1. Fields

The simple dynamical systems we have studied earlier have a finite number of degrees
of freedom. A point particle for example has 3 degrees of freedom, x,y,z. A set of N
point particles has 3N degrees of freedom (constraints could reduce this number). We will
now look at systems that have an infinite number of degrees of freedom. Such systems are
easy to find. Consider for example a string lying along the x — axis. The string can have
transverse vibrations; let us restrict to vibrations along the y axis. Then the configuration
of the string at any time ¢ is given by a function y(x). Thus in contrast to the point
particle where we had to just specify 3 numbers z,y, z to describe the configuration, now
we have to specify one number y per point x, so that we need an infinity of numbers to
specify the configuration. This infinity arises because z is a continuous variable, and so
such systems are also called ‘continuous’ systems.

Since the configuration will change with time we have y = y(z,t). More generally we
can have any function f which is a function of z,y, z,t. We call such a variable a scalar
field, where the word ‘scalar’ tells us that at each point f is just a scalar number, and the
word ‘field’ says that we have one such number for every point. We can also have a ‘vector
field’, where we have a vector at every point; an example where vector fields appear is

electromagnetism which is described by fields E, B or by the potentials &, A.

2. Notation

There are several conventions that help us to write fields and their actions in a more

2

compact form. Let us call the three spatial coordinates as !, z?, 23 instead of z,v, z, to

avoid later confusion. Noting that in relativity time will be on the same footing as the

spatial directions, we write t = 2°. Then all four variables are written in condensed form
= {2° z', 22, 2%} (2.1)
The four different components of x are thus
z*, a=0,1,2,3 (2.2)

Note that we have pit the index a at the top; this will be relevant later. If we are integrating

over all variables we would just write

/d4x5 /dxodxld:v2d:c3 (2.3)
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For a small change in the positions and time we write dx®. The proper length of such

an interval is
ds? = (dz®)? — (dz')? — (dz?)? — (dz®)? (2.4)
We need to have a good bookkeeping device to keep track of the negative signs in (2.4).

Define the matrix
1 0 0

0
10 -1 0 O
Mb=10 0 -1 0
0O 0 0 -1
where note that we have put the indices a,b at the bottom. Then we have

3 3
ds® = Z Z dz®ngpda® (2.6)

a=0 b=0

(2.5)

We will often get such sums over indices. We will adopt the Einstein summation convention
which says that if an index appears twice in an expression then it is assumed to be summed
(over the values 0, 1,2, 3) without the summation being shown explicitly. Thus we would

just write
ds® = dz®nepda® (2.7)

If we encounter a situation where we have an index coming twice and we do not want it
summed then we will have to say that explicitly.

Note that we have put indices up and down in different places in such a way that a
summed index always appears up in one place and down in another. To see the significance

of this notation consider a part of the expression in (2.7)
Napda® (2.8)

Note that the index b is summed, the index a appears once so it is not summed. We will
give this expression a simple name; we have just the vector dz® multiplied by our standard
matrix 7. So we will call it

dq = Nepdz® (2.9)

Now the index a is at the bottom, and this signifies that dz® has been multiplied by 7.

Note the components of dz,
dz, = {dzg,dz,, dzo, dzs} = {dz°, —dzt, —dz?, —dz®} (2.10)

‘We have
ds® = dz®dz, = dz%dzy + dztdzy + dz?dzy + dzldzs (2.11)

so the signs we needed for special relativity are now encoded automatically, by the fact

that we have both dz® and dz, in the expression.
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3. Action for the scalar field

Consider a scalar field f(z) = f(z°, 2!, 22, 23). We wish to write an action for this

field. For a point particle we had
S = / dt L (3.1)

Now because of symmetry between all the four directions we will get
S = / d*z L (3.2)

where L is called the Lagrangian density. In analogy to %m(‘fi—f)Z for the point particle we

write of
1 2
L — 5(@) (3.3)
But by symmetry in all four directions we should actually write
1. 0f 1,0f 1, 0f 1, 0f

L (3.4)

1,02 L, 0] o 1, 0J o 1,0] .9
_2(8:60) 2(8m1) 2(8502) 2(3w3)
where we have put in the negative signs to again accord with special relativistic invariance.
We can rewrite this in several different notations. First note that though z® has the index

up, in gxﬂ we have z? in the denominator, and so effectively the index is down. Define

another matrix with up indices

1 0 0 0
w_|0 -1 0 O
=10 0o -1 o0 (3:5)
0o 0 o0 -1
Then we can write of of
_ “J ab ¥
L= dze’l Db (36)
In more condensed form
1 a
L= fafon®™ (3.7)
where we have used the summation convention. Finally we can also write
1 a
L= if,af’ (3.8)
and the action is
1
S = / d4:z;§ faf™® (3.9)
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This term is just the ‘kinetic term’ of the action, since it depends on the changes in f
rather than just the value of f. We can also have a potential term, and then the action

becomes .
5= [dsliare -V (3.10)

More generally, the Lagrangian density can be any function of f, the derivatives f, of f,

and the coordinates =

S = /d4x Lf, f.a) ] (3.11)

just like S = [ dtLl[q, g,t] for the point particle.

