TOPIC 11

SOME BASIC TOOLS

In this part we will take a tour through the two main theories of physics that
are needed to set up the information paradox.

We will first make a brief pass through general relativity, which gives a
relativistic theory of gravity. After understanding the idea of a metric, we will
explore the properties of the black hole metric which will be relevant to the
information paradox.

We will then discuss quantum field theory, which is a relativistic theory of
quantum mechanics. In particular we will discuss the nature of the vacuum,
since this plays a crucial role in the phenomenon of Hawking radiation.

Putting these two tools together will allow us to understand the origin of
Hawking radiation from the black hole.
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General relativity

Let us take a brief tour through Einstein’s theory of gravity — general relativity.

1.1 The essential idea

Newton taught us that the motion of a particle is affected by the force F' acting
on it, through the relation
F =ma (1.1)

To use this relation one needs to know F'. For the case of gravity, Newton gave
the needed expression. The gravitational force on a mass m due to a mass M
at a distance r is an attractive force of magnitude

GMm
F= p (1.2)
The interesting thing is that m cancels out, giving
GM
a=— (1.3)

so that we get the same trajectory for all values of the mass m. This is of course
the lesson of the fabled experiment of Galileo, where he dropped bodies with
different values of m from the Tower of Pisa, and found that they reached the
ground at the same time.

In Newtonian mechanics this cancellation of m remains little more than a
curiosity, but Einstein sought to make it the starting point for his formulation
of gravity. If all particles will follow the same trajectory, then why don’t we
try to find a simple characterization of these universal trajectories? Following
this line of thought, he arrived at a formulation whose statement at first looks
startling: gravity is not a force at all.

How can this be? We think we know quite well when the force F' is nonzero,
and gravity certainly feels like a force in everyday life!

In fig.1.1(a) we draw particle trajectories on an & — t graph, for the case
F = 0. There is no acceleration, so the trajectories are straight lines. Since
straight lines can meet at most once, we recover the physical fact that in the
absence of any forces, two bodies which meet once will then drift apart and
never come back to meet again.
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Figure 1.1: (a) No force: particle trajectories are straight lines in the z — ¢ plane,
and particle trajectories can meet no more than once. (b) A situation with force: the
vertical line is the surface of the earth, and the curved line represents a ball thrown
up from the ground and allowed to fall back. (c) Einstein’s view of gravity: spacetime
x — t is curved, while the trajectories of bodies are ‘straight lines’ (geodesics) on this
curved spacetime.

In fig.1.1(b) we draw trajectories in a situation with F' nonzero. The parabola
is the trajectory of a ball which is thrown up and allowed to fall back to earth.
The vertical line on the graph marks the surface of the earth. The force of
gravity acts between the earth and the ball, and curves the trajectories so that
they do meet more than once, at points A and B. So it seems that the effect of
a force is clear: it changes straight trajectories to curved ones.

Einstein invited us to think of the situation in fig.1.1(b) in a different way:
not as curved lines on a flat  — ¢ plane, but as a set of straight lines drawn on
curved graph paper. What do we mean by a ‘straight’ line on a curved surface?
As an example, consider the surface of the earth. Between any two points, we
can ask for the shortest path, and define such paths to be our ‘straight lines’.
Such shortest distance paths are called ‘geodesics’ in general, and in the case of
the earth are given by the great circles on a sphere. If a person starts walking
on a curved surface, and at every infinitesimal step ‘goes straight forward’, then
his trajectory would be a geodesic. But note that these ‘straight lines’ on a
curved surface can meet more than once; for example two circles of longitude
meet at the North pole and again at the South pole.

Einstein asked us to think of the situation in fig.1.1(b) in the description
fig.1.1(c). Now the effect of gravity is encoded in the curvature of the paper
on which we are drawing our trajectories, The particle trajectories themselves
are given by the simplest of all rules: they are geodesics — the ‘straight line’
— on this curved surface. Since each infinitesimal segment of the geodesic is
a ‘straight line segment’, we can say that gravity is not a force at all; it just
manifests itself in the curvature of spacetime.

