
TOPIC IX

THE INFALL PROBLEM

What happens to an object that falls onto the horizon?
We will call this question the ‘infall problem’. It is sometimes confused with

the information puzzle, but it is a very different question. In some sense it is
actually the opposite question:

(i) We have seen that the information paradox arises if the horizon is a
vacuum region. Thus most attempts to resolve the paradox look for some way
of modifying the physics at the horizon. This modification should somehow
encode into the horizon the information of the matter which initially made the
hole, in order that the radiation from the hole carry out this information. Thus
each black hole microstate should be different in some way at the horizon. More
precisely, the radiation quanta emitted with energies E ∼ T should differ by
order unity between different microstates.

(ii) The infall problem on the other hand arises from a very strong intuitive
desire to preserve one feature of the classical black hole: namely, that an infalling
observer feel nothing as he crosses the horizon. If thus desire is to be satisfied,
the different microstates will have to behave in the same way for the purposes
of this infall.

It is clear that there is a tension between (i) and (ii). We will soon list some
of the approaches that have been taken to deal with this tension. But before we
proceed, we note that the problems (i) and (ii) are not problems on the same
footing:

(i) The information paradox is a very deep issue, that must be resolved;
otherwise general relativity would be in conflict with quantum theory.

(ii) The infall problem arises from an aesthetic desire that some feature of our
classical intuition be preserved at the quantum level. But there is no essential
requirement on our theory that it preserve this intuition.
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In particular, we have seen that fuzzballs resolve the information paradox in
string theory by altering the structure at the horizon. While we will discuss the
infall problem with fuzzballs below, this discussion has no impact the resolution
of the information paradox itself.
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Different approaches to the problem

Let us now summarize some conjectures that have been made to deal with the
tension noted above between the information paradox and the infall problem:

(a) Complementarity: We have seen that the quantum physics of black holes
leads to problems if the horizon is a vacuum region. ’t Hooft made a bold
suggestion: the correct theory of quantum gravity must be such that the degrees
of freedom of the hole actually reside at the horizon. Since the horizon is a 2-
dimensional surface rather than a 3-dimensional volume, this conjecture says
that gravity is ‘holographic’: its degrees of freedom in a region are not ‘one per
unit volume’ but ‘one per unit boundary area’.

If the data of the hole is at its surface, then information can be emitted
from this surface. But what about the intuition that an infalling object see
empty space as it falls through the horizon? ’t Hooft suggested the idea of
complementarity: this smooth infall is an equivalent description of the black
hole dynamics in a different set of variables.

Thus there are really three different conjectures here:

(i) Some quantum gravity effect makes the information of the hole reside at
the horizon, and this information is carried out by Hawking radiation.

(ii) There is an alternative set of variables in which an infalling particle to
behave as if it is falling freely through a vacuum horizon.

’t Hooft suggested the following mechanism for violating semiclassical physics
at the horizon. Infalling particles shift the location of the horizon. But Hawking
radiation quanta emerge from this horizon, so the effect of this shift is imprinted
on the outgoing radiation. This transfers infomation from the infalling matter
to the outgoing radiation, giving a unitary S-matrix for the entire process of
black hole formation and evaporation.

Unfortunately, this argument turns out to be too naive; as we will note below,
shifting the location of the horizon does not actually imprint any significant
information on the emitted quantum. Thus it is not clear how the requirement
(i) is to be obtained. It is also not clear how (ii) is to be realized.

In spite of these difficulties, ’t Hooft’s proposals had a significant impact on
the general thinking about black holes, and set the stage for other developments
to follow.
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Susskind and his collaborators developed the idea of complementarity in
more detail. They proposed that the picture of black hole dynamics depends on
the observer:

(i) For the purpose of an observer who stays outside the hole, the physics of
the black hole can be described using a surface placed just outside the horizon;
this surface is called the stretched horizon. All infalling matter is absorbed by
this surface, thermalized, and returned to infinity as radiation; thus there is no
information loss.

(ii) For the purpose of an observer who falls into the hole, the horizon appears
to be a vacuum region; thus this infalling observer carries his information onto
the hole.

(iii) The descriptions (i) and (ii) are compatible because a person who falls
through the horizon cannot communicate what he sees to the outside.

