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CHAPTER 1 
 
1.  The energy contained in a volume dV is 
 

U(ν,T )dV = U (ν,T )r 2drsinθdθdϕ  
 
when the geometry is that shown in the figure.  The energy from this source that emerges 
through a hole of area dA is 
 

       dE(ν,T ) = U (ν,T )dV
dAcosθ

4πr 2  

 
The total energy emitted is 
 

.     

dE(ν,T ) = dr dθ dϕU (ν,T )sinθ cosθ
dA
4π0

2π

∫0

π /2

∫0

cΔ t

∫

=
dA
4π

2πcΔtU(ν,T ) dθ sinθ cosθ
0

π / 2

∫

=
1
4

cΔtdAU (ν,T )

 

 By definition of the emissivity, this is equal to EΔtdA . Hence 
 

   E(ν,T ) =
c
4

U (ν,T ) 

 
2. We have 
 

w(λ,T ) = U (ν,T ) | dν / dλ |= U (
c
λ

)
c
λ2 =

8πhc
λ5

1
ehc/λkT −1

 

 
This density will be maximal when dw(λ,T ) / dλ = 0. What we need is 
 

 
d

dλ
1

λ5
1

eA /λ −1
⎛ 
⎝ 

⎞ 
⎠ = (−5

1
λ6 −

1
λ5

eA /λ

eA /λ −1
(−

A
λ2 ))

1
eA /λ −1

= 0 

 
Where A = hc / kT . The above implies that with x = A / λ , we must have 
 
  5 − x = 5e−x  
 
A solution of this is x = 4.965 so that  
 



  λmaxT =
hc

4.965k
= 2.898 ×10−3 m  

 
In example 1.1 we were given an estimate of the sun’s surface temperature 
as 6000 K. From this we get 
 

  λmax
sun =

28.98 ×10−4 mK
6 ×103K

= 4.83 ×10−7 m = 483nm   

 
3.  The relationship is  
 
   hν = K + W  
 
where K is the electron kinetic energy and W is the work function.  Here 
   

hν =
hc
λ

=
(6.626 ×10−34 J .s)(3×108 m / s)

350 ×10−9 m
= 5.68 ×10−19J = 3.55eV  

 
With K = 1.60 eV, we get  W = 1.95 eV 
 
4. We use  

  
hc
λ1

−
hc
λ2

= K1 − K2  

 
since W cancels. From ;this we get 
 

h =
1
c

λ1λ2

λ2 − λ1

(K1 − K2) =

= (200 ×10−9 m)(258 ×10−9 m)
(3×108 m / s)(58 ×10−9 m)

× (2.3− 0.9)eV × (1.60 ×10−19)J / eV

= 6.64 ×10−34 J .s

 

5. The maximum energy loss for the photon occurs in a head-on collision, with the 
photon scattered backwards.  Let the incident photon energy be hν , and the backward-
scattered photon energy be hν' . Let the energy of the recoiling proton be E.  Then its 
recoil momentum is obtained from E = p2c 2 + m 2c 4  .  The energy conservation 
equation reads 
 
    hν + mc2 = hν '+E  
 
and the momentum conservation equation reads 
 

    
hν
c

= −
hν '
c

+ p  



that is 
    hν = −hν '+ pc  
 
We get E + pc − mc2 = 2hν  from which it follows that 
 
   p2c2 + m2c4 = (2hν − pc + mc2)2  
 
so that 
 

   pc =
4h2ν2 + 4hνmc2

4hν + 2mc2  

 
The energy loss for the photon is the kinetic energy of the proton  
K = E − mc2 .  Now hν  = 100 MeV and mc 2 = 938 MeV, so that 
 
   pc = 182MeV  
and 
  
  E − mc2 = K = 17.6MeV  
 
6. Let hν  be the incident photon energy, hν'  the final photon energy and p the outgoing 

electron momentum. Energy conservation reads 
 
   hν + mc2 = hν '+ p2c2 + m2c4  
 
We write the equation for momentum conservation, assuming that the initial photon 
moves in the x –direction and the final photon in the y-direction. When multiplied by c it 
read    
 
    i(hν) = j(hν ') + (ipxc + jpyc) 
 
Hence pxc = hν; pyc = −hν ' .  We use this to rewrite the energy conservation equation as 
follows:       

       
(hν + mc 2 − hν ')2 = m 2c 4 + c 2(px

2 + py
2) = m2c4 + (hν)2 + (hν ') 2  

 
From this we get 
  

  hν'= hν
mc2

hν + mc2

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟  

 
We may use this to calculate the kinetic energy of the electron 
 



  
K = hν − hν '= hν 1−

mc2

hν + mc2

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ = hν

hν
hν + mc2

=
(100keV )2

100keV + 510keV
=16.4keV

 

 
Also 
 
  pc = i(100keV ) + j(−83.6keV)  
   
which gives the direction of the recoiling electron. 

 
 

 
7. The photon energy is 
 

  
hν =

hc
λ

=
(6.63×10−34 J.s)(3 ×108 m / s)

3×106 ×10−9 m
= 6.63×10−17J

=
6.63×10−17 J

1.60 ×10−19 J / eV
= 4.14 ×10−4 MeV

 

 
The momentum conservation for collinear motion (the collision is head on for maximum 
energy loss), when squared, reads 
 

 
hν
c

⎛ 
⎝ 

⎞ 
⎠ 

2

+ p2 + 2
hν
c

⎛ 
⎝ 

⎞ 
⎠ pηi =

hν '
c

⎛ 
⎝ 

⎞ 
⎠ 

2

+ p'2 +2
hν '
c

⎛ 
⎝ 

⎞ 
⎠ p'η f   

 
Here ηi  = ±1, with the upper sign corresponding to the photon and the electron moving in 
the same/opposite direction, and similarly for η f . When this is multiplied by c2 we get 
 
  (hν)2 + (pc)2 + 2(hν) pcηi = (hν ')2 + ( p'c)2 + 2(hν ') p'cη f  
 
The square of the energy conservation equation,   with E expressed in terms of 
momentum and mass reads 
 
  (hν)2 + (pc)2 + m 2c 4 + 2Ehν = (hν ')2 + ( p'c)2 + m2c4 + 2E ' hν '  
 
After we cancel the mass terms and subtracting, we get 
 
  hν(E −η ipc) = hν '(E'−η f p'c) 
 
From this can calculate hν'   and rewrite the energy conservation law in the form 
 



                  E − E '= hν
E − ηi pc
E '−p'cη f

−1
⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟  

 
The energy loss is largest if ηi = −1;η f = 1. Assuming that the final electron momentum is 

not very close to zero, we can write E + pc = 2E and E'− p'c =
(mc2 )2

2E'
 so that 

  E − E '= hν
2E × 2E'
(mc2 )2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟  

It follows that 
1
E'

=
1
E

+16hν  with everything expressed in MeV. This leads to 

 E’ =(100/1.64)=61 MeV  and the energy loss is 39MeV. 
 
 
8.We have λ’ = 0.035 x 10-10 m, to be inserted into  
 

λ'−λ =
h

mec
(1− cos600) =

h
2mec

=
6.63 ×10−34 J.s

2 × (0.9 ×10−30kg)(3×108 m / s)
= 1.23×10−12m  

 
Therefore λ = λ’ = (3.50-1.23) x 10-12 m = 2.3 x 10-12 m. 
 
The energy of the X-ray photon is therefore 
 

 hν =
hc
λ

=
(6.63×10−34 J .s)(3 ×108 m / s)

(2.3×10−12m)(1.6 ×10−19 J / eV )
= 5.4 ×105eV  

 
9. With the nucleus initially at rest, the recoil momentum of the nucleus must be equal 
and opposite to that of the emitted photon. We therefore have its magnitude given by 
p = hν / c , where hν = 6.2 MeV . The recoil energy is 

E =
p2

2M
= hν

hν
2Mc2 = (6.2MeV )

6.2MeV
2 ×14 × (940MeV )

= 1.5 ×10−3 MeV
 

10. The formula λ = 2asinθ / n  implies that λ / sinθ ≤ 2a / 3. Since λ = h/p this leads to 
      p ≥ 3h / 2asinθ , which implies that the kinetic energy obeys 
 

   K =
p2

2m
≥

9h2

8ma2 sin2 θ
 

 
Thus the minimum energy for electrons is 
 

 K =
9(6.63×10−34 J.s)2

8(0.9 ×10−30 kg)(0.32 ×10−9 m)2 (1.6 ×10−19 J / eV )
= 3.35eV  



 
For Helium atoms the mass is 4(1.67 ×10−27 kg) / (0.9 ×10−30kg) = 7.42 ×103  larger, so 
that  
 

   K =
33.5eV

7.42 ×103 = 4.5 ×10−3 eV   

 

11. We use K =
p2

2m
=

h2

2mλ2  with  λ = 15 x 10-9 m to get 

 

 K =
(6.63×10−34 J.s)2

2(0.9 ×10−30 kg)(15 ×10−9 m)2 (1.6 ×10−19 J / eV )
= 6.78 ×10−3 eV  

  
For λ = 0.5 nm, the wavelength is 30 times smaller, so that the energy is 900 times larger. 
Thus  K =6.10 eV. 
 
12. For a circular orbit of radius r, the circumference is 2πr. If n wavelengths λ are to fit 
into the orbit, we must have 2πr = nλ = nh/p. We therefore get the condition 
 
     pr = nh / 2π = n=  
 
which is just the condition that the angular momentum in a circular orbit is an integer in 
units of   = . 
 
13. We have a = nλ / 2sinθ . For n = 1, λ= 0.5 x 10-10 m and θ= 5o . we get 

a = 2.87 x 10-10 m. For n = 2, we require sinθ2 = 2 sinθ1. Since the angles are very 
small,  θ2 = 2θ1. So that the angle is 10o. 
 

14. The relation F = ma leads to  mv 2/r = mωr that is, v = ωr. The angular momentum 
quantization condition  is mvr = n  = , which leads to mωr2 = n=. The total energy is 
therefore 

 

  
E =

1
2

mv2 +
1
2

mω 2r2 = mω2r 2 = n=ω  

 
The analog of the Rydberg formula is 
 

  
  
ν(n → n') =

En − En '

h
=

=ω(n − n')
h

= (n − n')
ω
2π

 

 
The frequency of radiation in the classical limit is just the frequency of rotation 
νcl = ω / 2π  which agrees with the quantum frequency when  n – n’ = 1. When the 
selection rule Δn = 1 is satisfied, then the classical and quantum frequencies are the same 
for all n.  
 