4. The Euler-Lagrange equations

In the point particle case we held the dynamical variables g fixed at the initial and
final times t,,in, tmesz and demanded that the correct path extremise the action. Now we
will hold fixed the value of f at the sides of a box in spacetime — the box extends from
in the direction z' etc. We have

t = timin t0 t = tmae in time, from z! . to zl

oL
o5 = [ dtal = 8() + 7o) (4.1)
We have by the usual argument
5(fa) = (6f).a (4.2)
We can then write
_ 4 8£ . 4 oL
5 = [[atal =60+ Gr00) = [dtall s~ (5 )ub0 + 5700 (43)

The first term is

[ dtelgrifla= [ dalgeones [dageon [ atalEoas [ dalgeons

(4.4)

In the first of these terms, do the z° integral first, holding !, 2%, 23 fixed. We get

oL oL
d ld 2d -5 mac 1,2 £C3
/ T dz’dx [8f0 f(t T, T ) — 37

where we get the vanishing because J f is zero at the boundary of our ‘box’. We thus get
from (4.3)

5f(tmina xla :L,2, wB)] =0 (45)

[ 0L, oL
5S_/dﬂ[amh+aﬂﬁ (4.6)
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Since we want 65 = 0 for arbitrary d f we have at each point

oL oL

[@],a ~ a7 =" (4.7)
or more explicitly
0 oL 0 oL 0 oL 0 oL oL
- — = 4.
o0 o)) " oa B011) T 02 0y T 0 0@ 0p =0 Y
This is the Euler-Lagrange equation.
5. Symmetries and conserved quantities
Suppose that the change
f—=f+of (5.1)
leaves the Lagrangian density unchanged
L—L (5.2)
Then we have
oL oL oL oL

If we have a solution of the equations of motion then the last two terms vanish by the

Euler-Lagrange equations, and we have

2 511 5.4
Expanded out, we have
[sz 5f]+81[88f 5f]+32[§f 5f]+03[§]f 5] =0 (5.5)
Writing
Jo = gfadf (5.6)
we get

8Jo N oJ! N 0J? N o.J3
ox0 ozl 9x?2  Ox3




In the point particle case we had obtained a conserved quantity from a symmetry of the
Lagrangian, but (5.5) does not immediately seem to give a conserved quantity. (5.7) is
like the continuity equation in electromagnetism, which is indeed a special case of (5.7).
In fact the notation (5.6) is adopted to the general case from the special example of
electromagnetism where the current is called J.

So how do we get a conserved quantity? A conserved quantity is something that does
not change with time. Let us integrate (5.7) over all space, but not over time

8J° oJt oaJ%* aJ3

17,273 _
/dm da”dz [Bwo +8w1 +8m2 +3m3]_0

(5.8)

We will assume that f dies off at spatial inifinity sufficiently rapidly; if this does not happen
we do not get a conserved quantity since ‘stuff can flow off to infinity’. Then we get for

instance

1 2 50 2 ;3 10" 25 31711 2 3\ 711 2 3
de drde’|—] = [ dedz® [ da’ [—] = | dz*dz’[J (2,00, 2°, 2°) =T (Typin, =, 2°)] — 0

ozt ozt
(5.9)
where we have used the fact that zl . — co,zl . — —oo. The only term that does not
vanish is the first one, so we get
1, 2, 3,07° 1, 2,30 _ 0 17273700, 1 2 3
dx dz*dx [W] =0y | de’dz dz’J” = a[ de dzdzJ" (t,x", 2", 2°)]  (5.10)
T

Thus if we integrate J° over all space, at a fixed time ¢, then we get a number for each ¢,

which we find does not change with £. We thus have a conserved quantity
Q= [/ detdz?dz®J0(t, 2t 22, 2%)] (5.11)

Q is called the ‘conserved charge’; it is a generalization of the charge found in electromag-

netism.



