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Abstract

We investigate Hawking radiation from two-dimensional dilatonic black holes using

standard quantization techniques. In the background of a collapsing black hole solution

the Bogoliubov coefficients can be exactly determined. In the regime after the black hole

has settled down to an ‘equilibrium’ state but before the backreaction becomes important

these give the known result of a thermal distribution of Hawking radiation at temperature
λ
2π

. The density matrix is computed in this regime and shown to be purely thermal.

Similar techniques can be used to derive the stress tensor. The resulting expression agrees

with the derivation based on the conformal anomaly and can be used to incorporate the

backreaction. Corrections to the thermal density matrix are also examined, and it is argued

that to leading order in perturbation theory the effect of the backreaction is to modify the

Bogoliubov transformation, but not in a way that restores information lost to the black

hole.
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1. Introduction

The discovery of Hawking radiation[1] has raised a longstanding puzzle: what happens

to black holes once they’re done evaporating? There are at least two reasons why this

problem is interesting. The first is general: the final stages of black hole evaporation

typically involve physics near the Planck scale, where quantum gravity is expected to

become important. Black holes provide a theoretical laboratory where one can attempt to

develop one’s understanding of this physics. The second reason stems from the problem of

black hole information.1 One may form a black hole from a pure quantum state; however,

in Hawking’s calculation the outgoing radiation is not in a pure state - it appears that

information is lost to the black hole. Attempts to explain how the information is restored

once the black hole disappears run into serious difficulties. It has even been conjectured

that physics is fundamentally nonunitary[5]. Perhaps this problem is giving us a deep clue

about the nature of quantum gravity.

Recently black holes in two-dimensional gravity have received considerable attention[6-

10] following Witten’s identification of a black hole in string theory. In particular, in

[11] Callan, Harvey, Strominger, and one of the present authors investigated a toy model

for black-hole formation and evaporation. This model is two-dimensional dilaton gravity

coupled to free scalar fields, and is both renormalizable2 and classically soluble. This toy

model has the virtue of greatly simplifying the physics without discarding many of the

essential issues. In particular, [11] found “collapsing” black hole solutions, and a simple

technique for treating the Hawking radiation and its backreaction on the geometry was

investigated. It was argued that in the limit where the number N of matter fields is

large, the backreaction removes the classical black hole singularity; however, in [13,14] a

new type of singularity was found. Subsequent study[15-16] has uncovered singular static

solutions of the backreaction-corrected equations, and has clarified the nature of the final

configuration of the evaporation process.

This model has numerous issues that have not been completely addressed. One of

these is the physical interpretation of the singularities of [13,14]. It appears that a proper

quantum treatment of the theory will be required to say anything further about these. In

particular, one would like to understand the physics outside the large N approximation. A

second is the information problem. It may be difficult to resolve this without contending

1 For other discussions of this see [2-4].
2 For more on this issue see [12].
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with the singularities. However, it is conceivable that aspects of proposed resolutions to the

problem can be investigated. For example, refs. [17,3] have advocated the possibility that

at least in theories without global symmetries proper treatment of the backreaction might

reveal that information is extracted from infalling matter and appears in the outgoing

corrected Hawking radiation. This is partly motivated by the desire to believe that the

entropy vs. area relationship (which in the two-dimensional context is modified to S ∝ M)

is a true indicator of the amount of information stored by a black hole of mass M . Such

questions are more tractable tractable in this toy model.

The present paper takes steps towards answering some of these questions. In partic-

ular, it is clear that a full accounting of the Hawking radiation and backreaction requires

more than just knowledge of the expectation value of the stress tensor, as in [11]. A finer

description requires computation of states and correlation functions, etc., by means such as

the Bogoliubov transformation. There are other motivations for investigating this model

under the precepts of quantum field theory in curved space time. One is to elucidate the

connection between the conventional treatment of the Hawking radiation and that in [11].

Another is that, as we will see, the present model is a very simplified arena in which to

apply the corresponding machinery; this has pedagogical value.

In outline, this paper first reviews the collapsing black hole solutions of [11]. We

then recall the general procedure of computing Hawking radiation using the Bogoliubov

coefficients and derive these coefficients for the two-dimensional black hole in section three.

Next is a discussion of the late-time thermal behavior of the Hawking radiation, including

derivation of the late time density matrix. This is followed by a direct computation of the

stress tensor of the Hawking radiation; we then discuss the issue of coupling it to gravity

to incorporate the backreaction, corroborating the approach of [11]. Finally we investigate

the corrections to the thermal density matrix. These arise both from including the early

time transitory behavior and the backreaction. It is argued that neither of these is likely

to restore information lost to the black hole.