The difficulties with this proposal are much the same as the ones with ’t
Hooft’s proposal. The no-hair theorem had not been broken at the time of this
proposal, so it is not clear what effect would lead to information reflecting of the
horizon, as required by (i). The requirement (ii) suggested that there was no
‘real’ structure at the horizon with an invariant meaning, since in at least one
description the horizon was an exact vacuum. It was also not clear what physics
would lead to (iii); the standard formulation of quantum theory does not give
different realities for observers at different places, even if these observers are
unable to communicate with each other in the future.

But as with ’t Hooft’s proposal, the impact of Susskind’s ideas was large,
because they focused attention on the tension between the requirements of in-
formation retrieval and smooth infall.

To distinguish the above line of thinking from what we will discuss below,
we will call it traditional complementarity.

(c) Fuzzball complementarity: With fuzzballs, we have a very different situ-
ation. We have broken the no-hair theorem, and found nontrivial structure at
the horizon. In fact we have no region interior to the horizon, since spacetime
ends just outside the place where the horizon would have formed. The structure
at this horizon is ‘real’ in the sense that it is a covariant gravitational solution
like any other gravitational solution: the horizon region is not a vacuum in any
coordinates.

How then can we have any notion of free infall? In [], it was argued that one
can still have an approximate notion of smooth infall. The idea is as follows:

(i) The fuzzball surface radiates low energy quanta, with energies E ∼ T , in
place of the Hawking radiation from the hole. The state of these quanta depends
on the choice of fuzzball state, and so this radiation carries out the information
of the black hole microstate.



5

(ii) But now imagine a quantum with E � T impinging on the fuzzball
surface. This quantum cannot ‘go through’ this surface, since there is no interior
to go to; the spacetime has ended at this surface. But the energy E carried by
the quantum can deform this surface. Let this deformation be characterized by
a set of frequencies

{ν}f = {νf1 , ν
f
2 . . . } (1.1)

(iii) Now consider the semiclassical black hole. The set of quantum dynam-
ical processes associated to this hole will be described by some frequencies; let
us call them

{ν}bh = {νbh1 , νbh2 , . . . } (1.2)

(iv) Now suppose that for a generic fuzzball, we have

{νf1 , ν
f
2 . . . } ≈ {νbh1 , νbh2 , . . . } (1.3)

Then the dynamics of the fuzzball surface will reproduce the physics of the
traditional hole to a good approximation in the limit E � T . This is the idea
of fuzzball complementarity.
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The conjecture of fuzzball complementarity

In fig.?? we again reproduce our schematic picture of a fuzzball microstate. The
spacetime ends in a quantum mess a little outside the place where a horizon
would have been in the traditional picture of the black hole.

Suppose an object falls onto the surface of this fuzzball. Since spacetime
ends before the horizon is reached, the object cannot pass smoothly through
the horizon into the black hole ‘interior’. Should we not say that the object hits
a barrier at the horizon, and gets destroyed?

Indeed, several people working on fuzzballs did argue that exactly this should
happen. Bena, for example has explained the structure of the extremal mi-
crostate as follows: "If you fall down the throat of such a microstate, you will
crack you head and die”[]. While this looks like a natural statement, our goal
here is to ask if there is another possibility. That is, is there some way that we
can have the microstate structure of fuzzballs, but yet preserve some approx-
imation to our classical intuition which suggests smooth free fall through the
horizon?

To see how such an alternative possibility can arise, let us begin with an
analogy: the example of AdS/CFT duality.

2.1 Infall onto a stack D3 branes

If fig.??(a) we depict a stack of N D3 branes, all placed at the same location,
parallel to each other. We assume that

N � 1 (2.1)

We consider an object that falls onto this stack. For concreteness, we take this
object to be a closed string. This object has internal dynamics, for example the
closed string has oscillation frequencies

{νclosed} = {νc1, νc2, . . . } (2.2)

and is in a state
|ψ〉 =

∑
j

Cclosedj |Eclosedj 〉 (2.3)

where Eclosedj = νcj is the energy of the quantum state with frequencies νcj .
When the closed string reaches the stack of D-branes, then its energy gets

converted to a collection of open strings. These open strings spread out along
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the surface of the D3 branes, so the energy that was contained in the closed
string now moves out in transverse directions, instead of continuing along the
initial direction of infall of the closed string.