Of course we need to know how much the spacetime should curve. This is
given by Einstein’s equation of gravity, which says that curvature is proportional
to mass; or rather, energy, since even massless particles like photons create a
gravitational field.

To summarize, general relativity is made of two rules:
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Figure 1.2: A 2-dimensional surface. The shape of the surface is known once we specify
the length of each link depicted by a line.

(a) Energy curves spacetime.
(b) Particles move in geodesics on this curved spacetime.

Our next task is to understand how to describe curved spacetime.

1.1.1 The metric

In fig.1.2 we depict a surface made with a child’s builder set: sticks of different
lengths are joined together to make a lattice. It is clear that if we fix the length
of each stick, we would fix the shape of the surface. Thus to define a surface all
we need to do is specify the distance between any two infinitesimally separated
points on the surface.
On a flat plane, the distance between two points is given by the Pythagorean
theorem
As® = Ax? 4+ Ay? (1.4)

On a curved surface, the Pythagorean theorem does not work. But an infinites-
imal piece of a curved manifold is essentially flat, and there the Pythagorean
theorem does work. On such an infinitesimal piece we can introduce Cartesian
coordinates z,y and look at infinitesimal distances

ds* = da* + dy? (1.5)

The advantage of looking at infinitesimal distances becomes clear if we look
at the flat plane again but in polar coordinates {r,0}. At any point in this
plane, moving towards larger r and moving towards larger 6 give two orthogonal
directions. The former gives a length dr, while the latter gives a length rdéf.
Then

ds® = dr? + r?d6? (1.6)

Note that there is no simple expression for the distance between two points with
a non-infinitesimal separation, since the factor 2 does not have a fixed value
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Figure 1.3: (a) The surface corresponding to the metric (??. (b) The surface for the
metric (1.13). (c) The metric is (b) can be continued smoothly past its boundary.

along the path joining the two points. If we do want the distance between two
finitely separated points, then we have to choose a path between them, break
up this path into infinitesimal segments, find the length ds for each segment
using (1.6) and add up these contributions. As an example, consider the length
of a circle at radius r. Each infinitesimal segment has a length ds = rdf, so the
total length of the circumference is

2w 2w

C(r)= / rdf =r do = 2nr (1.7)
6=0 6=0

An expression like (1.5) or (1.6) is called the metric, since it allows us to

measure distances on this space. The general feature we see in these examples

is that (a) the metric is quadratic in the infinitesimal displacements and (b) the

coefficients of these quadratic terms can depend on position; for example the

coefficient of d#? is r2.

The metric (1.6) described a flat plane, but we can now have fun making
new surfaces. Let us try

2
ds? = dr? + r;; -d5? (1.8)
For small r, we have
2
r 2

so the surface will look the usual flat plane near » = 0. But at large r, we have

~1 (1.10)
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so the metric becomes
ds® = dr® + df? (1.11)

Now the circumference of a circle at a fixed value of r is

2
C(r) = do = 2w (1.12)
0=0

Thus the surface looks like a cylinder, where the circumference of the circle
does not change as we go up. The overall surface is depicted in fig.1.3(a). Even
though this surface is infinite in extent, we will see that surfaces like this can
be found inside the black hole, and are a key to understanding the information
paradox.

Now let us try the metric

ds* = dr® + (r? + 1)db* (1.13)
For large r, we have 72 + 1 ~ r2, so the metric looks like the metric (1.6) of a
plane. For r — 0, we have 72 4+ 1 = 1, so the metric looks like the metric of a
cylinder (1.11). Over the range 0 < r < 0o, the surface will look as depicted in
fig.1.3(b).