15. With V(r) = V0 (r/a)k , the equation describing circular motion is 
 

m
v2

r
=|

dV
dr

|=
1
r

kV0
r
a

⎛ 
⎝ 

⎞ 
⎠ 

k

 

 
so that 
 

  v =
kV0

m
r
k

⎛ 
⎝ 

⎞ 
⎠ 

k / 2

 

 
The angular momentum quantization condition mvr = n= reads 
 

  
  

ma2kV0
r
a

⎛ 
⎝ 

⎞ 
⎠ 

k +2
2

= n=  

 
We may use the result of this and the previous equation to calculate 
 

  
E =

1
2

mv2 + V0
r
a

⎛ 
⎝ 

⎞ 
⎠ 

k

= (
1
2

k +1)V0
r
a

⎛ 
⎝ 

⎞ 
⎠ 

k

= (
1
2

k +1)V0
n2=2

ma2kV0

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

k
k+2

 

In the limit of k >>1, we get 
 

 
  
E →

1
2

(kV0 )
2

k +2 =2

ma2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

k
k+ 2

(n2 )
k

k +2 →
=2

2ma2 n2  

 
Note that V0 drops out of the result. This makes sense if one looks at a  
picture of the potential in the limit of large k. For r< a the potential is  
effectively zero. For r > a it is effectively infinite, simulating a box with 
infinite walls. The presence of V0 is there to provide something with the 
dimensions of an energy. In the limit of the infinite box with the quantum 
 condition there is no physical meaning to V0 and the energy scale is  
provided by   =2 / 2ma 2 . 
 
16. The condition L = n= implies that  
 

  
E =

n2=2

2I
 

 
In a transition from n1 to n2 the Bohr rule implies that the frequency of the  
radiation is given 
    



  
  
ν12 =

E1 − E2

h
=

=2

2Ih
(n1

2 − n2
2 ) =

=
4πI

(n1
2 − n2

2 ) 

 
Let n1 = n2 + Δn. Then in the limit of large n we have (n1

2 − n2
2 ) → 2n2Δn , so  

that 
 

  
  
ν12 →

1
2π

=n2

I
Δn =

1
2π

L
I

Δn  

 
Classically the radiation frequency is the frequency of rotation which is 
ω = L/I , i.e.  

  νcl =
ω
2π

L
I

 

 
We see that this is equal to ν12  when Δn = 1. 
17. The energy gap between low-lying levels of rotational spectra is of the order of 
  =

2 / I = (1 / 2π )h= / MR2 , where M is the reduced mass of the two nuclei, and R is their 
separation. (Equivalently we can take 2 x m(R/2)2 = MR2). Thus 
 

  
  
hν =

hc
λ

=
1

2π
h

=
MR2  

 
This implies that  
 

 
  
R =

=λ
2πMc

=
=λ

πmc
=

(1.05 ×10−34 J.s)(10−3 m)
π (1.67 ×10−27kg)(3×108 m / s)

= 26nm  

   
 
 
 
  
 
 
 

 
 
 

 
  
 
  
 
  
 
 



CHAPTER 2 
 
1. We have 
 

ψ (x) = dkA(k)eikx

−∞

∞

∫ = dk
N

k2 + α 2 eikx

−∞

∞

∫ = dk
N

k2 + α 2 coskx
−∞

∞

∫  

 
because only the even part of eikx = coskx + i sinkx contributes to the integral. The integral 
can be looked up. It yields 
 

   ψ (x) = N
π
α

e−α |x |  

 
so that  

   |ψ (x) |2 =
N 2π 2

α 2 e−2α |x|  

 
If we look at |A(k)2 we see that this function drops to 1/4 of its peak value at k =± α.. We 
may therefore estimate the width to be Δk = 2α. The square of the wave function drops to 
about 1/3 of its value when 
x =±1/2α. This choice then gives us Δk Δx = 1. Somewhat different choices will give 
slightly different numbers, but in all cases the product of the widths is independent of α. 
 
2. the definition of the group velocity is 
 

vg =
dω
dk

=
2πdν

2πd(1/ λ )
=

dν
d(1/ λ )

= −λ2 dν
dλ

 

 
The relation between wavelength and frequency may be rewritten in the form 
 

   ν2 −ν0
2 =

c 2

λ2  

so that 
 

   −λ2 dν
dλ

=
c 2

νλ
= c 1− (ν0 /ν)2  

 
3. We may use the formula for vg derived above for   
 

ν =
2πT

ρ
λ−3/2  

 
to calculate 
 



   vg = −λ2 dν
dλ

=
3
2

2πT
ρλ

 

 
4. For deep gravity waves,  
 

ν = g / 2πλ−1/2  

from which we get, in exactly the same way  vg =
1
2

λg
2π

. 

 
5. With ω = =k2/2m, β = =/m and with the original width of the packet w(0) = √2α, we 

have  
 

  

w(t)
w(0)

= 1+
β 2t2

2α 2 = 1 +
=2t2

2m 2α 2 = 1 +
2=2t2

m 2w4 (0)
 

 
(a) With t = 1 s, m = 0.9 x 10-30 kg and w(0) = 10-6 m, the calculation yields w(1) = 1.7 x 

102 m 
With w(0) = 10-10 m, the calculation yields w(1) = 1.7 x 106 m. 
These are very large numbers. We can understand them by noting that the characteristic 
velocity associated with a particle spread over a range Δx is v = =/mΔx and here m is very 
small. 
(b) For an object with mass 10-3 kg and w(0)= 10-2 m, we get 
 

  

2=2t2

m2w4 (0)
=

2(1.05 ×10−34 J.s)2 t2

(10−3 kg)2 × (10−2m)4 = 2.2 ×10−54  

 
for t = 1. This is a totally negligible quantity so that w(t) = w(0). 
 
6. For the 13.6 eV electron v /c = 1/137, so we may use the nonrelativistic expression 

for the kinetic energy. We may therefore use the same formula as in problem 5, that is 
 

  

w(t)
w(0)

= 1+
β 2t2

2α 2 = 1 +
=2t2

2m 2α 2 = 1 +
2=2t2

m 2w4 (0)
 

 
We caclulate t for a distance of 104 km = 107 m, with speed (3 x 108m/137) to be 4.6 s. 
We are given that w(0) = 10-3 m. In that case 
 

 w(t) = (10−3 m) 1 +
2(1.05 ×10−34 J.s)2 (4.6s)2

(0.9 ×10−30kg)2(10−3 m)4 = 7.5 ×10−2 m  

 
For a 100 MeV electron E = pc to a very good approximation. This means that β = 0 and 
therefore the packet does not spread. 



 
7. For any massless particle E = pc so that β= 0 and there is no spreading. 
 
8. We have 
 

  

φ( p) =
1
2π=

dxAe−μ |x|e−ipx/ =

−∞

∞

∫ =
A
2π=

dxe(μ −ik )x

−∞

0

∫ + dxe−(μ +ik )x

0

∞

∫{ }
=

A
2π=

1
μ − ik

+
1

μ + ik
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

=
A
2π=

2μ
μ 2 + k2

 

 
where k = p/=. 
 

9. We want  

 dxA2

−∞

∞

∫ e−2μ|x | = A2 dxe2μx + dxe−2μx

0

∞

∫−∞

0

∫{ }= A2 1
μ

=1 

so that 
   A = μ  
 
10.   Done in text.  
 
11. Consider the Schrodinger equation with V(x) complex. We now have 
 

 
  
∂ψ (x,t)

∂t
=

i=
2m

∂ 2ψ (x,t)
∂x 2 −

i
=

V (x)ψ (x, t)  

and 
 

 
  
∂ψ *(x,t)

∂t
= −

i=
2m

∂ 2ψ *(x,t)
∂x 2 +

i
=

V *(x)ψ (x, t)  

 
Now 
 

  

∂
∂t

(ψ *ψ ) =
∂ψ *

∂t
ψ +ψ *

∂ψ
∂t

= (−
i=

2m
∂ 2ψ *
∂x 2 +

i
=

V * (x)ψ*)ψ +ψ * (
i=
2m

∂ 2ψ (x,t)
∂x2 −

i
=

V (x)ψ (x,t))

= −
i=
2m

(
∂ 2ψ *
∂x 2 ψ −ψ *

∂ 2ψ (x, t)
∂x 2 ) +

i
=

(V *−V )ψ *ψ

= −
i=
2m

∂
∂x

∂ψ *
∂x

ψ −ψ *
∂ψ
∂x

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

+
2ImV (x)

=
ψ *ψ

 

 
Consequently 
 



  
∂
∂t

dx |ψ (x,t) |2
−∞

∞

∫ =
2
=

dx(ImV (x)) |ψ (x, t) |2
−∞

∞

∫  

 
We require that the left hand side of this equation is negative. This does not tell us much 
about ImV(x) 
except that it cannot be positive everywhere. If it has a fixed sign, it must be negative. 
 
12. The problem just involves simple arithmetic. The class average  
 

  〈g〉 = gng
g
∑ = 38.5  

 

  (Δg)2 = 〈g2〉 − 〈g〉 2 = g2ng
g
∑ − (38.5)2 =  1570.8-1482.3= 88.6 

 
The table below is a result of the numerical calculations for this system 
 
 
g           ng              (g - <g>)2/(Δg)2 = λ                e-λ                       Ce-λ 
60 1               5.22  0.0054  0.097 
55 2  3.07  0.0463  0.833 
50 7  1.49  0.2247  4.04 
45 9  0.48  0.621  11.16 
40 16  0.025  0.975  17.53 
35 13  0.138  0.871  15.66 
30 3  0.816  0.442  7.96 
25 6  2.058  0.128  2.30 
20 2  3.864  0.021  0.38 
15 0  6.235  0.002  0.036 
10 1  9.70  0.0001  0.002 
5 0  12.97  “0”  “0” 
__________________________________________________________  

 
 

15. We want 
 

1 = 4N 2 dx
sin2 kx

x2−∞

∞

∫ = 4N 2k dt
sin2 t

t2−∞

∞

∫ = 4πN 2k  

 

so that  N =
1

4πk
 

 
 
 

 



16. We have 
 

〈xn 〉 =
α
π

⎛ 
⎝ 

⎞ 
⎠ 

1/ 2

dxx n

−∞

∞

∫ e−αx 2

 

 
Note that this integral vanishes for n  an odd integer, because the rest of the integrand is 
even. 
 