One would be tempted to say at this point that the initial closed string has
been ‘destroyed’ upon reaching the stack of D3 branes. After all, it has been
split into a large number of open strings, which move off in different directions
on the branes. But we know that the dynamics of the D3 branes has an al-
ternative description, depicted in fig.??(b). There are no D3 branes visible in
this description; instead we have a smooth spacetime geometry. The infalling
closed string loop passes smoothly through the ‘neck’ region of this geometry
into an AdS region, continuing to move in its original direction. In this descrip-
tion, it certainly does not look as if the closed string has been ‘destroyed’ in its
interaction with the D3 branes.

We would like to understand this phenomenon in more detail, since the
physics here will be one of the ingredients that we would like to borrow, though
in a somewhat modified form, in arriving at the conjecture of fuzzball comple-
mentarity.

The state of the closed string has been converted into a complicated wave-
functional describing the state of a large number of open strings. Let the states
in this open string description be |Eopenj 〉. The closed string was falling towards
the D3 branes with the state (2.3). Upon reaching the D3 branes, its state gets
converted to an open string state as∑

j

Cclosedj |Eclosedj 〉 →
∑
j

Copenj |Eopenj 〉 (2.4)

In general such a change of state would lead a a change of dynamics, and the
closed string would cease to exist as a well defined object. But suppose we have

Eclosedj ≈ Eopenj (2.5)

Cclosedj ≈ Copenj (2.6)

then the dynamics of the infalling closed string is, to a first approximation,
not altered. The states Eclosedj have been given a new representation as states
Eopenj in a new Hilbert space, but the energy levels and their weights have
not been altered (eq.(2.5),(2.6)). The internal dynamics of any object, however
complicated, is captured by the energy levels and their weights, so all that
has happened is that the dynamics has been mapped isomorphically to a new
description. In particular, if the closed string was replaced by a person, the
person would feel no ‘pain’ when he falls onto the stack of D3 branes: he would
just feel the gentle changes of metric as the spacetime changes from flat space
to the ‘neck’ region and then to an AdS geometry.

2.2 Fuzzball complementarity

Let us now see if we can reproduce some version of the AdS/CFT example for
an object that falls onto the surface of a fuzzball.
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Let the infalling object again be a closed string in the state (2.3). When this
closed string reaches near the fuzzball surface, its energy causes an excitation
of this surface. This excitation is analogous, in the AdS/CFT example, to
the excitation of open strings on the D3 branes. We can therefore write the
absorption of the closed string on the fuzzball surface in a way similar to eq.
(2.4) ∑

j

Cclosedj |Eclosedj 〉 →
∑
j

CFj |Fj〉 (2.7)

where the fuzzball state |Fj〉 has an energy EFj . Suppose we again have

Eclosedj ≈ EFj (2.8)

Cclosedj ≈ CFj (2.9)

Then the dynamics of the infalling closed string would be mirrored by the dy-
namics of the excitations of the fuzzball surface. We would have ‘holographically
encoded’ the state of the infalling closed string onto the fuzzball surface. If the
closed string was replaced by a person, this person would feel no ‘pain’ as he
falls onto the fuzzball surface; the state on the RHS of (2.7) would describe his
evolution almost as well as the state on the LHS of (2.7).

This is the outline of the idea of fuzzball complementarity. We will now
probe it in more detail, finding in the process the various limitations on how
such a possibility can be implemented.

2.3 The conditions for fuzzball complementarity

We do not of course know if the conjecture of fuzzball complementarity is true.
But assuming for the moment that it is, we note several conditions which have
to be satisfied for the fuzzball surface to be able to mimic free infall through
the relation (??).

The need for fuzzballs

The fuzzball paradigm differs from the traditional picture of the black hole by
having ‘real’ degrees of freedom at the horizon. In other words, the state near
r ≈ 2M is not the vacuum, but something that depends on the choice of black
hole microstate. If we did not have fuzzballs, the infalling object would indeed
just pass smoothly though r = 2M into the black hole interior, and there would
be no states |Fi〉 that we have in (2.7).