2. Review

We first review some salient aspects of two-dimensional dilaton gravity. This theory

is described by the action

S =
1

2π

∫
d2x

√−g
[
e−2φ(R + 4(∇φ)2 + 4λ2) − 1

2

N∑

i=1

(∇fi)
2
]

, (2.1)
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where φ is the dilaton field, λ2 is a cosmological constant, and fi are N matter fields. It

is most easily investigated in conformal coordinates x± = x0 ± x1 where the metric takes

the form

ds2 = −e2ρdx+dx− . (2.2)

The classical solutions for the matter fields are then

fi = fi+(x+) + fi−(x−) . (2.3)

For given functions fi+, fi− one may explicitly find the corresponding solution for φ and

ρ as in [11]. Particular cases are the vacuum solutions[6,7],

ds2 = − dx+dx−

M
λ − λ2x+x−

, e−2φ =
M

λ
− λ2x+x− (2.4)

which correspond to black holes of mass M . The M = 0 solution is the linear dilaton

vacuum which is the classical ground state.

Sending a pulse of f matter into the linear dilaton vacuum produces a black hole. In

particular, one may take a limit of smooth configurations which corresponds to a sharp

left-moving pulse,

T f
++ =

1

2
(∂+f)

2
=

M

λx+
0

δ(x+ − x+
0 ) . (2.5)

This gives the solution

ds2 = − dx+dx−

−λ2x+x− − M
λx+

0

(x+ − x+
0 )Θ(x+ − x+

0 )
,

e−2φ = −λ2x+x− − M

λx+
0

(x+ − x+
0 )Θ(x+ − x+

0 ) .

(2.6)

Before the pulse this is the linear dilaton vacuum; after it is a black hole of mass M .

It has a singularity along the line where the denominator vanishes, and a horizon at

x− = −M/λ3x+
0 .

More generally we may take an arbitrary pulse of left-moving matter which turns on

and then off again between times x+
i and x+

f . On-shell one may always choose coordinates

so that ρ = φ and the general solution of [11] then becomes

e−2ρ = e−2φ = −λ2x+x− −
∫

dx+

∫
dx+T f

++ . (2.7)
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For x+ > x+
f the last term reduces to

−
∫

dx+

∫
dx+T f

++ =
M

λ
− λ2x+∆ (2.8)

where M and ∆ are constants. After x+
f the metric therefore takes the form

ds2 = − dx+dx−

M
λ − λ2x+(x− + ∆)

. (2.9)

This is a black hole of mass M with horizon at x− = −∆; the solution (2.6) corresponds

to ∆ = M/λ3x+
0 . The Penrose diagram for the general solution is shown in fig. 1.

The metric (2.7) is asymptotically flat in the black hole region x+ > x+
f . This is

explicitly seen in the coordinates σ± where

eλσ+

= λx+ , e−λσ−

= −λ(x− + ∆) (2.10)

and −∞ < σ± < ∞ . In these coordinates the metric is

ds2 =





−dσ+dσ−

[
1 + ∆λeλσ−

] if σ+ < σ+
i

−dσ+dσ−

[
1 + M

λ eλ(σ−−σ+)
] if σ+ > σ+

f

(2.11)

where λx+
i,f = eλσ+

i,f . This clearly asymptotes to the flat metric at both I+
R (σ+ → ∞)

and I−
R (σ− → −∞). Likewise it is useful to introduce flat coordinates y± for the dilaton

vacuum region; these are defined by

x+ =
1

λ
eλy+

, x− = −∆e−λy−

. (2.12)

In this region the metric is then ds2 = −dy+dy− and the horizon is the line y− = 0.

3. Bogoliubov transformation

In this section and the following we will study the Hawking radiation of one of the fields

fi in the background solutions (2.6), (2.7). Although one would of course like to study the

Hawking radiation including effects of the backreaction, that is a more complicated problem

whose details are postponed for future work. We will focus on the two asymptotically

flat regions I−
L and I+

R which we also call the “in” and “out” regions. In these two
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regions we imagine observers stationed, carrying out measurements on the quantum field

f , and we calculate the relation between their observations. The result is the Bogoliubov

transformation, which encodes the detailed structure of the Hawking radiation.

Let us first recall the general framework.3 For the purposes of this paper we will use

the decomposition (2.3) and ignore the left-moving modes since the right movers transmit

the Hawking radiation. The (right moving part of the) field f can be expanded in terms

of mode functions and annihilation/creation operators either appropriate to the in region

near I−
L , or to the out region near I+

R . Convenient bases of modes are

uω =
1√
2ω

e−iωy−

(in) , vω =
1√
2ω

e−iωσ−

Θ(y−) (out) ; (3.1)

here ω > 0 and Θ is the usual step function. Note that the vω have support only outside

the horizon - the out basis must therefore be complemented by a set of modes v̂ω for the

region internal to the black hole. There is no canonical definition of particles inside the

black hole since this region is not asymptotically flat. Therefore the choice of such a basis

is rather arbitrary. In practice states inside the black hole are not observed and instead

are traced over so this arbitrariness does not affect physical results.

The mode expansions are

f− =

∫ ∞

0

dω
[
aωuω + a†

ωu∗
ω

]
(in)

=

∫ ∞

0

dω
[
bωvω + b†ωv∗

ω + b̂ω v̂ω + b̂†ω v̂∗
ω

]
(out + internal) .

(3.2)

The operators a†
ω are the creation operators appropriate to the in region, and b†ω and b̂†ω are

similarly used for the out region and for particles falling into the singularity. Annihilation

and creation operators multiply positive and negative frequency modes, respectively.