For n = 2m, an even integer, we have 
 

 〈x2m 〉 =
α
π

⎛ 
⎝ 

⎞ 
⎠ 

1/2

=
α
π

⎛ 
⎝ 

⎞ 
⎠ 

1/2

−
d

dα
⎛ 
⎝ 

⎞ 
⎠ 

m

dx
−∞

∞

∫ e−αx 2

=
α
π

⎛ 
⎝ 

⎞ 
⎠ 

1/2

−
d

dα
⎛ 
⎝ 

⎞ 
⎠ 

m π
α

⎛ 
⎝ 

⎞ 
⎠ 

1/ 2

 

 

For n = 1 as well as n = 17 this is zero, while for n = 2, that is, m = 1, this is 
1

2α
. 

 

17.  
  
φ( p) =

1
2π=

dxe− ipx/ =

−∞

∞

∫ α
π

⎛ 
⎝ 

⎞ 
⎠ 

1/4

e−αx 2 /2  

 
The integral is easily evaluated by rewriting the exponent in the form 
 

  
−

α
2

x 2 − ix
p
= = −

α
2

x +
ip
=α

⎛ 
⎝ 

⎞ 
⎠ 

2

−
p2

2=2α
 

 
A shift in the variable x allows us to state the value of the integral as and we end up with 
 

 
  
φ( p) =

1
π=

π
α

⎛ 
⎝ 

⎞ 
⎠ 

1/4

e− p2 / 2α= 2

 

 
We have, for n even, i.e. n = 2m, 
 

 

  

〈p2m〉 =
1
π=

π
α

⎛ 
⎝ 

⎞ 
⎠ 

1/ 2

dpp2me− p2 /α= 2

−∞

∞

∫ =

=
1

π=
π
α

⎛ 
⎝ 

⎞ 
⎠ 

1/ 2

−
d

dβ
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

m
π
β

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

1/2  

 

where at the end we set  
  
β =

1
α=2 . For odd powers the integral vanishes. 

 
 
 
 
 



18. Specifically for m = 1 we have  We have 

 

  

(Δx)2 = 〈x2 〉 = 1
2α

(Δp)2 = 〈p2〉 =
α=2

2

 

 

so that  
  
ΔpΔx =

=
2

. This is, in fact, the smallest value possible for the product of the 

dispersions. 
 
 
22.  We have 

  

  

dxψ *(x)xψ (x) =
1

2π=−∞

∞

∫ dxψ * (x)x dpφ( p)eipx/ =

−∞

∞

∫−∞

∞

∫

= 1
2π=

dxψ * (x) dpφ(p) =
i−∞

∞

∫−∞

∞

∫ ∂
∂p

eipx/= = dpφ * (p)i= ∂φ(p)
∂p−∞

∞

∫
 

 
In working this out we have shamelessly interchanged orders of integration. The 
justification of this is that the wave functions are expected to go to zero at infinity faster 
than any power of x , and this is also true of the momentum space wave functions, in their 
dependence on p. 
 

 



 
CHAPTER 3. 
 
1. The linear operators are (a), (b), (f) 
 
2.We have 
 

dx ' x 'ψ (x ') = λψ (x)
−∞

x

∫  
 

To solve this, we differentiate both sides with respect to x, and thus get 
 

  λ
dψ (x)

dx
= xψ (x) 

 
A solution of this is obtained by writing dψ /ψ = (1/ λ )xdx   from  which we can 
immediately state that 
 
   ψ (x) = Ceλx 2 / 2  
 
The existence of  the integral that defines O6ψ(x) requires that λ < 0. 
 
3, (a) 

  

O2O6ψ (x) − O6O2ψ (x)

= x
d

dx
dx ' x 'ψ (x ') −

−∞

x

∫ dx ' x '2
dψ (x ')

dx '−∞

x

∫

= x2ψ(x) − dx '
d

dx '−∞

x

∫ x '2 ψ(x ')( )+ 2 dx ' x 'ψ (x')
−∞

x

∫
= 2O6ψ (x)

 

 
Since this is true for every ψ(x) that vanishes rapidly enough at infinity, we conclude that 
 
   [O2 , O6] = 2O6 
 
(b)    
 

  

O1O2ψ(x) − O2O1ψ (x)

= O1 x
dψ
dx

⎛ 
⎝ 

⎞ 
⎠ − O2 x 3ψ( )= x 4 dψ

dx
− x

d
dx

x3ψ( )
= −3x3ψ(x) = −3O1ψ (x)

 

so that 
 
  [O1, O2] = -3O1 

 



4.   We need  to  calculate 

 

〈x2 〉 =
2
a

dxx 2 sin2 nπx
a0

a

∫  

With  πx/a = u  we have 
 

 〈x2 〉 =
2
a

a3

π 3 duu2 sin2 nu =
a2

π 30

π

∫ duu2

0

π

∫ (1− cos2nu)  

 
The first integral is simple. For the second integral we use the fact that 
 

 
duu2 cosαu = −

d
dα

⎛ 
⎝ 

⎞ 
⎠ 0

π

∫
2

ducosαu = −
0

π

∫ d
dα

⎛ 
⎝ 

⎞ 
⎠ 

2 sinαπ
α  

At the end we set α = nπ. A little algebra leads to 
 

  〈x2 〉 =
a2

3
−

a2

2π 2n2  

 

For large n we therefore get Δx =
a
3

.  Since 
  
〈p2〉 =

=2n2π 2

a2 , it follows that 

  
Δp =

=πn
a

, so that 

 

   
  
ΔpΔx ≈

nπ=
3

 

 
The product of the uncertainties thus grows as n increases. 
 

5. With 
  
En =

=2π 2

2ma 2 n2  we can calculate 

 

E2 − E1 = 3
(1.05 ×10−34 J .s)2

2(0.9 ×10−30kg)(10−9 m)2
1

(1.6 ×10−19J / eV )
= 0.115eV  

 

We have ΔE =
hc
λ

 so that 
  
λ =

2π=c
ΔE

=
2π (2.6 ×10−7 ev.m)

0.115eV
=1.42 ×10−5m  

 
where we have converted   =c  from J.m units to eV.m units. 
 



6. (a) Here we write  
 

  
n2 =

2ma 2E
=2π 2 =

2(0.9 ×10−30kg)(2 ×10−2 m)2 (1.5eV )(1.6 ×10−19J / eV )
(1.05 ×10−34 J .s)2π 2 = 1.59 ×1015

 
so that n = 4 x 107 . 
 
(b) We have  
 

  

  

ΔE = =2π 2

2ma2 2nΔn = (1.05 ×10−34 J.s)2π 2

2(0.9 ×10−30kg)(2 ×10−2 m)2 2(4 ×107) =1.2 ×10−26J

= 7.6 ×10−8eV
 

 
7. The longest wavelength corresponds to the lowest frequency. Since ΔE is 

proportional to (n + 1)2 – n2 = 2n + 1, the lowest value corresponds to n = 1 (a state 
with n = 0 does not exist). We therefore have 

 

  
h

c
λ

= 3
=2π 2

2ma2  

If we assume that we are dealing with electrons of mass m = 0.9 x 10-30 kg, then 
 

  
  
a2 =

3=πλ
4mc

=
3π (1.05 ×10−34 J.s)(4.5 ×10−7 m)

4(0.9 ×10−30kg)(3×108 m / s)
= 4.1×10−19 m2  

so that a = 6.4 x 10-10 m. 
 

8. The solutions for a box of width a have energy eigenvalues 
  
En =

=2π 2n2

2ma 2  with  

n = 1,2,3,…The odd integer solutions correspond to solutions even under x → −x , while 
the even integer solutions correspond to solutions that are odd under reflection. These 
solutions vanish at x = 0, and it is these solutions that will satisfy the boundary conditions 
for the “half-well” under consideration. Thus the energy eigenvalues are given by En 
above with n even. 
 
9. The general solution is  
 

  
ψ (x, t) = Cn un (x)e− iE nt /=

n =1

∞

∑  

 
with the Cn defined by  
 
   Cn = dxun

* (x)ψ (x,0)
− a/ 2

a /2

∫  
 



(a) It is clear that the wave function does not remain localized on the l.h.s. of the box at 
later times, since the special phase relationship that allows for a total interference for 
x > 0 no longer persists for t ≠ 0. 

 

(b) With our wave function we have  Cn =
2
a

dxun (x)
−q /2

0

∫ .We may work this out by 

using the solution of the box extending from x = 0 to x = a, since the shift has no 
physical consequences. We therefore have 

 

Cn =
2
a

dx
2
a0

a/ 2

∫ sin
nπx
a

=
2
a

−
a

nπ
cos

nπx
a

⎡ 
⎣ 

⎤ 
⎦ 0

a /2

=
2

nπ
1− cos

nπ
2

⎡ 
⎣ 

⎤ 
⎦ 
 

 

Therefore P1 =| C1 |2 =
4

π 2  and P2 =| C2 |2 =
1

π 2 | (1− (−1)) |2 =
4
π 2  

 
10. (a) We use the solution of the above problem to get 
 

Pn =| Cn |2 =
4

n2π 2 fn  

 
where fn   = 1 for n = odd integer; fn = 0 for n = 4,8,12,…and fn = 4  for n = 2,6,10,… 
 
(b)  We have 
 

Pn
n=1

∞

∑ =
4
π 2

1
n2

odd
∑ +

4
π 2

4
n2

n= 2,6,10,,,
∑ =

8
π 2

1
n2 = 1

odd
∑  

 
Note. There is a typo in the statement of the problem. The sum should be restricted to 
odd integers. 
 
11. We work this out by making use of an identity. The hint tells us that 
 

(sin x)5 =
1
2i

⎛ 
⎝ 

⎞ 
⎠ 

5

(eix − e−ix)5 =
1

16
1
2i

(e5ix − 5e3ix +10eix −10e− ix + 5e−3ix − e−5ix )

=
1
16

(sin5x − 5sin 3x +10sin x)
 

Thus 
 

  ψ (x,0) = A
a
2

1
16

u5 (x) − 5u3(x) +10u1(x)( ) 

 
(a) It follows that 

 



  
ψ (x, t) = A

a
2

1
16

u5 (x)e− iE 5t /= − 5u3 (x)e−iE 3t /= +10u1(x)e−iE1t / =( ) 

 
(b) We can calculate A by noting that dx |ψ (x,0) |2 =1

0

a

∫ . This however is equivalent 
to the statement that the sum of the probabilities of finding any energy eigenvalue 
adds up to 1. Now we have 

 

P5 =
a
2

A2 1
256

;P3 =
a
2

A2 25
256

;P1 =
a
2

A2 100
256

 

 
so that  
 

   A2 =
256
63a

 

 
The probability of finding the state with energy E3  is 25/126. 
 