2.3.1 The approximation E � T

We have postulated the map (2.7) for the transition from the states of the
infalling object to the states of fuzzballs. Thus postulate was made in line with
the map (2.4) for the AdS/CFT case. But there is an important difference
between the two cases, which goes to the heart of the information paradox.
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In the AdS/CFT case the closed string falls through a vacuum spacetime:
the flat space region changes to a ‘neck’ and then to an AdS region, and the
changes of the metric are the only effects that the closed string feels. Suppose
the size of the closed string is much less that the curvature radius of the AdS.
Then these changes of curvature give only mild tidal forces on the closed string,
and it is only these mild tidal effects that prevent the ≈ sign from being an
equality.

In the fuzzball case, however, there is a more basic limitation on how accurate
the ≈ sign can be in []. Each fuzzball microstate is different, so they cannot
all respond to the infalling object in exactly the same way. Thus the map (2.7)
cannot be exactly the same for different choices of the initial state of the hole.
Clearly (2.7) must be an approximation which ignores the differences between
these microstates. What is this approximation?

The information of the fuzzball is carried out by the quanta radiated by
the fuzzball, just the way it would be for any normal body. These quanta
have energies of order E ∼ T . Thus when we examine the dynamics at energies
E ∼ T , each fuzzball must look different; in fact the overall state of the radiated
quanta from one fuzzball state |Fi〉 must be orthogonal to the overall state of
the radiated quanta from a different fuzzball state |Fj〉, where we have taken
〈Fj |Fi〉 = 0.

A universal behavior for the fuzzballs, can however emerge if we look at the
dynamics in a domain E � T . Let us now see how such a universal behavior
may arise, and how it can approximately mimic infall into the traditional black
hole geometry for infalling quanta with E � T .

2.3.2 A toy model for fuzzball complementarity

We have seen above the the idea of fuzzball complementarity is motivated by
the notion of gauge gravity duality. Thus we will start be making a toy model
for AdS/CFT duality. We will then extend this toy model to one which exhibits
fuzzball complementarity. Thus it should be noted that the model we will arrive
at is a toy model which illustrates the idea behind the conjecture; the actual
dynamics of fuzzballs is likely to be much more complicated.

We proceed in the following steps:

(i) In AdS/CFT duality, when we let the gravity coupling be at the value of
interest, then the CFT is a strongly coupled field theory. But we have computed
the radiation from a weakly coupled field theory, and observed that it agrees
with the radiation from a black hole. While this weakly coupled CFT cannot
reproduce all the physics of black holes, let us use it for the moment to make
our toy model of AdS/CFT.

In this model we have box of volume V , in which we place a graviton hij .
The black hole will be replaced by an effective string; the oscillations modes of
this string give the field theory. The left moving excitations are created by â†n,L
and the right moving ones by â†n,R. There is a coupling that annihilates the
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graviton and creates a pair of vibrations

Hint ∼
∑
m,n

Âhâ
†
m,Lâ

†
n,R (2.10)

but we assume that there are no interaction between the modes on the string
themselves. Thus we have replaced the actual strongly coupled CFT by a free
field theory; this is the simplification assumed for our toy model.

(ii) We are interested in the transition from the graviton state to the state of
vibrations on the string. Let the state of the graviton be |h〉 and its energy be
E0. The crucial point is that the states on the string form an almost continuous
band, which results in a ‘fermi golden rule’ absorption of the graviton onto the
string. The fact that we have a dense set of level of the string will be very
important in what follows. To understand its significance, first consider the
case where the modes on the string are replaced by a system with just one state
|s〉, also with energy E0. Let the amplitude for transition per unit time from |h〉
to |s〉 be R. We can choose the phase of |s〉 to make R real. The Hamiltonian
of this 2-state system has the form

Ĥ =

(
E0 R
R E0

)
(2.11)

The eigenvalues and eigenvectors are

(E0 +R) :
1√
2

(1, 1), (E0 −R) :
1√
2

(1,−1) (2.12)

If we start in the graviton state |h〉 = (1, 0) at t = 0, the the subsequent
evolution is

|ψ(t)〉 =
1

2
(1, 1)e−i(E0+R)t+

1

2
(1,−1)e−i(E0−R)t = e−iE0t (cos(Rt)|h〉+ sin(Rt)|s〉)

(2.13)
We see that the amplitude oscillates between the two states |h〉 and |s〉.