The equations of motion imply existence of the conserved Klein-Gordon inner product,

(f, g) = −i

∫

Σ

dΣµf
↔

∇µg∗ (3.3)

for arbitrary Cauchy surface Σ. The modes (3.1) have been normalized so that

(uω, uω′) = (vω, vω′) = 2πδ(ω − ω′)

(uω, u∗
ω′) = (vω, v∗

ω′) = 0

(u∗
ω, u∗

ω′) = (v∗
ω, v∗

ω′) = −2πδ(ω − ω′)

(3.4)

3 For a more complete review see [18].
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and we assume a similar normalization for the v̂ω. Furthermore, the inner products between

the modes vω and v̂ω all vanish since these have support in different regions. Eq. (3.2),

(3.4) together with the canonical commutation relation

[f−(x), ∂0f−(x′)]x0=x′0 =
1

2
[f(x), ∂0f(x′)]x0=x′0 = πiδ(x1 − x′1) (3.5)

imply that the operators aω satisfy the usual commutators,

[aω, a†
ω′] = δ(ω − ω′) , [aω, aω′] = 0 , [a†

ω, a†
ω′] = 0 , (3.6)

and similarly for bω and b̂ω. Finally, the in and out vacua are defined by

aω|0〉in = 0 , bω|0〉out = 0 (3.7)

for all ω > 0. One can also define an internal ‘vacuum’ by

b̂ω|0〉int = 0 ; (3.8)

this definition is, however, rather arbitrary.

Although the in and out regions are flat, their natural timelike coordinates are related

in such a way that a field mode which which has positive frequency according to observers

in one region inevitably becomes a mixture of positive and negative frequencies according

to observers in the other regions. This mixing is interpreted as particle creation. To study

it we define coefficients αωω
′ and βωω

′ by

vω =

∫ ∞

0

dω′[αωω′uω′ + βωω′ u∗
ω′ ]. (3.9)

These coefficients are called Bogoliubov coefficients, and they may be calculated using

(3.4) and (3.9),

αωω′ =
1

2π
(vω, uω′) , βωω′ = − 1

2π
(vω, u∗

ω′) . (3.10)

The Bogoliubov coefficients α̂ωω′ , β̂ωω′ for the internal modes are defined similarly.

Equivalence of the expansions (3.2) gives the relation between the field operators in

the in and out regions,

aω =

∫ ∞

0

dω′
[
bω′αω′ω + b†ω′β

∗
ω′ω + b̂ω′ α̂ω′ω + b̂†ω′ β̂

∗
ω′ω

]

bω =

∫ ∞

0

dω′
[
α∗

ωω′aω′ − β∗
ωω′a

†
ω′

]

b̂ω =

∫ ∞

0

dω′
[
α̂∗

ωω′aω′ − β̂∗
ωω′a

†
ω′

]
.

(3.11)
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If βωω′ 6= 0, then the in vacuum is not considered vacuous by the out observer; particle

creation has occurred. Indeed, it follows from (3.11) that

in〈0|Nout
ω |0〉in =

∫ ∞

0

dω′ |βωω′ |2 (3.12)

where Nout
ω = b†ωbω is the number operator for out modes of frequency ω. Using matrix

notation and introducing the ‘square’ matrices

A =

(
αωω′

α̂ωω′

)
, B =

(
βωω′

β̂ωω′

)
, (3.13)

the in vacuum can be written as

|0〉in ∝ exp

{
−1

2

(
b† b̂†

)
B∗A−1

(
b†

b̂†

)}
|0〉out|0〉int (3.14)

in the combined out/internal Fock space.

We now calculate the Bogoliubov coefficients for this model. They are found using

the relation between the coordinates,

σ− = − 1

λ
ln

[
λ∆(e−λy− − 1)

]
, (3.15)

so that

vω =
1√
2ω

exp

{
iω

λ
ln[λ∆(e−λy− − 1)]

}
Θ(y−) . (3.16)

The inner products (3.10) can then be computed at the null surface I−
L :

αωω′ = − i

π

∫ 0

−∞

dy−vω∂−u∗
ω′

=
1

2π

√
ω′

ω

∫ 0

−∞

dy− exp

{
iω

λ
ln[λ∆(e−λy− − 1)] + iω′y−

}

βωω′ =
i

π

∫ 0

−∞

dy−vω∂−uω′

=
1

2π

√
ω′

ω

∫ 0

−∞

dy− exp

{
iω

λ
ln[λ∆(e−λy− − 1)] − iω′y−

}
.

(3.17)

With the substitution x = eλy−

, αωω′ becomes

1

2πλ

√
ω′

ω
(λ∆)

iω/λ
∫ 1

0

dx(1 − x)
iω/λ

x−1+i(ω′−ω)/λ ; (3.18)
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the integral is a beta function. βωω′ is computed similarly, and altogether one has

αωω′ =
1

2πλ

√
ω′

ω − iǫ
(λ∆)

iω/λ
B

(
− iω

λ
+

iω′

λ
+ ǫ, 1 +

iω

λ

)

βωω′ =
1

2πλ

√
ω′

ω − iǫ
(λ∆)

iω/λ
B

(
− iω

λ
− iω′

λ
+ ǫ, 1 +

iω

λ

)
.