But this surface seems to end suddenly on a circle at r = 0. Can we continue
further past this circle? Looking at the metric (??), we see no problem in
continuing r to negative values. If we explore the complete range

—co<r<oo, 0<6<2r (1.14)

then we get the surface in fig.1.3(c). There are two planes, joined by a ‘worm-
hole’.

This notion of extending a surface will be central to our study of the black
hole. We will ask if the metric outside the hole can be extended to cover the
inside of the hole, and if it can extended even further. In the maximally ex-
tended metric that we can make, we will find a wormhole joining two infinite
flat spacetimes.

1.1.2 Lorentzian spaces

The coefficients in the metric need not be all positive. Einstein taught us to
think of time as an additional dimension, but with a negative sign in the metric

ds? = —c*dt* + da? (1.15)

Now the distance between two points can be positive, negative or zero. In these
cases we say the separation is spacelike, timelike and null respectively. The light
cone is the set of directions that are null

dr = tcdt (1.16)
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Figure 1.4: (a) The light cone; the trajectories of particles must always have a slope
that lies within this light cone. (b) A toy model of a black hole. As we come inwards,
the light cones tilt inwards as well. The vertical dashed lines are horizons; no particle
trajectory can emerge from inside the horizon to the outside.

Massless particles like photons travel at the speed of light, so their trajectories
lie on the light cone. Massive particles travel at speeds less than ¢, so their
trajectories must lie inside the light cone. We depict the lightcone in fig.1.4(a).

When we curve a spacetime, the light cones also distort. In fig.1.4(b) we
depict a toy model of a black hole. We have let the light cones to ‘tilt inwards’
towards r = 0. At a point like A, the light cone allows particles to move towards
either larger or smaller values of . But at the point B the light cone has tilted
so much that no particle can escape towards r > r,; a massless particle heading
‘outwards’ would stay at r = r,, and all other particles would fall in towards
r < rp. The locations r = =4rp, are the ‘horizons’. At a point like C, the
light cone has tilted even further, and all particle trajectories must fall towards
Th = 0.

This toy model answers a common question about black holes. We have said
that a star will collapse to a black hole when it no longer be held up by neutron
degeneracy pressure. Can’t there be other forces, yet undiscovered, that will
hold up the star when the neutron degeneracy pressure cannot, so that a black
hole will never form?

In fig.1.5 we depict a star which has shrunk to a radius smaller than the
horizon radius 7. Because of the tilt of the light cones, all points on this star
must continue to move towards smaller and smaller values of |r|. No force can
stop this collapse because it would require making particles move outside the
light cone; i.e., with a speed more than c. As long as our theory only allows
velocities |v| < ¢, there cannot be any force that stops this collapse.

If we cannot halt the collapse after the star has shrunk inside the radius ry,
then we might try to argue that some force halts the collapse before the radius
becomes less than r,. But here we run up against a fundamental problem: we
can make a star fit inside the radius 7, even when its density is very low, and at
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Figure 1.5: A star which is inside the horizons depicted in fig.1.4(b). All points of this
star must keep moving inwards, since otherwise their trajectories would lie outside the
local light cone.

low densities we believe we already know all the forces that could be relevant.
Recall that

2GM

=73 (1.17)

Assuming the matter forms a uniform ball of radius R, we have
M ~ pR? (1.18)

where p is the density. Egs. (1.17) and (1.18) give
c? ct

~N =~ 1.19
Pz ™ e (1.19)

So we can take p to be as small as we like, provided we make the ball be big
enough to contain a sufficiently large overall mass M. To emphasize this point,
let the matter consist of dust grains, of mass 1 gm each, placed in a cubical lattice
with separation 100 cm between neighboring grains in each direction. This gives
p ~ 107%gm/cc. One might imagine that at this low a density, there are no
unknown forces between the dust grains, and in fact none of the forces we know
would prevent us from making such a lattice of dust grains. Now assume that
this low density dust forms a ball of radius R = 10'® cm. Then M ~ 10*® gm,
and

rn ~ 102 cm > R (1.20)

So the ball of dust is already inside its critical radius 7y, and we cannot stop its
collapse to a point.