By contrast, if |s〉 is replaced by a band of states, then the amplitude flows
from |h〉 to the band, but it does not flow back from the band to |h〉. We have
already seen the computation for absorption into a band in section (??); now
let us depict this physics pictorially.

(iii) Let the states of the band be |sk〉, with energies

Ek = E0 + k∆, −∞ < k <∞ (2.14)

We can choose the phases of the |sk〉 so that the amplitude of transition per
unit time Rk from |h〉 to |sk〉 is real. The transition will be predominantly to
states with Ek ≈ E0, and in this region we assume that Rk → for each k; this
assumption is only for convenience and is not necessary.
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For convenience, let us shift all energies by a constant, so that E0 = 0; this
is equivalent to removing a phase factor e−iE0t from all states. We start in the
state |h〉 at t = 0. The transition to the state |sk〉 generates the amplitude in
this state with phase φk = 0, since we have taken R real. This is depicted in
fig.??(a), where we show φk ≈ 0 for each k at small times t.

But as more time passes, the amplitude in the state |sk〉 evolves due to its
energy, as ∼ Exp[−iEkt]. The states with Ek > E0 = 0 get a factor e−iφk with
phase φk > 0, while the states with Ek < E0 = 0 get a factor e−iφk with phase
φk < 0. This is depicted in fig.??(b), where we draw the phase φk as a function
of k at time t > 0.

(iv) The above describes the absorption on the initial graviton |h〉 into the
degrees of freedom of the CFT. Let us now consider the gravity dual of this
absorption. This dual picture is depicted in fig.??, where the graviton enters
into the AdS region, passing through the throat of the geometry.

Why should we think of the CFT process as an absorption? In the 2-state
system (2.11) the amplitude moved from |h〉 to |s〉 and then back to |h〉. In the
case of the band (2.14) each state |sk〉 has the amplitude R∗ = R to transition
back to the state |h〉. But the evolution Exp[−iEkt] gives the states |sk〉 different
phases, and their their contributions to |h〉 come with these same phases. This
leads to a phase cancellation, and therefore the amplitude does not flow back
from the band |sk〉 to |h〉.

As t increases, the phases evolve further, as shown in fig.??(c). The phase
cancellation becomes even stronger, and so it is ‘even more difficult’ for am-
plitude to flow back from the band |sk〉 to |h〉. In the gravity picture, this
corresponds to the quantum moving further away from the ‘neck’ from where
it could have transitioned to the state 1

2 〉; in other words, the quantum moves
deeper into the throat.

This is the analogue of AdS/CFT duality in our toy model where we have
assumed a free CFT. In the CFT we have a transition

|h〉 →
∑
k

Ck|sk〉 (2.15)

The dynamics is thus in the evolution of the set {Ck}

Ck → Cke
−iEkt (2.16)

This evolution has a simple dual description in terms of the progression of the
graviton wavefunction down the throat of a dual geometry. The direction down
the throat did not exist as a dimension in the CFT itself, but emerged as an
aspect of the evolution of the set {Ck}.

(v) Our goal is to see if a similar effective direction can emerge to describe
infall into the interior of the horizon. But before we do that, let us note that
the above motion down the AdS throat can be reversed, to make the graviton
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move up the throat. We can start with the CFT state

|ψ〉 =
∑
k

Ck|sk〉, Ck = eiEkt0 (2.17)

These phases are depicted in fig.??(d). The evolution (2.16) brings these phases
back into alignment after time t0, at which point the wavefunction can transition
back to the state |h〉. The evolution of the CFT state for 0 < t < t0 describes, in
the gravity dual, a graviton moving up the AdS throat to the neck, from where it
can exit to the flat space region outside. Thus we see that the evolution of CFT
states describes both up and down motions in the gravity dual, in a completely
symmetric fashion.

(vi) Now suppose that at dome location r = r0 down the AdS throat we have
a black hole. What happens when our infalling graviton reaches this location?