(3.19)

The pole prescriptions are necessary to completely define these quantities; they are chosen

so that the expansion (3.9), and the inverse expansion of uω in terms of vω, actually

hold. (Note that the derivation of (3.10) was actually somewhat formal). With the pole

prescriptions as given above, one may verify that this Bogoliubov transformation satisfies

the necessary “completeness” identities; for example,

∫ ∞

0

dω′[αωω′α∗
ω′′ω′

− βωω′ β∗
ω′′ω′

] = δ(ω − ω
′′

) . (3.20)

The Bogoliubov coefficients given in (3.19) are central to the study of the Hawking

radiation. Notice that they depend only on ∆, not on M or on other details of the collapsing

black hole.

It will be convenient to have a specific basis for the interior region as well; a useful

choice is

v̂ω(y−) = v∗
ω(−y−) . (3.21)

The Bogoliubov coefficients of these modes are found to be

α̂ωω′ = α∗
ωω′

β̂ωω′ = β∗
ωω′ .

(3.22)

Finally, we note that in the presence of the dilaton there is an ambiguity in the metric

used to compute the Hawking radiation. In the present case, one could have for example

taken the metric to be ĝ = e−2φg. From (2.6) one sees that this is the flat metric. Therefore

if this is used as the background reference metric, the Bogoliubov transformation is trivial

and there is no Hawking radiation. In particular, if the Fadeev-Popov ghosts from gauge-

fixing of general coordinate invariance are defined with respect to the metric g, then one

concludes that the black hole is unstable with respect to thermal absorption of ghosts. As

has been suggested in [10,19], this problem is solved if the ghosts are instead coupled to ĝ.
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4. Hawking radiation at late times

As a first application of the Bogoliubov transformation (3.19) we investigate the late-

time Hawking radiation along the lines of [1] and verify that it is indeed thermal.

We begin by computing the expected occupation numbers of the out modes, using

(3.12). Following [1], the late-time Bogoliubov transformation is found by replacing the

integrand in (3.17) by its approximate value near the horizon, y− = 0. This gives

αωω′ ≃ 1

2π

√
ω′

ω

∫ 0

−∞

dy− exp

{
iω

λ
ln(−λ2∆y−) + iω′y−

}
. (4.1)

Note that βωω′ differs from this only by the sign of ω′ in the integrand. Deforming the

contour in (4.1) to the positive y− axis and changing variables y− → −y− flips this sign,

and gives the crucial relation

αωω′ ≃ −eπω/λβωω′ . (4.2)

Finally, setting ω = ω′′ in relation (3.20) implies
∫ ∞

0

dω′[|αωω
′ |2 − |βωω

′ |2] = t . (4.3)

Here we have replaced the infinite quantity δ(0) by a large time cutoff t; this identification

arises from considering the Fourier transform of δ. Combining this with (4.2) and (3.12)

gives

in〈0|Nout
ω |0〉in =

∫ ∞

0

dω′ |βωω′ |2 ≃ t
e−2πω/λ

1 − e−2πω/λ
. (4.4)

Thus the modes are thermally populated at a temperature TH = λ/2π.

We now proceed further to show that the late time density matrix is purely thermal (if

one neglects the backreaction), i.e. it has no hidden correlations that would correspond to

information escape from the black hole. For performing such physical calculations in the

out region it is useful to have a set of normalizable modes that are also localized. Following

Hawking[1], we introduce the complete orthonormal set of wavepacket modes

vjn = ǫ−
1
2

∫ (j+1)ǫ

jǫ

dωe2πiωn/ǫvω , (4.5)

with integer j, n, and j ≥ 0. These wavepackets have frequency ω ≃ ωj , with ωj ≡ jǫ, and

they are peaked about σ− = 2πn/ǫ with width ǫ−1; an example is pictured in fig. 2. The

Bogoliubov coefficients in this basis are easily found to be

αjnω
′ = ǫ−

1
2

∫ (j+1)ǫ

jǫ

dωe2πiωn/ǫαωω
′

βjnω′ = ǫ−
1
2

∫ (j+1)ǫ

jǫ

dωe2πiωn/ǫβωω′ .

(4.6)

9



For the wavepacket modes (4.5) ‘late time’ means large 2π n
ǫ . We will also take ǫ

small so that the modes are narrowly peaked in frequency; this of course broadens them

in position. Combining expressions (3.17) and (4.6) gives

αjnω
′ =

1

2π
√

ǫ

∫ (j+1)ǫ

jǫ

dω

√
ω′

ω
e2πiωn/ǫ

∫ 0

−∞

dy−exp

{
iω

λ
ln[λ∆(e−λy− − 1)] + iω

′

y−

}
.