12. The initial wave function vanishes for x ≤ -a and for x ≥ a. In the region in between it 

is proportional to cos
πx
2a

, since this is the first nodeless trigonometric function that 

vanishes at x = ± a. The normalization constant is obtained by requiring that 
 

1 = N 2 dx cos2

− a

a

∫
πx
2a

= N 2 2a
π

⎛ 
⎝ 

⎞ 
⎠ ducos2 u = N 2a

−π / 2

π /2

∫  

 

so that N =
1
a

. We next expand this in eigenstates of the infinite box potential with 

boundaries at x = ± b. We write 
 

  
1
a

cos
πx
2a

= Cn
n =1

∞

∑ un (x;b) 

 
so that  
 

   Cn = dxun (x;b)ψ (x) = dx
− a

a

∫− b

b

∫ un (x;b)
1
a

cos
πx
2a

 

 
In particular, after a little algebra, using cosu cosv=(1/2)[cos(u-v)+cos(u+v)], we get 
  
 



  
C1 =

1
ab

dx cos
πx
2b−a

a

∫ cos
πx
2a

=
1
ab

dx
1
2−a

a

∫ cos
πx(b − a)

2ab
+ cos

πx(b + a)
2ab

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

=
4b ab

π(b2 − a2 )
cos

πa
2b

 

 
so that  

  P1 =| C1 |2 =
16ab3

π 2 (b2 − a2)2 cos2 πa
2b

 

 
The calculation of C2 is trivial. The reason is that while ψ(x) is an even function of x,  
u2(x) is an odd function of x, and the integral over an interval symmetric about x = 0 is 
zero. Hence P2 will 
 be zero. 
 
13. We first calculate 
 

  

φ( p) = dx
2
a

sin
nπx

a0

a

∫ eipx/ =

2π=
=

1
i

1
4π=a

dxeix (nπ /a + p /= )

0

a

∫ − (n ↔ −n)⎛ 
⎝ 

⎞ 
⎠ 

=
1

4π=a
eiap /= (−1)n −1
p / = − nπ / a

−
eiap / = (−1)n −1
p / = + nπ / a

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

=
1

4π=a
2nπ / a

(nπ / a)2 − (p /=)2 (−1)n cos pa / = −1+ i(−1)n sin pa / ={ }

 

 
From this we get 
 

 
  
P( p) =| φ(p) |2=

2n2π
a3=

1− (−1)n cos pa / =
(nπ / a)2 − (p / =)2[ ]2  

 
The function P(p) does not go to infinity at   p = nπ= / a , but if definitely peaks there. If 
we write   p / = = nπ / a +ε , then the numerator becomes 1− cosaε ≈ a2ε 2 / 2 and the 

denominator becomes (2nπε / a)2 , so that at the peak
  
P

nπ=
a

⎛ 
⎝ 

⎞ 
⎠ = a / 4π= .  The fact that the 

peaking occurs at  
 

   
  
p2

2m
=

=2π 2n2

2ma2  

 
suggests agreement with the correspondence principle, since the kinetic energy of the 
particle is, as the r.h.s. of this equation shows, just the energy of a particle in the infinite 
box of width a. To confirm this, we need to show that the distribution is strongly peaked 
for large n. We do this by looking at the numerator, which  vanishes when aε = π / 2, that 
is, when   p / = = nπ / a +π / 2a = (n +1 / 2)π / a . This implies that the width of the 



distribution is   Δp = π= / 2a . Since the x-space wave function is localized to 0 ≤ x ≤ a we 
only know that Δx = a. The result   ΔpΔx ≈ (π / 2)=  is consistent with the uncertainty 
principle. 
 
14. We calculate 
 

  

  

φ( p) = dx
α
π

⎛ 
⎝ 

⎞ 
⎠ −∞

∞

∫
1/4

e−αx 2 / 2 1
2π=

e− ipx/ =

=
α
π

⎛ 
⎝ 

⎞ 
⎠ 

1/ 4 1
2π=

⎛ 
⎝ 

⎞ 
⎠ 

1/2

dxe−α (x − ip/α= )2

−∞

∞

∫ e− p 2 /2α= 2

=
1

πα=2

⎛ 
⎝ 

⎞ 
⎠ 

1/ 4

e− p2 / 2α= 2

 

 
From this we find that the probability the momentum is in the range (p, p + dp) is 
 

 
  
| φ( p) |2 dp =

1
πα=2

⎛ 
⎝ 

⎞ 
⎠ 

1/ 2

e− p2 /α= 2

 

 
To get the expectation value of the energy we need to calculate 
 

 

  

〈
p2

2m
〉 =

1
2m

1
πα=2

⎛ 
⎝ 

⎞ 
⎠ 

1/ 2

dpp2e− p2 /α= 2

−∞

∞

∫

=
1

2m
1

πα=2

⎛ 
⎝ 

⎞ 
⎠ 

1/2 π
2

(α=2 )3/ 2 =
α=2

2m

 

 
An estimate on the basis of the uncertainty principle would use the fact that the “width”  
of the packet is1 / α . From this we estimate  Δp ≈ = / Δx = = α , so that  
 

  
  
E ≈

(Δp)2

2m
=

α=2

2m
 

 
The exact agreement is fortuitous, since both the definition of the width and  
the numerical statement of the uncertainty relation are somewhat elastic. 
 
 
 
 
 
 
 
 
 



 
 
 
 
15. We have 
 
 

  

j(x) =
=

2im
ψ * (x)

dψ (x)
dx

−
dψ *(x)

dx
ψ (x)

⎛ 
⎝ 

⎞ 
⎠ 

=
=

2im
(A * e−ikx + B *eikx )(ikAeikx − ikBe−ikx ) − c.c)[ ]

=
=

2im
[ik | A |2 −ik | B |2 +ikAB *e2ikx − ikA* Be −2ikx

− (−ik ) | A |2 −(ik) | B |2 −(−ik)A * Be −2ikx − ikAB *e2ikx ]

=
=k
m

[| A |2 − | B |2 ]

  

 
This is a sum of a flux to the right associated with A eikx  and a flux to the left associated 
with Be-ikx.. 
 
16. Here  
 

 

  

j(x) =
=

2im
u(x)e− ikx(iku(x)eikx +

du(x)
dx

eikx) − c.c⎡ 
⎣ 

⎤ 
⎦ 

=
=

2im
[(iku2 (x) + u(x)

du(x)
dx

) − c.c] =
=k
m

u2 (x)
 

 

(c) Under the reflection x  -x  both x and p = 
  
−i= ∂

∂x
 change sign, and since the 

function consists of an odd power of x and/or p, it is an odd function of x. Now the 
eigenfunctions for a box symmetric about the x axis have a definite parity. So that 

un (−x) = ±un (x). This implies that the integrand is antisymmetric under x  - x. 
Since the integral is over an interval symmetric under this exchange, it is zero. 

 
(d) We need to prove that 
 

dx(Pψ (x))*ψ(x) =
−∞

∞

∫ dxψ (x)* Pψ (x)
−∞

∞

∫  
 

The left hand side is equal to  
 



 dxψ *(−x)ψ (x) =
−∞

∞

∫ dyψ * (y)ψ(−y)
−∞

∞

∫  
 
with a change of variables x -y , and this is equal to the right hand side. 
 
The eigenfunctions of P with eigenvalue +1 are functions for which u(x) = u(-x), while  
 
those with eigenvalue –1 satisfy v(x) = -v(-x). Now the scalar product is  
 
 dxu *(x)v(x) = dyu *(−x)v(−x) = − dxu *(x)v(x)

−∞

∞

∫−∞

∞

∫−∞

∞

∫  
 
so that 
  dxu *(x)v(x) = 0

−∞

∞

∫  
 
(e) A simple sketch of  ψ(x) shows that it is a function symmetric about x = a/2. 
 This means that the integral dxψ (x)un (x)

0

a

∫  will vanish for the un(x) which are odd 
under the reflection about this axis. This means that the integral vanishes for n = 2,4,6,…  
    
 
 
  
 

 
 
 
 
  

    
  
   

 
 
 
 

 
 

 
 

 
  

    
  



CHAPTER 4. 
 
 
1. The solution to the left side of the potential region is ψ (x) = Aeikx + Be−ikx .  
As shown in  Problem 3-15, this corresponds to a flux 
 

  
  
j(x) =

=k
m

| A |2 − | B |2( ) 

 
The solution on the right side of the potential is ψ (x) = Ceikx + De−ikxx , and 
as above, the flux is 
 

  
  
j(x) =

=k
m

| C |2 − | D |2( ) 

Both fluxes are independent of x. Flux conservation implies that the two  
are equal, and this leads to the relationship 
 
  | A |2 + | D |2=| B |2 + | C |2  
 
If we now insert  
 

  
C = S11A + S12D
B = S21A + S22D

 

 
into the above relationship we get 
 
| A |2 + | D |2= (S21A + S22D)(S21

* A * +S22
* D*) + (S11A + S12D)(S11

* A * +S12
* D*)  

 
Identifying the coefficients of |A|2 and |D|2, and setting the coefficient of 
AD* equal to zero yields 
 

  

| S21 |2 + | S11 |2= 1

| S22 |2 + | S12 |2= 1
S12S22

* + S11S12
* = 0

 

 
Consider now the matrix  
 

  Str =
S11 S21

S12 S22

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟  

 
The unitarity of this matrix implies that  
 



 
S11 S21

S12 S22

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ S11

* S12
*

S21
* S22

*

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ =

1 0
0 1

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟  

 
that is, 

 
| S11 |2 + | S21 |2=| S12 |2 + | S22 |2 =1

S11S12
* + S21S22

* = 0
 

 
These are just the conditions obtained above. They imply that the matrix Str 
is unitary, and therefore the matrix S is unitary. 
 