In the traditional picture of the hole, the particle just passes into the black
hole interior. Such a situation would be very puzzling from the viewpoint of
the dual CFT. This is because on thinks of the time t of the CFT as the
Schwarzschild time in the gravity dual. This time t goes to infinity as the
graviton approaches the black hole horizon; to see the motion inside the horizon
we have to switch to Kruskal coordinate time. So it would seem that the CFT
captures only the part of the graviton trajectory that lies outside the hole. If
the hole indeed has an interior, then the CFT description is incomplete; some
other degrees of freedom besides the CFT would be required to describe the full
gravity theory.

But with the fuzzball paradigm we do not have this problem. The AdS
throat ends in a ‘cap’; there is no horizon. Thus the infalling graviton does not
pass into a new region that is not captured by the CFT. Thus it is consistent to
say that the infalling graviton goes no further than the place where the horizon
would have been in the traditional geometry, and that the full motion up and
at the cap is captured by the dual CFT.

(vii) We are however interested in exploring if there can emerge some effective
description where the graviton does appear to continue its infall through a
horizon. Note that the cap does not have a unique geometry; on the contrary,
there are a large number Exp[Sbek] different states possible at the cap. Thus
there are a large number of gravitational degrees at the end of the throat, and
the infalling graviton will excite these degrees of freedom. We wish to see if we
can find an analogue of the AdS/CFT magic using these degrees of freedom.
More precisely, the analogy we seek is the following:

(a) In the AdS/CFT evolution described in (i)-(vi) above, the graviton state
|h〉 interacted with a dense band of sates |sk〉. This band absorbs the graviton;
we had seen that if we just have one state s〉 then the amplitude oscillates
between |h〉 and |s〉, but with a band |sk〉 we get absorption into the band. In
a similar manner, the gravitational states at the cap form a dense set; the level
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density is high because the entropy Sbek is a large number. When the infalling
graviton reaches the cap, it will be absorbed into the band of fuzzball states
|Fk〉 localized near the cap.

(b) In the AdS/CFT case we had the transition

|h〉 →
∑
k

Ck|sk〉 (2.18)

There was no throat direction in the CFT as such, but the evolution of the set
{Ck} could be mapped to infall into an effective throat. In the fuzzball case,
the initial state of the fuzzball |Fi〉 gets excited upon the infall of the graviton
as

|Fi〉 →
∑
k

Cik|F ′k〉 (2.19)

Here the |Fi〉 on the LHS is a fuzzball of mass M , while the |Fk〉 on the RHS
are fuzzballs of mass M + E, where E is the energy of the infalling graviton.
The number Ni of fuzzball states at the initial mass M and the number Nf at
the final mass M + E are related by

Nf
Ni

=
Exp[Sbek(M + E)]

Exp[Sbek(M)]
≈ Exp[Sbek(M) + ∆S]

Exp[Sbek(M)]
= e∆S ≈ eE

T (2.20)

Thus for an infalling quantum with E � T

Nf
Ni
� 1 (2.21)

Thus the situation is very similar to the AdS/CFT case, where we had compar-
atively few graviton states |h〉 and a much larger number of states |sk〉. (In fact
we had taken just one graviton state |h〉 in our toy model.)

(c) In the AdS/CFT case the evolution was contained in the functions
{Ck(t)}. But we could recast this evolution by introducing an emergent di-
rection along a throat, and letting the graviton progress down this throat. In
the fuzzball case the evolution in the cap region is contained in the functions
{Cik(t)}. We would now like to see if we can recast this evolution as an effec-
tive motion along an emergent direction that describes infall into a black hole
interior r < rh, where rh is the horizon.

Note that there is one novel feature that we must now have that we did
not have in the AdS/CFT case. Infall into a horizon is a one-way process; we
cannot come out, at least to leading order in the semiclassical approximation.
By contrast we had seen in (v) above that in the AdS/CFT case we could equally
well both up and down the emergent throat direction. Let us now see how we
can modify our model to get an emergent direction where it is easy to travel in,
but hard to travel back out.
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(viii) Consider the toy model depicted in fig.??. The energy levels are ar-
ranged along a hierarchy, labelled by an index n = 0, 1, 2, . . . increasing along
the horizontal axis. At n = 0, we have just one energy level, which represents
the infalling graviton state |h〉. The states at n = 1 are a subset of the fuzzball
states; these states form a closely spaced band, and the amplitude moves from
n = 0 to the band at n = 1 in the manner of the AdS/CFT model described in
(i)-(v) above.