(4.7)

For large values of 2π n
ǫ , the double integral receives contributions mainly from the vicinity

of the horizon, y− ≃ 0, so that the integrand may be approximated as in (4.1) . Deforming

the contour and changing variables now gives the result

αjnω′

≃− 1

2π
√

ǫ

∫ (j+1)ǫ

jǫ

dω

√
ω′

ω
e2πiωn/ǫe

πω
λ

∫ 0

−∞

dy−exp

{
iω

λ
ln(−λ2∆y−) − iω

′

y−

}

≃− eπωj/λ

2π
√

ǫ

∫ (j+1)ǫ

jǫ

dω

√
ω′

ω
e2πiωn/ǫ

∫ 0

−∞

dy−exp

{
iω

λ
ln(−λ2∆y−) − iω

′

y−

}
(4.8)

where the assumption of small ǫ was used in the second line. In the latter expression we

recognize the approximation of βjnω , so

βjnω ≃ −e−πωj/λαjnω . (4.9)

We can similarly approximate the modes v̂ω, which were defined in the previous section.

Their Bogoliubov coefficients are also found to satisfy

β̂jnω ≃ −e−πωj/λα̂jnω . (4.10)

These two relations are crucial because they allow one to form a new orthonormal

mode basis, which is simply related to the old one, and which is purely positive frequency

in the in region, as follows (c.f. [20,21]):

v1
jn = (1 − γj

2)−
1
2 [vjn + γj v̂

∗
jn]

v2
jn = (1 − γj

2)−
1
2 [v̂jn + γjv

∗
jn]

(4.11)

where γj = e−πωj/λ. One can easily see that

β1
jnω = β2

jnω = 0 (4.12)
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verifying positivity in the in region.

Since these modes are positive frequency at I−
L , the incoming state may be completely

characterized using their associated annihilation operators by

0 = a1
jn|0〉in = a2

jn|0〉in . (4.13)

However, from the transformation between vjn, v̂jn and v1
jn, v2

jn we can derive

a1
jn = (1 − γj

2)−
1
2 [bjn − γj b̂

†
jn]

a2
jn = (1 − γj

2)−
1
2 [̂bjn − γjb

†
jn]

(4.14)

so that |0〉in is characterized in terms of the out operators by

(bjn − γj b̂
†
jn)|0〉in = 0

(b̂jn − γjb
†
jn)|0〉in = 0 .

(4.15)

A particularly useful combination of equations (4.13) and (4.14) is

0 = [a1†
jna1

jn − a2†
jna2

jn]|0〉in
= [b†jnbjn − b̂†jnb̂jn]|0〉in
= [Njn − N̂jn]|0〉in

(4.16)

where Njn, N̂jn are the particle number operators corresponding to vjn, v̂jn respectively.

Although the notion of ‘particle’ is somewhat ambiguous inside the black hole, we see that

with the present definition hatted and unhatted particles occur in pairs in the outgoing

state. This corresponds to the common statement that Hawking radiation proceeds by

creation of particle pairs, with one particle inside the horizon and one outside.

Now we will use the eq. (4.15) to express |0〉in in terms of out particle states. Using

Njn = N̂jn, we can already write[22]

|0〉in =
∑

{njn}

c ({njn}) ̂|{njn}〉|{njn}〉 (4.17)

where the njn are sets of occupation numbers for the modes jn, and the coefficients

c ({njn}) are to be determined. Focusing on a single mode j′n′, we see that eq. (4.15)

implies

c({njn}) = exp{−πωj′/λ}c({njn − δjj′δnn′}) (4.18)
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which gives altogether

c ({njn}) = c({0}) exp



−π

λ


∑

jn

njnωj






 . (4.19)

(This can equivalently be found from (3.14).) Here c({0}) is an overall normalization,

which is infinite unless we restrict to finite time as in (4.3). In actuality the black hole

cannot evaporate for infinite time; the above result is invalid once the backreaction becomes

relevant.

To predict what is seen by observers at I+
R , we must trace over the internal (hatted)

states to produce a density matrix dependent only on the external particle states. In other

words,

ρout
{njn}{n′

jn
} ≡

∑

{ñjn}

〈{njn}| ̂〈{ñjn}|0〉in in〈0| ̂{ñjn}〉 |{n′
jn}〉

= |c ({njn})|2 δ{njn}{n′

jn
}

= |c({0})|2δ{njn}{n′

jn
} exp



−2π

λ


∑

jn

njnωj






 .

(4.20)

This is a completely thermal density matrix. Note that it is totally independent of the

details of the collapsing matter.

We emphasize that the formula (4.20) for the density matrix is an approximate ex-

pression valid only at late times and then only to the extent that the backreaction can be

neglected. The former condition is

0 < −y− ≪ 1

λ
, (4.21)

or equivalently, from (3.15) ,

e−λσ− ≪ λ∆ . (4.22)

To understand the latter condition one must understand what effect the outgoing Hawking

radiation has on the geometry; this is the subject of the next section.

5. Stress tensor for Hawking radiation

A longstanding issue in black hole physics is that of incorporating the backreaction

of Hawking radiation on the black hole geometry. In [11] this problem was investigated
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for the semiclassical limit of dilaton gravity. In this case one can calculate the quantum

stress tensor 〈T f
µν〉 in the background of the classical solution by starting with the known

conformal anomaly and integrating the conservation equation[23]. The stress tensor is

then determined up to boundary conditions reflecting the choice of incoming quantum

state. The expectation value of this stress tensor is appended to Einstein’s equations to

incorporate the effect of the backreaction.