2. We have solve the problem of finding R and T  for this potential well in 

the text.We take V0 < 0. We dealt with wave function of the form   
 

eikx + Re−ikx x < −a

Teikx x > a
 

In the notation of Problem 4-1, we have found that if A = 1 and D = 0, then 
C = S11 = T  and B = S21 = R.. To find the other elements of the S matrix we 
need to consider the same problem with A = 0 and D = 1. This can be 
solved explicitly by matching wave functions at the boundaries of the 
potential hole, but it is possible to take the solution that we have and reflect 
the “experiment” by the interchange x  - x. We then find that S12 = R and 
S22 = T. We can easily check that 
 

 
| S11 |2 + | S21 |2=| S12 |2 + | S22 |2 =| R |2 + | T |2= 1

 

Also 
S11S12

* + S21S22
* = TR* +RT* = 2Re(TR*) 

 
If we now look at the solutions for T and R in the text we see that the 
product of T and R* is of the form (-i) x (real number), so that its real part 
is zero. This confirms that the S matrix here is unitary. 
 
3. Consider the wave functions on the left and on the right to have the 

forms 
ψ L(x) = Ae ikx + Be− ikx

ψ R (x) = Ceikx + De−ikx  

 
Now, let us make the change  k  - k and  complex conjugate everything. 
Now the two wave functions read 
 



   
ψ L(x)'= A *eikx + B *e− ikx

ψ R (x)'= C * eikx + D* e−ikx  

 
Now complex conjugation and the transformation k  - k  changes the 
original relations to  
 

  
C* = S11

* (−k)A * +S12
* (−k)D*

B* = S21
* (−k)A * +S22

* (−k)D*
 

 
On the other hand, we are now relating outgoing amplitudes C*, B* to 
ingoing amplitude A*, D*, so that the relations of problem 1 read 
 

  
C* = S11(k)A * +S12(k)D*
B* = S21(k)A * +S22(k)D*

 

 
This shows that S11(k) = S11

* (−k); S22(k) = S22
* (−k); S12(k) = S21

* (−k) . These 

result may be written in the matrix form  S(k) = S+ (−k) . 
 
4. (a) With the given flux, the wave coming in  from  x = −∞ , has the 

form    eikx , with unit amplitude. We now write the solutions in the 
various regions 

 

  

x < b eikx + Re− ikx k 2 = 2mE / =2

−b < x < −a Aeκx + Be−κx κ 2 = 2m(V0 − E) /=2

−a < x < c Ceikx + De− ikx

c < x < d Meiqx + Ne−iqx q2 = 2m(E + V1) / =2

d < x Teikx

 

(b) We now have  
 

  

x < 0 u(x) = 0

0 < x < a Asinkx k 2 = 2mE / =2

a < x < b Beκx + Ce−κx κ 2 = 2m(V0 − E ) / =2

b < x e−ikx + Reikx

 

The fact that there is total reflection at x = 0 implies that |R|2 = 1 
 



5.  The denominator in (4-    ) has the form 
 
 D = 2kq cos2qa − i(q2 + k2 )sin2qa  
 
With k = iκ  this becomes 
 
 D = i 2κqcos2qa − (q2 −κ 2 )sin2qa( ) 
 
The denominator vanishes when 
 

 tan2qa =
2tanqa

1− tan2 qa
=

2qκ
q2 −κ 2  

 
This implies that 
 

 tanqa = −
q2 −κ 2

2κq
± 1 +

q2 −κ 2

2κq
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

= −
q2 −κ 2

2κq
±

q2 +κ 2

2κq
 

 
This condition is identical with  (4-   ). 
 
The argument why this is so, is the following: When k = iκ  the 
wave functio on the left has the form e−κx + R(iκ )eκx . The function 
e-κx blows up as x → −∞  and the wave function only make sense if 
this term is overpowered by the other term, that is when R(iκ ) = ∞ . 
We leave it to the student to check that the numerators are the same 
at k = iκ. 
 
6.  The solution is    u(x) = Aeikx + Be-ikx        x < b 
       = Ceikx  + De-ikx      x > b  
 
The continuity condition at x = b leads to  
 
      Aeikb  + Be-ikb  = Ceikb + De-ikb 
 
And the derivative condition is 

  
                       (ikAeikb –ikBe-ikb) - (ikCeikb –ikDe-ikb)= (λ/a)( Aeikb  + Be-ikb) 
 
 With the notation 
 
  Aeikb = α ; Be-ikb = β; Ceikb = γ; De-ikb = δ 
 
 These equations read 
 



                         α + β = γ + δ 
 
   ik(α - β + γ - δ) = (λ/a)(α + β) 
 
 We can use these equations to write (γ,β) in terms of (α,δ) as follows 
 

   
γ =

2ika
2ika − λ

α +
λ

2ika − λ
δ

β =
λ

2ika − λ
α +

2ika
2ika − λ

δ
 

 
We can now rewrite these in terms of A,B,C,D and we get for the S matrix 
 

  S =

2ika
2ika− λ

λ
2ika − λ

e−2ikb

λ
2ika − λ

e2ikb 2ika
2ika− λ

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

 

 
Unitarity is easily established: 
 

 
| S11 |2 + | S12 |2= 4k 2a2

4k2a2 + λ2 + λ2

4k2a2 + λ2 = 1

S11S12
* + S12S22

* =
2ika

2ika − λ
⎛ 
⎝ 

⎞ 
⎠ 

λ
−2ika− λ

e−2ikb⎛ 
⎝ 

⎞ 
⎠ +

λ
2ika − λ

e−2ikb⎛ 
⎝ 

⎞ 
⎠ 

−2ika
−2ika − λ

⎛ 
⎝ 

⎞ 
⎠ = 0

 

 
The matrix elements become infinite when 2ika =λ. In terms of κ= -ik, this condition 
becomes κ = -λ/2a = |λ|/2a. 
 
7. The exponent in T = e-S  is 
 

  

S =
2
= dx 2m(V (x) − E)

A

B

∫

=
2
=

dx (2m(
mω 2

2
(x 2 −

x 3

a
)) −

=ω
2A

B

∫
 

 
where A and B are turning points, that is, the points at which the quantity 
under the square root sign vanishes.  
We first simplify the expression by changing to dimensionless variables: 
 
   

  
x = = / mω y; η = a / = / mω << 1 

 
The integral becomes 
 



  2 dy y2 −ηy 3 −1
y1

y2∫                  with  η <<1 

 
where now y1 and y2 are the turning points. A sketch of the potential shows 
that y2 is very large. In that region, the –1 under the square root can be 
neglected, and to a good approximation y2 = 1/η. The other turning point 
occurs for y not particularly large, so that we can neglect the middle term 
under the square root, and the value of y1 is 1. Thus we need to estimate 
 
   dy y2 −ηy 3 −1

1

1/η

∫  
 
The integrand has a maximum at 2y – 3ηy2= 0, that is at y = 2η/3. We 
estimate the contribution from that point on by neglecting the –1 term in 
the integrand. We thus get 
 

  dyy 1−ηy
2/ 3η

1/η

∫ =
2

η2
(1− ηy)5/ 2

5
−

(1− ηy)3/ 2

3
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
2/3η

1/η

=
8 3
135

1
η2  

 
To estimate the integral in the region 1 < y < 2/3η is more difficult. In any 
case, we get a lower limit on S by just keeping the above, so that 
 
    S > 0.21/η2 
 
The factor eS  must be multiplied by a characteristic time for the particle to 
move back and forth inside the potential with energy   =ω / 2 which is 
necessarily of order 1/ω.  Thus the estimated time is longer 

than
const.

ω
e0.2/η 2

. 

8. The barrier factor is eS  where 
 

  
S =

2
= dx

=2l(l +1)
x 2 − 2mE

R0

b

∫  

 
where b is given by the value of x at which the integrand vanishes, that is, 
with 2mE/  =2 =k2, b = l(l +1) / k .We have, after some algebra 
 

   

S = 2 l(l +1)
du
uR0 / b

1

∫ 1− u2

= 2 l(l +1) ln
1+ 1− (R0 / b)2

R0 / b
− 1− (R0 / b)2

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

 

 
We now introduce the variable f = (R0/b) ≈ kR0 / l  for large l. Then 
 



   eS eS =
1+ 1− f 2

f

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

2l

e−2l 1− f 2

≈
e
2

⎛ 
⎝ 

⎞ 
⎠ 

−2l

f −2l  

    
for f << 1. This is to be multiplied by the time of traversal inside the box. 
The important factor is f-2l.  It tells us that the lifetime is proportional to 
(kR0)-2l  so that it grows as a power of l  for small k. Equivalently we can 
say that the probability of decay falls as (kR0)2l. 
 
9. The argument fails because the electron is not localized inside the 

potential. In fact, for weak binding, the electron wave function extends 
over a region R = 1/α =   = 2mEB , which, for weak binding is much 
larger than a. 

 
10. For a bound state, the solution for x > a must be of the 

form u(x) = Ae −αx ,    where   α = 2mEB / = . Matching 
1
u

du
dx

at x = a  

 
yields  −α = f (EB ).  If f(E) is a constant, then we immediately know α.. Even if f(E) 
varies only slightly over the energy range that overlaps small positive E, we can 
determine the binding energy in terms of the reflection coefficient. For positive energies 
the wave function u(x)  for x > a has the form e-ikx  + R(k)eikx, and matching yields 
 

     
f (E ) ≈ −α = −ik

e− ika − Re ika

e−ika + Re ika = −ik
1− Re2ika

1 + Re2ika  

so that 
 

R = e−2ika k + iα
k − iα

 

 
We see that |R|2 = 1. 
 
11. Since the well is symmetric about x = 0, we need only match wave functions at x = b 
and a. We look at E < 0, so that we introduce and α2 = 2m|E|/  =2  and  
       q2 = 2m(V0-|E|)/  =2 . We now write down 
Even solutions: 
      u(x)  =  coshαx  0 < x < b 
    = A sinqx + B cosqx      b < x < a  
                = C e-αx     a < x 
 
 

Matching 
1

u(x)
du(x)

dx
 at x = b and at x = a leads to the equations 

 



α tanhαb = q
Acosqb − Bsinqb
Asinqb + B cosqb

−α = q Acosqa − Bsnqa
Asinqa + B cosqa

 

 
From the first equation we get 
 

   
B
A

=
qcosqb −α tanhαbsinqb
qsinqb +α tanhαbcosqb

 

 
and from the second 
 

   
B
A

=
qcosqa +α sinqa
qsinqa −α cosqa

 

 
Equating these, cross-multiplying, we get after a little algebra 
 
q2 sinq(a − b) − αcosq(a − b) = α tanhαb[αsinq(a − b) + qcosq(a − b)] 
 
from which it immediately follows that 
 

   
sinq(a − b)
cosq(a − b)

=
αq(tanhαb +1)
q2 − α 2 tanhαb

 

Odd Solution 
 
Here the only difference is that the form for u(x) for 0  <  x < b   is sinhαx. 
The result of this is that we get the same expresion as above, with tanhαb  
replaced by cothαb. 
 