Lecture notes 3

The firewall argument

In 2012, an interesting argument was made about the nature of infall into black
holes. This argument came to be known as the ‘firewall problem’. Let us discuss
this argument.

We already know from the Hawking theorem that if the region around the
horizon is the vacuum, then there is a problem with the growing entanglement
between emitted quanta and the remaining hole. We have also seen that the
problem is removed if we have a fuzzball structure which replaces the traditional
horizon; the hole then radiates from this surface like a normal body. For the
purposes of the firewall argument, however, we do not need any particular struc-
ture or dynamics of the hole; all we need to assume is that some mechanism
causes information to be radiated from the surface of the hole, just the way it
would be radiated from a normal body. Then, the argument says, an infalling
observer will necessarily have a destructive impact with the surface of such a
hole; i.e., it cannot pass through the horizon region ‘without drama’.

The destructive impact is supposed to arise from the interaction between
the infalling observer and the Hawking radiation emitted by the hole. Recall
that the Hawking radiation quanta are very low energy: a solar mass black
hole will emit quanta with wavelength ∼ 3 km. Thus the surprising part of the
argument is that the infalling observer will find himself interacting with quanta
of higher and higher energies as he approaches the horizon, with the energy of
these quanta becoming of order the planck energy when the observer reaches
within planck distance of the horizon.

If such an argument were true, then it would rule out the conjecture of
fuzzball complementarity, which suggests that observers falling freely from afar
feel nothing novel as they reach the horizon. But as we will see below, the
firewall argument starts with an extra assumption:

Assumption: No novel physical phenomena will arise outside the surface
of the hole; i.e., the physics outside this surface will be normal low energy physics
for all processes. In particular, the response of the black hole surface to an
infalling object is causal; i.e., the surface does not distort until null rays from
the infalling object reach it.

While such an assumption at first looks quite natural, we will see that it
conflicts with the expected behavior of black holes. More precisely, if we make
this assumption, then information cannot come out of the hole without violating

15
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causality. Thus it is not clear if the firewall argument can be valid in any known
theory of gravity.

In spite of this problem, the firewall argument is very useful, since it puts
constraints on conjectures like the conjecture of fuzzball complementarity; one
gets conditions on when and where the tunneling behavior discussed in section
?? must start. For this reason, we will describe the firewall argument below,
and spend some time in studying how its assumptions conflict with causality.

3.1 The firewall claim

Consider the following three postulates about the bahvior of a black hole:

Postulate 1: The process of formation and evaporation of a black hole, as
viewed by a distant observer, can be described entirely within the context of
standard quantum theory. In particular, there exists a unitary S-matrix which
describes the evolution from infalling matter to outgoing Hawking-like radiation.

Postulate 2: Outside the stretched horizon of a massive black hole, physics
can be described to good approximation by a set of semi-classical field equations.

Postulate 3: A freely falling observer experiences nothing out of the ordinary
when crossing the horizon.

The firewall argument says that after the time that the evaporation of the
hole has proceeded past its halfway point, all three of these postulates cannot be
true simultaneously.

Let us see what these postulates say:

(i) Postulate 1 is just the requirement that the black hole radiate like a
normal body. In particular, the entanglement between the radiation and the
hole should not keep increasing; after the halfway point, it should start to
decrease, in line with the arguments of Page [?] which we had noted in section
[].

(ii) Postulate 2 is the new assumption that we referred to above. Let the
black hole horizon be at the location r = rh. Consider a surface that is one
planck length outside this horizon; i.e., at the location

rs = rh + lp (3.1)

We call this surface the ‘stretched horizon’. For our present purposes it repre-
sents the boundary of the black hole: we assume that any novel physics asso-
ciated with the black hole ends at a distance ∼ lp outside the horizon. Thus
for r > rs, all physics is normal low energy physics; in particular, since the
curvature here is low, there are no large effects arising from quantum gravity.
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(iii) Postulate 3 is just the requirement of complementarity: an infalling
observer should detect nothing abnormal as he crosses the horizon.