This section will investigate some details of this procedure and confirm its validity.

In particular, we will show asymptotic equivalence of the stress tensor calculated from

the conformal approach with the stress tensor of the Hawking radiation described above.

We will also comment on the issue of why coupling this stress tensor to gravity gives an

accurate representation of the effects of the backreaction.

The preceding sections have shown that the quantum state representing vacuum in

the in region, which we refer to as |0〉in, is not the same as the state |0〉out, which represents

vacuum in the out region. In the out region the state |0〉in includes the outgoing particles

of the Hawking radiation. We have shown by one method that this radiation has a thermal

spectrum, and we will now check this, as well as the treatment of [11], by directly computing

in〈0|T f
µν |0〉in asymptotically in the out region.

The latter expression is given by

〈T f
µν〉in = in〈0|

1

2

(
∂µf∂νf − 1

2
gµνgλσ∂λf∂σf

)
|0〉in . (5.1)

To begin with, note that 〈T f
++〉 = 〈T f

+−〉 = 0, the first because the Bogoliubov transfor-

mation is trivial for left-moving modes (since σ+ = y+), and the second because the trace

anomaly is zero in the asymptotic region from vanishing of the curvature. Our focus is

therefore on

in〈0|T f
−−(σ−)|0〉in = in〈0|

1

2
∂−f(σ−)∂−f(σ−)|0〉in . (5.2)

Since T f
−− is a product of operators at the same point, it must be carefully defined. It is

required that out〈0|T f
−−|0〉out = 0 (at I+

R !) so that one should expand and normal order

T f
−− with respect to bω,b†ω, and then evaluate its expectation value in |0〉in. This procedure

can be streamlined by using point splitting.

We start with the coordinate transformation inverse to (3.15) , namely

y− = − 1

λ
ln[

1

λ∆
e−λσ−

+ 1] . (5.3)
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Then the f− field is given by

f− =

∫ ∞

0

dω√
2ω

[aωe−iωy−

+ a†
ωeiωy−

]

=

∫ ∞

0

dω√
2ω

{
aω exp[

iω

λ
ln

(
1

λ∆
e−λσ−

+ 1

)
] + h.c.

}
.

(5.4)

Now, in T f
−− we shift the coordinate of one of the ∂−f factors from σ− to σ− + δ,

where δ is a small number, and compute the point-split value

〈T f
−−〉in =

1

4

∫ ∞

0

ωdω
exp[ iω

λ ln
(

1
λ∆e−λσ−

+ 1
)
]

1 + λ∆eλσ−

exp[ iω
λ ln

(
1

λ∆e−λ(σ−+δ) + 1
)
]

1 + λ∆eλ(σ−+δ)

= −λ2

4

[ln( 1
λ∆

e−λσ−

+ 1) − ln( 1
λ∆

e−λ(σ−+δ) + 1)]−2

(
1 + λ∆eλσ−

) (
1 + λ∆eλ(σ−+δ)

)
(5.5)

where the integral was performed with a large-ω convergence factor. From this we will

subtract the out vacuum value

out〈0|T f
−−|0〉out = − 1

4δ2
(5.6)

before taking the limit δ → 0. This subtraction produces an expression normal ordered

with respect to the out vacuum.

The remainder of the computation consists of expanding (5.5) in powers of δ, with

the renormalized result

in〈0|T f
−−|0〉in =

λ2

48

[
1 − 1

(
1 + λ∆eλσ−

)2

]
(5.7)

which is identical to that of [11] in the out region. Note that here the thermal value is

achieved at

e−λσ−

<∼λ∆ (5.8)

which agrees with (4.22).

Next we comment on the issue of coupling the stress tensor 〈Tµν〉 to gravity to rep-

resent the backreaction. Within the relativity literature there has been much debate on

the issues of whether 〈Tµν〉 is the appropriate quantity to place on the right hand side

of Einstein’s equations4 and how to compute the correct value for 〈Tµν〉. The second of

4 See e.g. [18], pp. 214 - 224.
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these issues is generally resolved by appealing to a result of Wald: all computation tech-

niques which satisfy four physically reasonable conditions known as Wald conditions will

produce the same answer, up to well-defined ambiguities. The only such ambiguity in two

dimensions is the cosmological constant.

Within the present context both issues are addressed by considering quantization via

the functional integral,

Z =

∫
DgDφeiSG

∫
Dgfi exp

{
− i

4π

∫
d2x

√
−g

N∑

i=1

(∇fi)
2

}
(5.9)

where SG is the purely gravitational/dilatonic part of the action (2.1), and where the g-

dependence of the fi measure is explicitly indicated. The functional integral over fi is one

that has been studied extensively in the string literature and elsewhere. If regulated in a

generally covariant manner, it yields

eiSP L =

∫
Dgfi exp

{
− i

4π

∫
d2x

√
−g

N∑

i=1

(∇fi)
2

}

=exp

{
− iN

96π

∫ √
−g(x)d2x

∫ √
−g(x′)d2x′R(x)G(x, x′)R(x′)

} (5.10)

where G(x, x′) is the Green function for the d’Alembertian,

xG(x, x′) =
δ2(x − x′)√

−g(x)
. (5.11)

Eq. (5.10) is unique up to local counterterms, and up to the boundary conditions needed

to define the Green function. If one assumes that φ does not couple to fi then the only

counterterm is the cosmological constant which may be fine tuned to zero. The boundary

conditions are fixed as in [11] by the demand that 〈T f
µν〉 have the correct form in the in

region.