This example illustrates the crux of the black hole puzzle. It seems easy to
make very large, very low density balls of dust, which will cause the light cones
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to tilt in the manner shown by the toy example of fig.??(c). If we cannot find
a way to prevent the existence of such low density balls, then we must accept
that black holes form. And then we have to face the paradoxes that come with
them.

1.1.3 More metrics

Let us consider more examples of metrics. Consider the surface of a sphere of
radius R, using spherical polar coordinates 6,¢. An infinitesimal change in 6
moves us down along a longitude, and gives a length Rdf. The angle ¢ runs
along a latitude circle with radius R sin 6; thus an infinitesimal change in ¢ gives
a length Rsinfd¢. Further, the 6 and ¢ displacements are orthogonal. Thus

ds® = R*(d6* + sin® 0d¢?) (1.21)

If we also include the radial direction, then we have length dr in a direction
perpendicular to the df, d¢ directions. Thus we get the metric in 3-dimensional
space in spherical polar coordinates

ds® = dr? + r?(df* + sin® 0d¢?) (1.22)
Including time ¢, we get the metric of 3+1 dimensional spacetime
ds® = —c*dt* + dr® + r?(d6? + sin? 0dp?) (1.23)

We can now write the metric of a black hole. A black hole of mass M with zero
angular momentum, in 341 spacetime dimensions, has the metric

2GM
2

2GM
rc2

ds? = —(1 — Ydt* 4 (1 )7 ldr? 4+ r2(d6? +sin® 0dg*)  (1.24)

rc

This metric will occupy us for most of this book. It is very fundamental to
general relativity, since it is the metric created by a point mass. Its analogue in
electromagnetism would be the electric field of a point charge

E=k=<p (1.25)

But while this electric field E is straightforward to understand, analyzing (1.24)
will lead to many surprises.

1.1.4 The structure of the black hole

All the mysteries associated with the black hole lie in the metric (1.24). We will
now start uncovering some of the features of this metric. To simplify things, in
what follows we choose units where

c=1, G=1, h=1 (1.26)
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The Schwarzschild metric (1.24) then becomes

2M 2M
d$2 = —(1 — T)dt2 + (1 — T)ild'fa2 + T2(d02 + Sin2 9d¢2) (127)

We can see that the metric has potential problems at the horizon radius ry,
rp, =2M (1.28)

To get started, we first look at the region far from the horizon: r > rp,.
Then we find
ds® = —dt* + dr® + r*(df* + sin® 0dp?) (1.29)

so we recover flat spacetime; this makes sense since all gravitational effects
should fall at large distances from the hole.

To explore the metric closer to the horizon, we first note the different kinds
of surfaces in general relativity.

1.1.5 Spacelike and timelike surfaces

Consider flat 3+1 dimensional spacetime with metric

ds® = —dt?* + da* + dy* + dz* (1.30)

(i) Consider the surface spanned by the directions x,y, z. If we move in any
direction on this surface, we find that ds? > 0; i.e., the direction behaves as a
spacelike direction. Thus we call this a spacelike surface. The normal to this
surface is in the direction ¢, which is a timelike direction. So another way to
define a spacelike surface is to say that its normal is timelike.

(ii) Consider the surface spanned by the directions ¢, z,y. If we move along
this surface in the ¢ direction, then ds? < 0; i.e. this direction is timelike. If
we move in the z or y directions, then ds? > 0, as before. Since one of the
directions in the surface is timelike, we call this a timelike surface. (It is not
possible to have more than one direction be timelike, since there is only one
time direction overall.) The normal to this surface is in the z direction, which
is spacelike; so another way to define a timelike surface is to say that its normal
is spacelike.