11. (a) The condition that there are at most two bound states is equivalent 

to stating that there is at most one odd bound state. The relevant figure 
is Fig. 4-8, and we ask for the condition that there be no intersection 
point with the tangent curve that starts up at 3π/2. This means that  

 
λ − y2

y
= 0 

for y ≤ 3π/2. This translates into λ  =  y2 with y < 3π/2, i.e. λ  < 9π2/4. 
(b) The condition that there be at most three bound states implies that there 
be at most two even bound states, and the relevant figure is 4-7. Here the 
conditon is that y < 2π so that λ < 4π2. 
 



(c) We have y = π so that the second even bound state have zero binding 
energy. This means that λ = π2. What does this tell us about the first bound 
state? All we know is that y is a solution of Eq. (4-54) with λ = π2.   
Eq.(4-54) can be rewritten as follows: 
 

 tan2 y =
1− cos2 y

cos2 y
=

λ − y2

y2 =
1− (y2 / λ )

(y 2 / λ)
 

 
so that the even condition is cos y = y / λ , and in the same way, the odd 
conditin is sin y = y / λ .  Setting λ = π  still leaves us with a 
transcendental equation. All we can say is that the binding energy f the 
even state will be larger than that of the odd one. 
 
13.(a)  As b  0, tanq(a-b)  tanqa and the r.h.s. reduces to α/q. Thus we 
get, for the even solution 
 

tanqa = α/q  
and, for the odd solution, 
     tanqa  = - q/α. 
 
These are just the single well conditions. 
(b) This part is more complicated. We introduce notation c = (a-b), which 
will be held fixed. We will also use the notation z = αb. We will also use 
the subscript “1” for the even solutions, and “2” for the odd solutions. For b 
large, 
 

   
tanhz =

ez − e− z

ez + e−z =
1− e−2z

1 + e−2z ≈1− 2e−2z

cothz ≈1 = 2e−2z

 

 
The eigenvalue condition for the even solution now reads  
 
  

 tanq1c =
q1α1(1+1− 2e−2z1 )
q1

2 −α1
2(1− 2e−2z1 )

≈
2q1α1

q1
2 − α1

2 (1−
q1

2 + α1
2

q1
2 − α1

2 e−2z1 )  

 
The condition for the odd solution is obtained by just changing the sign of 
the e-2z  term, so that 
 

 tanq2c =
q2α2 (1+1 + 2e−2z2 )

q2
2α2

2(1 + 2e−2z2 )
≈

2q2α 2

q2
2 −α 2

2 (1+
q2

2 +α 2
2

q2
2 −α2

2 e−2z2 )  

 



In both cases q2 + α2 = 2mV0/  =2  is fixed.  The two eigenvalue conditions 
only differ in the e-2z terms, and the difference in the eigenvalues is 
therefore proportional to e-2z , where z here is some mean value between 
α1 b and α2b.  
This can be worked out in more detail, but this becomes an exercise in 
Taylor expansions with no new physical insights. 
 
 
14. We write 
 

〈x
dV (x)

dx
〉 = dxψ(x)x

dV (x)
dx−∞

∞

∫ ψ (x)

= dx
d
dx

ψ 2xV( )− 2ψ
dψ
dx

xV −ψ 2V⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ −∞

∞

∫
 

 
The first term vanishes because ψ  goes to zero rapidly. We next rewrite 
 

  

−2 dx
dψ
dx−∞

∞

∫ xVψ = −2 dx
dψ
dx−∞

∞

∫ x(E +
=2

2m
d2

dx2 )ψ

= −E dxx
dψ 2

dx
−

=2

2m−∞

∞

∫ dxx
d

dx
dψ
dx

⎛ 
⎝ 

⎞ 
⎠ 

2

−∞

∞

∫
 

 
Now 
 

   dxx
dψ 2

dx−∞

∞

∫ = dx
d
dx−∞

∞

∫ xψ 2( )− dxψ 2

−∞

∞

∫  

 
The first term vanishes, and the second term is unity.  We do the same with 
the second term, in which only the second integral 
 

     dx
dψ
dx

⎛ 
⎝ 

⎞ 
⎠ 

2

−∞

∞

∫  

 
remains. Putting all this together we get 
 

 
  
〈x

dV
dx

〉 + 〈V 〉 =
=2

2m
dx

dψ
dx

⎛ 
⎝ 

⎞ 
⎠ 

2

+ E dxψ 2

−∞

∞

∫−∞

∞

∫ = 〈
p2

2m
〉 + E  

 
so that 

       
1
2

〈x
dV
dx

〉 = 〈
p2

2m
〉   

 
 



CHAPTER  5. 
 
 
1. We are given 
 

dx(AΨ(x)) *Ψ(x) =
−∞

∞

∫ dxΨ(x) * AΨ(x)
−∞

∞

∫  
 

Now let  Ψ(x) = φ(x) + λψ (x) , where λ is an arbitrary complex number. Substitution 
into the above equation yields, on the l.h.s. 
 

dx(Aφ(x) + λAψ (x)) *(φ(x) + λψ(x))
−∞

∞

∫
= dx (Aφ) *φ + λ (Aφ)*ψ + λ * (Aψ )*φ + | λ |2 (Aψ )*ψ[ ]

−∞

∞

∫
 

 
On the r.h.s. we get 
 

dx(φ(x) + λψ (x)) *(Aφ(x) + λAψ(x))
−∞

∞

∫
= dx φ * Aφ + λ *ψ * Aφ + λφ * Aψ + | λ |2 ψ * Aψ[ ]

−∞

∞

∫
 

 
 
Because of the hermiticity of A, the first and fourth terms on each side are equal. For the 
rest, sine λ is an arbitrary complex number, the coefficients of λ and λ* are independent , 
and we may therefore identify these on the two sides of the equation. If we consider λ, 
for example, we get 
 
  dx(Aφ(x)) *ψ (x) =

−∞

∞

∫ dxφ(x) * Aψ (x)
−∞

∞

∫  
 
the desired result. 
 
2. We have  A+ = A and B+ = B , therefore (A + B)+ = (A + B). Let us call (A + B) = X. 

We have shown that X is hermitian. Consider now 
 
(X +)n  = X+ X+ X+ …X+ = X X X …X = (X)n    
 

which was to be proved. 
 
3. We have 
 

〈A2〉 = dxψ * (x)A2

−∞

∞

∫ ψ (x) 
 

Now define  Aψ(x) = φ(x). Then the above relation can be rewritten as 



 
〈A2〉 = dxψ (x)Aφ(x) = dx

−∞

∞

∫−∞

∞

∫ (Aψ (x))*φ(x)

= dx
−∞

∞

∫ (Aψ (x))* Aψ (x) ≥ 0
 

 

4. Let U = eiH  = 
inH n

n!n= 0

∞

∑ . Then  U + =
(−i)n (H n )+

n!n= 0

∞

∑ =
(−i)n (H n )

n!n =0

∞

∑ = e− iH , and thus  

 
the hermitian conjugate of  eiH  is  e-iH  provided H = H+.. 
 
5. We need to show that  
 

eiHe−iH =
in

n!n =0

∞

∑ H n (−i)m

m!m = o

∞

∑ H m  = 1 

 
Let us pick a particular coefficient in the series, say k = m + n and calculate its 
coefficient. We get, with m= k – n, the coefficient of Hk  is 
 

  

in

n!n= 0

k

∑ (−i) k−n

(k − n)!
=

1
k!

k!
n!(k − n)!n =0

k

∑ in (−i) k−n

=
1
k!

(i − i)k = 0
 

 
Thus in the product only the m = n = 0 term remains, and this is equal to unity. 
 
6. We write  I(λ,λ*) = dx φ(x) + λψ (x)( )

−∞

∞

∫ * (φ(x) + λψ (x)) ≥ 0. The left hand side, in 
abbreviated notation can be written as 

 
I(λ,λ*) = |φ |2∫ + λ * ψ *φ + λ φ *ψ + λλ * |ψ |2∫∫∫  

 
Since λ and λ* are independent, he minimum value of this occurs when 
 

 

∂I
∂λ *

= ψ *φ + λ |ψ |2∫∫ = 0

∂I
∂λ

= φ *ψ + λ * |ψ |2∫∫ = 0
 

 
When these values of λ and λ* are inserted in the expression for I(λ,λ*) we get 
 

I(λ min,λ min
* ) = |φ |2∫ −

φ *ψ ψ *φ∫∫
|ψ |2∫

≥ 0  



 
from which we get the Schwartz inequality. 
 

7. We have UU+ =   1  and VV+ = 1. Now (UV)+  = V+U+ so that  
 

(UV)(UV)+ = UVV+U+ = UU+  = 1 
 

8. Let Uψ(x) = λψ(x), so that λ is an eigenvalue of U. Since U is unitary, U+U = 1. Now 
 

dx
−∞

∞

∫ (Uψ (x))*Uψ (x) = dxψ *(x)U +Uψ (x) =
−∞

∞

∫
= dxψ * (x)ψ (x) =1

−∞

∞

∫
 

 
On the other hand, using the eigenvalue equation, the integral may be written in the form 
 
  dx

−∞

∞

∫ (Uψ (x))*Uψ (x) = λ *λ dxψ *(x)ψ (x) =| λ |2
−∞

∞

∫  
 
It follows that |λ|2 = 1, or equivalently λ = eia , with a real. 
 