The resulting classical equations

2π√−g

δSG

δgµν
= 〈Tµν〉 (5.12)

accurately describe evolution in regions where the coupling eφ is small.5 As was argued

in [11], the evaporation of the black hole can be arranged to take place purely within the

5 Actually this is not precisely true as has been argued in [3,13-16]; the weak coupling expansion

breaks down due to vanishing of an eigenvalue of the kinetic term at the singularities described

in these papers.

15



weak-coupling region by taking the number N of matter fields to be large. A discussion of

the resulting solutions of these equations was given in [3,13-16] where it was argued that

the black hole settles down to a final state of the linear dilaton vacuum terminated in the

region where

e2φ ≃ 12

N
. (5.13)

In this region the evolution becomes singular and the classical equations are invalid. Al-

ternatively, one could go beyond to investigate the quantum dynamics of the theory; this

is described by including the term SPL in the remaining functional integral over g and

φ. The latter term incorporates the full quantum effect of the backreaction from Hawking

emission of matter.

6. Beyond the thermal limit

The density matrix (4.20) describes a mixed state of thermal radiation. In the four-

dimensional context this has been taken as strong evidence that an initially pure state

can evolve into a mixed state in the course of black hole formation and evaporation. One

should be cautious in drawing this conclusion, however, since, as we have stated, (4.20) is

only approximately correct; it is (barely) conceivable that once corrections are taken into

account the missing information will be restored.

To investigate the importance of modifications to (4.20), let us first determine its

domain of validity. First, as was indicated at the end of section four, (4.20) is only valid

at late times as given by (4.21) or (4.22). Next, the derivation neglected the effect of the

backreaction. A very crude estimate of when this becomes important is found by asking

when the integrated energy in the Hawking radiation equals the initial mass of the black

hole. This can be determined by integrating the asymptotic value of the stress tensor (5.7)

along I−
L as in [11].6 The amount of mass radiated up to the time given by

e−λσ− ∼ λ∆ (6.1)

is easily estimated to be

Mrad ∼ Nλ

48
. (6.2)

6 Note, however, that one should not make the assumption of small mass.
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Eq. (4.20) will be valid over a non-vanishing domain only if by the time the thermal

approximation (4.22) holds the radiated mass is negligible compared to the initial mass,

M ≫ Nλ

48
. (6.3)

Notice that from (4.4) the typical energy of an emitted particle is λ; thus the condition

(6.3) is the statement that the black hole be capable of emitting a large number of particles

of each type. Once the radiation becomes thermal, T−− ≃ Nλ2/48, so the black hole

evaporates over a time of order

∆σ− ∼ 48M

Nλ2
. (6.4)

The density matrix (4.20) is therefore approximately correct in the range

− 1

λ
ln(λ∆) +

48M

Nλ2
≫ σ− ≫ − 1

λ
ln(λ∆) . (6.5)

To investigate the question of whether corrections to (4.20) solve the information

problem the early-time transitory behavior and the backreaction must be incorporated.

There are two possible approaches to determining to what extent the outgoing state is still

mixed. One is to calculate the density matrix directly as in section four, now including

these effects. However, finding the density matrix even taking into account the transitory

behavior is rather complicated, and an alternative approach is to investigate the behavior

of correlation functions of the form

〈b†jn · · · bj′n′ · · ·〉in (6.6)

with an arbitrary number of creation and annihilation operators. All details of the outgoing

state are encoded in such correlators.

Using the exact form of the Bogoliubov transformation, these correlation functions

are in fact exactly calculable in the ‘early time’ limit where one includes the transitory

behavior but neglects the backreaction. Indeed, given the Bogoliubov coefficients (4.6) and

the relations

bjn =

∫
dω[α∗

jnωaω − β∗
jnωa†

ω]

b†jn =

∫
dω[αjnωa†

ω − βjnωaω]

(6.7)

one may calculate the expectation value of any operator built from the bjn and b†jn. For

example, it is easy to see that the two-point correlator is given by

〈b†jnbj′n′〉in =

∫ ∞

0

dωβjnωβ∗
j′n′ω

(6.8)
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which is in principle exactly calculable using (4.6) and (3.19).

Although potentially instructive, such calculations are not expected to directly address

the information problem. The reason for this is that the information, if it escapes the black

hole at all, is expected to emerge in the evaporation of the black hole, not in the initial

transitory behavior. Notice also that (3.19) implies that the correlators depend on the

infalling matter distribution only through the single quantity ∆; the transitory behavior

is not even dependent on the details of the collapse.

