
and Bob applies the Z gate o* to get 1.

(iv) If she finds 11 4, Bob has the state alp — 50p. She tells Bob that she has 114, and
Bob applies o%0® to get .

The above operations can be summarized by saying that if Alice’s bits are M;Ms, then

the operation needed is
(o)1 (o")M2 (781)

32.3 The Deutch algorithm

(1) We start with two bits. We put the first in the state 0 and the second in the state 1.
Thus we have
Yo =01 (782)

(2) We apply a Hadamard to each bit. This gives

by = %(0 F1)0—1) (783)

(3) We apply the map f which does

vy — x(y + f(z)) (784)
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Thus
20 = z(0+ f(z)) = xf(z)

zl = z(1+ f(x))
Thus

We note that this is

Thus we have

(4) Thus applied to 12 we get
1 1
v = 5 (=100 - 1) + S (=110 - 1)
Now there are two possibilities:

FO0) = 1) = SO+ 1) =0: — w5 = (-1)/O0+1)0-1)
FO) £ 71) = fO+ 1) =1: — w5 = 2 (-1)/O0-1)0-1)

(5) We do a Hadamard on the first bit, getting

FO +f1)=0: = va=—=(-1)"O00 1)

Sl Sl

FO +f1)=1: = va=—=(-1)/O100-1)

We can write this as

1
= — (=19 f0)+ 1) (0-1
o= (DO (0)+ £(1) 0 1)
Thus if we measure the first bit, then we can find the value of

f(0) + f(1)
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33 The Aharonov-Bohm effect

The goal of this effect is to see if the vector potential A can have physical effects even if
VxA=B=0.

33.1 Solving for the wavefunction
Consider a particle of mass m with Hamiltonian

Hy=— 795
7 om (795)

Now consider this particle in a vector potential A(7). The Hamiltonian is

-,

(7 — qA)*

Hy= 796

A 2m (796)

Suppose we have a wavefunction at some time ¢ = ¢y given by 1y(7). Consider another

wavefunction

Stha

Da(P) = et Jo AT g () (797)

Now we see that

-,

(5~ qAypa() = (~ih¥ — qA)eitJ5 A4y ()
= SR AE (CinD () + e A7) — aAo())
= I ATYE iy ()
it fo AT G (7

(798)
Thus we see that for any function ()
(5 — qA)eh 5 AT ) = i I AT 7 (799)
Thus
(7 = g AP R A () = (g A A ()
_ ei% Iy A7) d?"’(me(F)
(800)
and ey )
O A8 i Iy Ay ) = it Iy Ao Py (s01)



which is
Hytpa = et Jo A4 g

Suppose we have an eigenfunction
Hovo = Eotbo

We wish to solve the eigenvalue problem

Hppa = FEay

We write

Then
HAwA—eﬁfo )-di” Howo—enfo A()-di” Eotbo = Eotha

Thus 14 is an eigenfunction of H4 with eigenvalue E4 = Ejy.
Similarly, suppose we have solved an evolution problem

ihOyo (7, t) = Hotbo (7' 1)
We wish to find a solution to

ihOpha (7, t) = Hatha(F,t)
We write o
ha = et Jo ATy,

Then

hoppa(Ft) = et do ATV (rd, ) o (7 )
— eihJo A) dTHOwO(T t)
= Haelt o AT g (7 )
= Hatpa(rt)

(802)

(803)

(804)

(805)

(806)

(807)

(808)

(809)

(810)

Thus the above constructed ¥4 (7, t) solves the evolution equation for H 4 of 1y(7,t) solved

the equation for Hy.
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33.2 The effect of B #0

It may seem from this that it is always trivial to solve for H 4 of we can solve for Hy. In
1-d this is true, but in higher dimensions, different paths in the exponent lead to different
functions. Thus this solution makes sense only if all paths give the same result. But this
means that

/A‘-Jr_o (811)
C

for all loops C'. By the Stokes theorem, this means that

//S(ﬁxfi')-ﬁds_o (812)

VxA=B=0 (813)

This gives

everywhere.
Consider a tube with magnetic flux B, but no flux outside. Then for a loop around the

tube
/E-df_//é-ﬁds_p (814)
C S

where I is the total flux through the tube. Thus A is not zero outside the tube.

33.3 The Aharonov-Bohm effect

Consider a two slit experiment. We first consider the wave coming out of the slit 1 alone.
We solve the waveequation first solving in the absence of any B to get a wavefunction ;.
Then in the presence of A, we get the solution as

Pra = ett Jo ATy, (815)

Now consider the wave from slit 2. We solve the waveequation first solving in the absence
of any B to get a wavefunction 1y. Then in the presence of A, we get the solution as

won = e'ilo E(F)'W% (816)

This time note that we have used the A which is correct for the other paths around the
slit.

Consider the interference pattern at any point 7 on the screen. From slit 1, with B = 0,
we get an amplitude

1 (7, t) (817)
With B turned on, we get the amplitude

Dra(7,t) = et Jo AT ATy () (818)
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From slit 2, with B= 0, we get an amplitude
Pa(7, 1)
With B turned on, we get the amplitude
a 7(2) XY g
¢2A(Fy t) — ez% fO 2 A(7)-dF w2(7—:’ t)

where the path in the second case goes below the flux tube.
In the absence of flux the net amplitude at  was

Yro = 1 + 2
With B turned on, the net amplitude is

i 5 A Ay i S ATy,

Yo =ce 2

We can write this as © »
g :l‘, — . =
Gra =y +ehdo ATy,

where @ z @ 7 M x
ei% Jo A -dF _ ei% Iy A(F’).df”e—i% Joot A -dr

Thus we will see a shift in the interference pattern when we turn the B field on.
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