Spacelike surfaces are of fundamental important in physics. We give initial
data on such a surface, and then the evolution equations determine all variables
at all times. Thus in the flat metric (1.30), the equation

t=0 (1.31)

defines a spacelike surface, spanned by the directions z,y, z. In classical field
theory, we can specify the value of the field and its normal derivative on this
surface. In quantum theory, we would specify a wavefunction on the spacelike



1.1. THE ESSENTIAL IDEA 11

surface. In each case, the physics is then completely determined by the evolution
equations, both to the future and past of this surface.

(iii) Finally, we can have a ‘null’ surface, where two directions are spacelike,
but the third is null: i.e., with ds? = 0. An example of this surface would be
the 3-dimensional surface formed by taking all values of x,y, but restricting to
the line t — 2 = 0 in the ¢ — z plane. The direction

dx =0, dy=0, dt =90z (1.32)

along this surface is null. This same direction is also normal to the surface, since
it has vanishing dot product with all vectors tangent the surface. Thus a null
surface has a normal which is also null, and this normal happens to lie within
the surface itself.

1.1.6 Spacelike surfaces in the Schwarzschild metric

To understand the evolution of the black hole, we must look for a spacelike
surface in the Schwarzschild metric. Outside the horizon, i..e, at r > r,, we see
that we get a spacelike surface by fixing the value of ¢:

t=to (1.33)

This is because in the metric (1.27) all the three infinitesimal directions of
displacement within this surface — those in the r, 8, ¢ directions have a positive
coefficient, and are thus spacelike.

But now consider the region inside the horizon. For r < r,, we find that
the coefficient of the ¢ coordinate becomes positive, and the coefficient of the r
component becomes negative:

2M 2M
ds* = (= — 1)dt* — (=— — 1) *dr? + r*(d6? + sin” Od¢?) (1.34)
r r
Thus the time coordinate ¢ and the space coordinate r have interchanged roles.

A spacelike surface is now given by fixing a value for r
r=rg (1.35)

This follows because the directions along this surface are t, 0, ¢. The t direction
is now spacelike, and 6, ¢ continue to be spacelike as before. We draw the
surface (1.35) in fig.??. The angular directions are depicted as a circle, while
the vertical direction is ¢.

How large is this surface? The angular directions 6, ¢ form a 2-sphere of
radius 7g. In the ¢ direction, we can consider any range t; < t < t5. The length
in this direction can be read off from the metric (1.34)

s=/t2(m—1)dt: CY e — ) (1.36)

L 7o To
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But we can take t; — t; as large as we want, so we can make the cylinder
arbitrarily long. This is very interesting, because this cylinder sits inside the
horizon radius rj,. So we can fit an infinitely long cylinder inside the horizon of
the black hole! This sounds puzzling, but is a simple consequence of the fact
that the metric coefficients of ¢ and r changed signs at the horizon.

This unbounded length of the cylinder answers a question that could have
been asked when we made our first pass at discussing remnants. We had started
with a mass M, and then cancelled this down to zero by adding negative energy
particles inside the horizon radius r,. But each time we add a negative energy
particle the overall mass goes down, and so r, decreases. After we put more
and more negative energy particles inside the horizon, the horizon will become
smaller and smaller; yet it has to contain the initial mass M as well as all the
negative energy particles we have added. But how will all these particles fit
inside the horizon? Could it not be that when the particles are squeezed into
too small a region, they somehow ‘choke up’ the space inside the horizon, so
that we cannot add another negative energy particle? If we could not add more
particles inside the horizon, then we could not reduce the mass further, and we
would not have the problem of remnants.

But now we see that there is actually an infinite amount of space inside a
horizon with any radius r,. The cylinder depicted in fig. ??(a) has finite cross
sectional area, but it has an infinite length. Thus we can place an arbitrarily
large number of particles along this cylinder, without having to place them close
to each other. This is depicted in fig.??(b). The Hawking radiation process will,
in fact, automatically deposit the negative energy particles along this cylinder
in this manner; the initial matter M making the hole and the negative energy
particles will all be well separated from each other along the cylinder.