9. We write   
 

dxφ(x) *φ(x) =
−∞

∞

∫ dx
−∞

∞

∫ (Uψ (x))*Uψ (x) = dxψ *(x)U +Uψ (x) =
−∞

∞

∫
= dxψ * (x)ψ (x) =1

−∞

∞

∫
 

 
10. We write, in abbreviated notation 
 

va
*∫ vb = (Uua∫ )*Uub = ua

*∫ U +Uub = ua
*∫ ub = δ ab  

 
11. (a)  We are given A+ = A and B+ = B. We now calculate 
 
(i [A,B])+ = (iAB – iBA)+ = -i (AB)+ - (-i)(BA)+ = -i (B+A+) + i(A+B+) 
 
                = -iBA + iAB = i[A,B] 
 
(b) [AB,C] = ABC-CAB = ABC – ACB + ACB – CAB = A(BC – CB) – (AC – CA)B 
 

      = A [B,C] – [A,C]B 
 

(c) The Jacobi identity written out in detail is 
 
[A,[B,C]] + [B,[C,A]] + [C,[A,B]] =  
 



A(BC – CB) – (BC – CB)A + B(CA – AC) – (CA - AC)B + C(AB – BA) – (AB – BA)C 
 
= ABC – ACB – BCA + CBA + BCA – BAC – CAB + ACB + CAB – CBA – ABC + BAC 
 
It is easy to see that the sum is zero. 
 
12. We have  
 
eA B e-A  = (1 + A + A2/2! + A3/3! + A4/4! +…)B (1 - A + A2/2! - A3/3! + A4/4! -…) 
 
Let us now take the term independent of A: it is B. 
The terms of first order in A are AB – BA = [A,B]. 
The terms of second order in A are  
 
A2B/2! – ABA + BA2/2! = (1/2!)(A2B – 2ABA + BA2) 
 
    = (1/2!)(A(AB – BA) – (AB – BA)A) = (1/2!){A[A,B]-[A,B]A} 
 
               = (1/2!)[A,[A,B]] 
 
The terms of third order in A are A3B/3! – A2BA/2! + ABA2/2! – BA3.  One can again 
rearrange these and show that this term is  (1/3!)[A,[A,[A,B]]]. 
 
There is actually a neater way to do this. Consider  
 
   F(λ) = eλABe−λA  
 
Then 
 

  
dF(λ)

dλ
= eλA ABe−λA − eλA BAe−λA = eλA[A,B]e−λA   

 
Differentiating again we get  
 

  
d2F(λ)

dλ2 = eλA[A,[A,B]]e−λA  

 
and so on. We now use the Taylor expansion to calculate F(1) = eA B e-A. 
 

F(1) = F (0) + F '(0) +
1
2!

F ' '(0) +
1
3!

F ' ' '(0) + ..,

= B+ [A,B] + 1
2!

[A,[A,B]] + 1
3!

[A,[A,[A,B]]] + ...
  

 
13. Consider the eigenvalue equation  Hu = λu. Applying H to this equation we get 
  



H2 u = λ 2u ;  H3 u = λ3u  and H4u = λ4u . We are given that H4 = 1, which means 
that H4 applied to any function yields 1. In particular this means that λ4 = 1. The 
solutions of this are λ = 1, -1, i, and –i. However, H is hermitian, so that the 
eigenvalues are real. Thus only λ = ± 1 are possible eigenvalues. If H is not 
hermitian, then all four eigenvalues are acceptable. 
 
 

14. We have the equations 
 

Bua
(1) = b11ua

(1) + b12ua
(2)

Bua
(2) = b21ua

(1) + b22ua
(2) 

 
Let us now introduce functions (va

(1),va
(2))  that satisfy the equations 

Bva
(1) = b1va

(1);Bva
(2) = b2va

(2). We write, with simplified notation, 
 
    v1 = α u1 + β u2 
    v2 = γ u1 + δ u2 
 
 The b1 - eigenvalue equation reads 
 
      b1v1 = B ( α u1 + β u2) = α (b11 u1 + b12u2) + β (b21u1 + b22u2) 
 
We write the l.h.s. as b1(α u1 + β u2). We can now take the coefficients  
of u1 and u2  separately, and get the following equations 
 
   α (b1 – b11) = βb21 

   β (b1 – b22)  = αb12 
 
The product of the two equations yields a quadratic equation for b1, whose solution is 
 

  b1 =
b11 + b22

2
±

(b11 − b22)2

4
+ b12b21  

 
We may choose the + sign for the b1 eigenvalue. An examination of the equation 
involving v2 leads to an identical equation, and we associate the – sign with the b2 
eigenvalue. Once we know the eigenvalues, we can find the ratios α/β and γ/δ. These 
suffice, since the normalization condition implies that 
 
    α2 + β2 = 1  and γ2 + δ2 = 1 
 
15. The equations of motion for the expectation values are 
 



  

d
dt

〈x〉 =
i
=

〈[H ,x]〉 =
i
=

〈[
p2

2m
, x]〉 =

i
m=

〈 p[ p, x]〉 = 〈
p
m

〉

d
dt

〈p〉 =
i
=

〈[H, p]〉 = −
i
=

〈[p,
1
2

mω1
2x 2 +ω2x]〉 = −mω1

2 〈x〉 −ω2

 

 
16. We may combine the above equations to get 
 

d2

dt2 〈x〉 = −ω1
2〈x〉 −

ω2

m
 

 
The solution of this equation is obtained by introducing the variable 
 

  X = 〈x〉 +
ω2

mω1
2  

 
The equation for X reads  d2X/dt2 = - ω1

2 X, whose solution is  
 
  X = Acosω1   t + Bsinω1  t 
 
This gives us  
 

  〈x〉t = −
ω2

mω1
2 + Acosω1t + B sinω1t  

 
At t = 0   

 
〈x〉0 = −

ω2

mω1
2 + A

〈p〉0 = m d
dt

〈x〉t = 0 = mBω1

 

 
We can therefore write A and B in terms  of the initial values of < x > and 
< p >,  
 

 〈x〉t = −
ω2

mω1
2 + 〈x〉0 +

ω2

mω1
2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ cosω1t +

〈p〉 0

mω1
sinω1t  

 
17. We calculate as above, but we can equally well use Eq. (5-53) and (5-57),  
to get 
 

  

d
dt

〈x〉 =
1
m

〈 p〉

d
dt

〈p〉 = −〈
∂V (x, t)

∂x
〉 = eE 0cosωt

 

Finally 



 

  
d
dt

〈H 〉 = 〈
∂H
∂t

〉 = eE0ω sinωt〈x〉  

 
18. We can solve the second of the above equations to get 
 

〈p〉 t =
eE 0

ω
sinωt + 〈p〉 t =0  

 
This may be inserted into the first equation, and the result is 
 

  〈x〉t = −
eE0

mω 2 (cosωt −1) +
〈 p〉t = 0 t

m
+ 〈x〉t = 0  

 
   

 
 
 
 
 
 
 
  
 
 

 
 

   
 
      
 
 
 
 

 

  



CHAPTER 6 
 
19. (a) We have 

A|a> = a|a> 
 

It follows that  
   <a|A|a> = a<a|a> = a 
 
if the eigenstate of A corresponding to the eigenvalue a is normalized to unity.  
The complex conjugate of this equation is 
 
  <a|A|a>* = <a|A+|a> = a* 
 
If A+ = A, then it follows that a = a*, so that a is real. 
 
13. We have  
 

〈ψ | (AB)+ |ψ 〉 = 〈(AB)ψ |ψ 〉 = 〈Bψ | A+ |ψ 〉 = 〈ψ | B+A+ |ψ 〉  
 

This is true for every ψ, so that  (AB)+ = B+A+ 
 
2.                

TrAB = 〈n | AB | n〉 = 〈n | A1B | n〉
n
∑

n
∑

= 〈n | A | m〉〈m | B | n〉 =
m
∑

n
∑ 〈m | B | n〉〈n | A | m〉

m
∑

n
∑

= 〈m | B1A | m〉 =
m
∑ 〈m | BA | m〉 =

m
∑ TrBA

 

 
3. We start with the definition of  |n>  as 
 

| n〉 =
1
n!

(A+)n | 0〉  

 
We now take Eq. (6-47) from the text to see that 
 

A | n〉 =
1
n!

A(A+)n | 0〉 =
n
n!

(A+ )n−1 | 0〉 =
n

(n −1)!
(A+ )n −1 | 0〉 = n | n −1〉  

 

4. Let  f (A+) = Cn
n=1

N

∑ (A+)n . We then use Eq. (6-47) to obtain 

 



Af (A+) | 0〉 = A Cn
n=1

N

∑ (A+)n | 0〉 = nCn (A+)n−1

n=1

N

∑ | 0〉

=
d

dA+ Cn
n =1

N

∑ (A+)n | 0〉 =
df (A+)

dA+ | 0〉
 

 
5. We use the fact that Eq. (6-36) leads to  
 

  

x =
=

2mω
(A + A+ )

p = i mω=
2

(A+ − A)
 

 
We can now calculate 
 

  

〈k | x | n〉 =
=

2mω
〈k | A + A+ | n〉 =

=
2mω

n〈k | n −1〉 + k 〈k −1 | n〉( )

= =
2mω

nδk ,n−1 + n +1δ k ,n+1( )
 

 
which shows that k = n ± 1. 
 
6. In exactly the same way we show that  
 

     
  
〈k | p | n〉 = i

mω=
2

〈k | A+ − A | n〉 = i
mω=

2
( n +1δk ,n+1 − nδ k,n −1)  

 
7. Let us now calculate  
 

〈k | px | n〉 = 〈k | p1x | n〉 = 〈k | p | q〉〈q | x | n〉
q
∑  

We may now use the results of problems 5 and 6. We get for the above 
 

  

i=
2

( k
q
∑ δ k −1,q − k +1δk +1,q )( nδq ,n−1 + n +1δ q ,n+1)

=
i=
2

( knδkn − (k +1)nδ k+1,n−1 + k(n +1)δ k −1,n +1 − (k +1)(n +1)δ k+1,n+1)

=
i=
2

(−δ kn − (k +1)(k + 2)δ k +2,n + n(n + 2)δ k,n +2 )

 

 
To calculate 〈k | xp | n〉  we may proceed in exactly the same way. It is also possible to 
abbreviate the calculation by noting that since x and p are hermitian operators, it 
follows that  



  〈k | xp | n〉 = 〈n | px | k〉* 
 
so that the desired quantity is obtained from what we obtained before by 
interchanging  k and n and complex-conjugating. The latter only changes the overall 
sign, so that we get 
 

  
〈k | xp | n〉 = −

i=
2

(−δ kn − (n +1)(n + 2)δ k ,n+ 2 + (k +1)(k + 2)δ k +2,n)  

 
8.The results of problem 7 immediately lead to 
 
    〈k | xp − px | n〉 = i=δkn  
 
9.  This follows immediately from problems 5 and 6.  
 
10. We again use 
 

  

x =
=

2mω
(A + A+ )

p = i mω=
2

(A+ − A)
 

 
to obtain the operator expression for 
 

  

  

x 2 =
=

2mω
(A + A+)(A + A+) =

=
2mω

(A2 + 2A+ A + (A+)2 +1)

p2 = −
mω=

2
(A+ − A)(A+ − A) = −

mω=
2

(A2 − 2A+A + (A+)2 −1)
 

 
where we have used [A,A+] = 1. 
 