To actually answer the question of whether enough information escapes in black hole

evaporation to solve the information problem, one must include the effects of the backre-

action. A complete treatment of this seems to require describing the initial configuration

as a quantum state and studying the quantum evolution of the system. Although we will

not work this out in detail in the present paper, one can see the resulting modifications on

a qualitative level using the semiclassical approximation.7

Consider the situation where a black hole is formed from a pure quantum state with

left-moving energy-momentum concentrated between times x+
i and x+

f as in section two.

In the weak coupling region we may work to leading order in eφ, and this state again

produces a geometry like that of fig. 1 if the backreaction is neglected. The geometry

that arises when the backreaction is included was discussed in [3,13-16], and is shown in

figs. 3,4. The infalling matter gives rise to a new “quantum singularity” that is hidden

behind an apparent horizon. As the black hole loses mass both the singularity and the

apparent horizon asymptote to the global horizon. The final state is the linear dilaton

vacuum to the right of the region where

e2φ ≃ 12

N
; (6.9)

beyond this the semiclassical equations are not to be trusted.

The outgoing state will again be described in the natural asymptotically flat coordi-

nates y− at I+
R . Now we are not able to explicitly write down the coordinate transformation

from σ− to y− due to insufficient knowledge of the backreaction-corrected geometry; there-

fore the precise form of the Bogoliubov transformation has not been determined. However,

for large M we know that it agrees with (4.6), (3.19) throughout the range (6.5). As

the backreaction becomes important the Hawking radiation turns off; correspondingly the

7 Investigation of the information problem in the semiclassical limit has also been advocated

by Russo, Susskind, and Thorlacious[13,3,24].
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Bogoliubov coefficients βωω′ , βjnω should die off. To leading order in eφ the only effect

of the left-moving matter is to produce this non-trivial Bogoliubov transformation for the

right-movers. The in vacuum can be rewritten in the out/internal Fock space as in (3.14);

equivalently we may write

|0〉in =
∑

{njn},α

c({njn}, α)|̂α〉|{njn}〉 (6.10)

where now we have adopted an arbitrary basis |̂α〉 for the states to the left of the global

horizon that fall into the singularity. The asymptotic density matrix is derived from this

by tracing over these internal states. This density matrix would be pure if one could be

rewrite it in the form

|0〉in = |Ψ〉int|Ψ〉out (6.11)

for some states |Ψ〉int, |Ψ〉out in the internal and out Hilbert spaces. However, leading

order agreement with (4.17) and the general fact that the Bogoliubov transformation sets

up correlations between internal and external states makes it appear very unlikely that this

could be the case. Together with the fact that modes can fall into the singularity without

escaping, this indicates that information can indeed be lost to the quantum singularity,

and that the entropy of the outgoing density matrix should consequently be non-zero.

These statements may of course be invalidated once higher-order quantum corrections

are taken into account. However, these corrections are expected to be unimportant until

the weak coupling approximation breaks down. This only happens in the final stages of

the black hole evaporation. The above arguments therefore strongly suggest that within

the present model, information does not escape until the black hole is very small. Making

these rigorous will therefore rule out one suggested resolution of the black hole information

problem, namely that the information escapes over the course of black hole evaporation if

the effects of the backreaction are included. Other possibilities are described in [4].

7. Conclusions

The two-dimensional process of black hole formation and evaporation studied in [11]

is a simplified arena for investigation of physical issues relevant to higher dimensions. We

have shown that in particular the Bogoliubov transformation is exactly calculable if the

backreaction is neglected. This in principle allows exact determination of all correlation

functions and of the density matrix describing the outgoing Hawking radiation. After a
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transitory period the Hawking radiation has the expected thermal behavior with tempera-

ture λ/2π. (In contrast to the four-dimensional case, even the transitory period is exactly

describable.)

For large black holes, M ≫ λN/48, the thermal density matrix is an accurate descrip-

tor of the outgoing state for the time after the falloff of the transitory behavior but before

the black hole has lost a substantial fraction of its mass to Hawking evaporation. As in

the four-dimensional case this suggests that a pure initial state evolves into a mixed final

state. However, a conclusive statement to this effect cannot be made while neglecting the

backreaction. We have argued that to leading order in the weak-coupling expansion the

effect of the backreaction is to modify the Bogoliubov transformation, but not in such a

way as to restore the information lost to the black hole. However, a definitive proof that

information is lost even in the presence of the backreaction is beyond the scope of this

paper.
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Figure Captions

Fig. 1. Shown is the Penrose diagram for a black hole formed from an arbitrary distribution

of collapsing matter concentrated between times x+
i and x+

f .

Fig. 2. Plotted is the wavepacket mode vjn(σ−) with ǫ = 1, n = 0, and j = 10.

Fig. 3. The Kruskal geometry for the backreaction-corrected gravitational collapse of a matter

distribution. An apparent horizon forms; behind it is the “quantum singularity” where

the semiclassical equations break down. Both of these asymptote to a global horizon.

Fig. 4. A possible Penrose diagram corresponding to the Kruskal geometry of fig. 3.
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