To summarize, the horizon is a place where the time and space coordinates
interchange roles. This interchange results in the existence of an infinitely long
cylindrical spacelike surface inside the horizon. It is this infinite space which al-
lows the black hole to keep absorbing so many negative energy particles, without
choking up and ending its radiation process.

1.1.7 The smoothness of the horizon

We still have to understand what is happening at the horizon r = 2M. The
metric coefficients are singular here; the coefficient of ¢ vanishes while the co-
efficient of r diverges. If this is a real singularity, then we may not be able to
continue from the outer region r > 2M to the inner region r < 2M. In that
case the picture of infinitely long slices inside the horizon (and the consequent
existence of remnants) would be quite meaningless.

To see the problems that we face at the horizon, let us write the metric
(1.27) for the approximation

r=2M+7r', |[r|<2M (1.37)
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Figure 1.6: caption ...

We find

ds? ~ —

/
" g 4 <2M) dr’® 4 (2M)?(d6?* + sin? 0d¢?) (1.38)
2M i
where we have noted that dr = dr’.

The coefficient of dt? vanishes at ' = 0; this is part the issue we are address-
ing. But coefficients in the metric can sometimes vanish without there being
anything wrong with the space itself. Consider the 2-dimensional plane with
metric

ds* = da* + dy? (1.39)
Put polar coordinates on this plane
x=rcosf, y=rsind (1.40)
Then we get
dx = cosfdr — rsinfdf,  dy = sin@dr + r cos 6df (1.41)
This gives
ds* = dr?® + r*d6? (1.42)

as we had found by direct geometrical intuition in (1.6). At r = 0, the coefficient
of df? vanishes. But there is nothing wrong with the space itself; its just that
the coordinates 7,6 are not a good set around the point r = 0, since all values
of # correspond to the same point at r = 0.

The Schwarzschild metric (1.27) has Lorentzian signature. So let us repeat
the above computation starting not with the metric (1.39) but with the metric

ds® = —dT? + dX*? (1.43)
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We write
T =rsinhT, X =rcosht (1.44)

This gives
ds* = —r’dr® + dr? (1.45)

This metric has a vanishing coefficient for the time direction d72.

What will be very important for us is the following feature of (1.45). In the
Euclidean case (1.42), the polar coordinates r, 8 covered the entire plane x — y.
But in the Lorentzian case, the ‘polar’ coordinates r, 7 naturally cover only one
quadrant of the full T, X plane. As in the Euclidean case, these coordinates
fail at » = 0, so let us restrict to » > 0. For 7, we can take the full range
—00 < 7 < 00. We then see that we have

X > 0
Tl < X (1.46)

We depict this domain by the shaded region in fig.??.

Let us return to our metric of interest, which in the region near the horizon
had the form (1.38). This metric not only has a vanishing of the coefficient of
the time direction ¢, it also has a divergence of the metric in the space direction
dr’. Thus we need a further change of variables. We write

1
2M\ 2
(/) dr' = dr (1.47)
r
which gives
! —7:2 1.48
" T 8M (1.48)
The metric (1.38) becomes
,];2
ds® ~ dt* 4 di? + (2M)?(d6? + sin® 0dp?) (1.49)

16M?2
We can clean this up a little by writing

LN (1.50)

which gives
ds® ~ —F2dt? + di? 4+ (2M)*(d6? + sin? 0dp?) (1.51)

To recap: we have taken the Schwarzshild metric (1.34), and examined the
metric around the horizon; i.e., in the approximation r &~ 2M. The metric in
this region has split onto two factors:

(a) The angular part gives

ds®> — (2M)?(d#* + sin” Od¢?) (1.52)
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which is just the metric on a sphere S? of radius r = 2M.
(b) A part
ds? — —F2dt* + di? (1.53)

This is just the metric (1.45), which describes one quadrant of a full plane of
flat 14+1 dimensional spacetime. .



Bibliography

16