The quadratic terms change the values of the eigenvalue integer by 2, so that they do not 
appear in the desired expressions. We get, very simply 
 

  

  

〈n | x 2 | n〉 =
=

2mω
(2n +1)

〈n | p2 | n〉 =
mω=

2
(2n +1)

 

 
14. Given the results of problem 9, and of 10, we have 

 



  

(Δx)2 =
=

2mω
(2n +1)

(Δp)2 =
=mω

2
(2n +1)

 

 
and therefore  
    

   
  
ΔxΔp = =(n +

1
2

)  

 
15. The eigenstate in  A|α> = α|α> may be written in the form 
 

| α〉 = f (A+) | 0〉  
 

It follows from the result of problem 4 that the eigenvalue equation reads 
 

  Af (A+) | 0〉 =
df (A+ )

dA+ | 0〉 = αf (A+) | 0〉  

 
The solution of   df (x) = α f(x)  is  f(x) = C eαx   so that  
 
   | α〉 = CeαA +

| 0〉  
 
The constant C is determined by the normalization condition <α|α> = 1 
This means that 
 

  

1
C2 = 〈0 | eα *AeαA +

| 0〉 =
(α*)n

n!n =0

∞

∑ 〈0 |
d

dA+

⎛ 
⎝ 

⎞ 
⎠ 

n

eαA +

| 0〉

=
| α |2n

n!n =0

∞

∑ 〈0 | eαA +

| 0〉 =
|α |2n

n!n= 0

∞

∑ = e |α |2
 

 
Consequently 
 
   C = e−|α |2 /2  
 
We may now expand the state as follows 
 

  
| α〉 = | n〉〈n |α〉 = | n〉〈0 |

An

n!n
∑

n
∑ CeαA+

| 0〉

= C | n〉
1
n!n

∑ 〈0 |
d

dA+
⎛ 
⎝ 

⎞ 
⎠ 

n

eαA +

| 0〉 = C
α n

n!
| n〉

 

 
The probability that the state |α> contains n quanta is 



 

  Pn =| 〈n | α〉 |2= C2 | α |2n

n!
=

(|α |2 )n

n!
e−|α | 2

 

 
This is known as the Poisson distribution. 
 
Finally 
 
 〈α | N |α〉 = 〈α | A+A | α〉 = α *α =|α |2  
 
13. The equations of motion read 

      

  

dx( t)
dt

=
i
=

[H, x(t)]=
i
=

[
p2(t)
2m

,x(t)] =
p(t)
m

dp( t)
dt

=
i
=

[mgx(t), p(t)] = −mg
 

 
This leads to the equation 
 

  
d2x(t)

dt2 = −g  

 
The general solution is 
 

  x(t) =
1
2

gt2 +
p(0)
m

t + x(0) 

 
14. We have, as always 
 

dx
dt

=
p
m

 

 
Also 
 

  

  

dp
dt

=
i
=

[
1
2

mω2 x2 + eξx, p]

=
i
=

1
2

mω 2x[x, p] +
1
2

mω 2[x, p]x + eξ[x, p]⎛ 
⎝ 

⎞ 
⎠ 

= −mω 2x − eξ

 

 
Differentiating the first equation with respect to t and rearranging leads to 
 

 
d2x
dt2 = −ω 2x −

eξ
m

= −ω2 (x +
eξ

mω 2 )  

 



The solution of this equation is 
 

 

x +
eξ

mω2 = Acosωt + B sinωt

= x(0) +
eξ

mω 2
⎛ 
⎝ 

⎞ 
⎠ cosωt +

p(0)
mω

sinωt
 

 
We can now calculate the commutator  [x(t1),x(t2)], which should vanish  
when t1 = t2. In this calculation it is only the commutator [p(0), x(0)] that  
plays a role. We have 
 

  

[x( t1),x(t2)] = [x(0)cosωt1 +
p(0)
mω

sinωt1,x(0)cosωt2 +
p(0)
mω

sinωt2 ]

= i=
1

mω
(cosωt1 sinωt2 − sinωt1 cosωt2

⎛ 
⎝ 

⎞ 
⎠ =

i=
mω

sinω(t2 − t1)
 

 
 
16. We simplify the algebra by writing  
 

  

mω
2= = a;

=
2mω

=
1

2a
 

 
Then 
 

  
  

n!
=π
mω

⎛ 
⎝ 

⎞ 
⎠ 

1/ 4

un (x) = vn(x) = ax −
1

2a
d
dx

⎛ 
⎝ 

⎞ 
⎠ 

n

e− a2x 2

 

 
Now with the notation y = ax we get 
 

  

v1(y) = (y −
1
2

d
dy

)e−y 2
= (y + y)e− y 2

= 2ye− y 2

v2(y) = (y −
1
2

d
dy

)(2ye −y 2

) = (2y 2 −1 + 2y2 )e−y 2

= (4 y2 −1)e−y 2

 

 
Next 
 



 

v3(y) = (y −
1
2

d
dy

) (4 y2 −1)e−y 2[ ]
= 4y 3 − y − 4y + y(4 y2 −1)( )e− y 2

= (8y 3 − 6y)e− y 2

 

 

The rest is substitution  
  
y =

mω
2= x  

 
17. We learned in problem 4 that  
 

Af (A+) | 0〉 =
df (A+ )

dA+ | 0〉  

 
Iteration of this leads to  
 

  An f (A+ ) | 0〉 =
dn f (A+)

dA+ n | 0〉  

 
We use this to get 

eλA f (A+) | 0〉 =
λn

n!n= 0

∞

∑ An f (A+) | 0〉 =
λn

n!n= 0

∞

∑ d
dA+

⎛ 
⎝ 

⎞ 
⎠ 

n

f (A+) | 0〉 = f (A+ + λ ) | 0〉  

 
18. We use the result of problem 16 to write 
 

eλA f (A+)e−λA g(A+) | 0〉 = eλA f (A+)g(A+ − λ) | 0〉 = f (A+ + λ)g(A+) | 0〉  
 
Since this is true for any state of the form g(A+)|0> we have 
 
   eλA f (A+)e−λA = f (A+ + λ ) 
 
In the above we used the first formula in the solution to 16, which depended on the 
fact that  [A,A+] = 1. More generally we have the Baker-Hausdorff form, which we 
derive as follows: 
 Define 
   F(λ) = eλA A+e−λA  
 
Differentiation w.r.t. λ  yields 
 

 
dF(λ)

dλ
= eλA AA+e−λA − eλA A+ Ae−λA = eλA [A,A+ ]e−λA ≡ eλAC1e

−λA  

 
Iteration leads to  



 

  

d2F(λ)
dλ2 = eλA[A,[A,A+ ]]e−λA ≡ eλAC2e

−λA

.......
dnF(λ )

dλn = eλA [A,[A,[A,[A, ....]]..]e−λA ≡ eλACne
−λA

 

 
with A appearing n times in Cn. We may now use a Taylor expansion for 
 

F(λ +σ ) =
σ n

n!n =0

∞

∑ dn F(λ )
dλn =

σ n

n!n =0

∞

∑ eλACne
−λA  

 
If we now set λ = 0 we get 
 

    F(σ ) =
σ n

n!n =0

∞

∑ Cn  

 
which translates into 
 

eσA A+e−σA = A+ + σ[A, A+] +
σ 2

2!
[A,[A, A+]] +

σ 3

3!
[A,[A,[A, A+ ]]] + ... 

 
Note that if [A,A+] = 1 only the first two terms appear, so that 
 
  eσA f (A+)e−σA = f (A+ + σ[A,A+]) = f (A+ + σ ) 
 

19. We follow the procedure outlined in the hint. We define F(λ) by 
 

eλ(aA + bA + ) = eλaA F(λ)  
 
Differentiation w.r.t λ  yields 
 

(aA + bA+ )eλaA F(λ) = aAeλAF (λ ) + eλaA dF(λ )
dλ

 

 
The first terms on each side cancel, and multiplication by e−λaA  on the left yields 
 

  
dF(λ)

dλ
= e−λaA bA+eλaA F(λ ) = bA+ − λab[A,A+ ]F(λ ) 

 
When [A,A+] commutes with A. We can now integrate w.r.t. λ  and after integration  
Set λ = 1. We then get 
 
  F(1) = ebA + − ab[A ,A + ] /2 = ebA +

e−ab / 2 



 
so that 
 
  eaA + bA +

= eaAebA +

e−ab / 2  
 
20. We can use the procedure of problem 17, but a simpler way is to take the hermitian  

conjugate of the result. For a real function f  and λ real, this reads 
 
   e−λA+

f (A)eλA +

= f (A + λ ) 
 

 
Changing λ to -λ yields  
 
   eλA +

f (A)e−λA +

= f (A − λ)  
 
The remaining steps  that lead to 
 
  eaA + bA +

= ebA +

eaA eab /2  
are identical to the ones used in problem 18. 
 

20. For the harmonic oscillator problem we have 
 

  
x =

=
2mω

(A + A+)  

 
This means that eikx  is of the form given in problem 19 with   a = b = ik = / 2mω  
 
This leads to  
 
    eikx = eik =/ 2m ω A +

eik = /2mω Ae− =k 2 / 4mω  
 
Since A|0> = 0 and <0|A+ = 0, we get 
 
     〈0 | eikx | 0〉 = e− =k 2 / 4mω  
 
21. An alternative calculation, given that   u0 (x) = (mω / π=)1/ 4 e−mωx 2 /2= , is 
 

 
  

mω
π=

⎛ 
⎝ 

⎞ 
⎠ 

1/ 2

dxeikx

−∞

∞

∫ e−mωx 2= =
mω
π=

⎛ 
⎝ 

⎞ 
⎠ 

1/ 2

dxe
−

m ω
=

(x −
ik=

2mω
)2

−∞

∞

∫ e
−

=k 2

4 mω  

 

The integral is a simple gaussian integral and 
  

dy
−∞

∞

∫ e−m ωy 2 / = =
=π
mω

 which just 

cancels the factor in front. Thus the two results agree. 
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