Thus the firewall argument says that if we assume (i) that some phenomenon
resolves the information problem, by making the black hole radiate like a normal
body, and (ii) that no novel phenomena arise outside the hole, then we cannot
have (iii); i.e., an infalling observer will not be able to fall ‘without drama’
through the horizon of the hole.

3.2 What the firewall argument is not

The firewall argument, when first proposed, caused a fair amount of confusion.
In particular, many people confused it with Hawking’s original information para-
dox of 1975. Thus let us begin by first clarifying what the argument does not
try to say:

(A) Some people thought that the firewall argument was aimed at proving
that there was nontrivial structure at the horizon. But this is not true, since the
need for nontrivial structure at the horizon is the content of Hawking’s original
argument of 1975. More precisely, Hawking had argued that

H: If the horizon is a vacuum region, then there is a problem with mono-
tonically growing entanglement between the radiation and the hole.

This is exactly equivalent to the statement:

H’: If we do not want this monotonically growing entanglement, then the
horizon cannot be a vacuum region; i.e., there must be some nontrivial structure
at its location.

One might think that the required horizon structure could be a small pertur-
bation to the vacuum horizon, but we have ruled this out by the small correction
theorem; this theorem had the corollary:

C: If we wish to prevent the monotonically growing entanglement at the
horizon, then the corrections to low energy physics at the horizon must be order
unity

In short, we already know that we need order unity corrections at the horizon;
thus this cannot be what the firewall argument is claiming.

(B) Some people thought that the firewall argument was giving a new deriva-
tion of Hawking’s original argument. But this is not the case either; the argu-
ment uses the same model of entangled bits that was used to prove a rigorous
form of the Hawking argument in the small corrections theorem.
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(C) Some people thought that the firewall argument gives a construction
of a firewall at the horizon. But this is not the case; the argument does not
concern itself with any details of quantum gravity. Rather, the argument says
that if someone has a theory in which there are degrees of freedom at the horizon
emitting radiation, then an infalling object will be burnt by this radiation. In
particular, we have seen that fuzzballs emit radiation from degrees of freedom at
the location of the horizon. Thus the question becomes: will a fuzzball behave
like a firewall? If the firewall argument were true, then an observer falling onto
a fuzzball would get burnt before reaching the surface of the fuzzball. As we
will see however, the firewall assumption has a conflicting set of assumptions,
and fuzzballs are not expected to obey these assumptions.

Now let us turn to what the argument was actually trying to do. As noted
above, the Hawking theorem tells us that we need order unity corrections at the
horizon of we are to resolve the problem of monotonically growing entanglement.
But what is the nature of these order unity corrections? For a black hole of
radius rh, the Hawking quanta also have a wavelength λ ∼ rh. Thus all that
is required by the small corrections theorem is that there be a change of order
unity in the state of modes with λ ∼ rh. The firewall argument seeks to extend
this conclusion by arguing that an infalling observer will feel the ‘heat’ from
quanta of all wavelengths lp . λ . rh. The price to be paid for this extension
is the additional assumption mentioned above, which we will need to examine
in more detail.

3.3 The intuition behind the firewall argument

The basic idea behind the firewall argument can be seen from fig.??. In fig.??(a)
we depict the black hole as an object whose physics we do not know. This region
with unknown physics is bounded by the stretched horizon, which is drawn as
a solid line. The hole radiates quanta from the region r ≤ rs which escape out
to infinity.

Outside the stretched horizon, postulate 2 tells us that the physics is just that
of quantum fields on curved space; the effects of quantum gravity are negligible.
The curvature of this space does have one important effect: the redshift at a
radius r is given by

R = (1− 2M

r
)

1
2 (3.2)

Now consider the quanta of Hawking radiation. When these quanta are near
infinity, they have a wavelength λ∞ ∼ rh ∼ M . But now imagine following
these quanta back to a location r closer to the horizon. Due to the redshift, the
wavelength at radius r is

λ(r) ∼ λ∞R ∼ (1− 2M

r
)

1
2M (3.3)
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Thus the quanta become blueshifted to higher energies as we approach the
horizon, and at the stretched horizon rs = 2M + lp, they have a wavelength

λs ∼ lp (3.4)

An infalling object will interact with these high energy quanta as he falls closer
and closer to the stretched horizon. He will therefore get burnt by these high
energy quanta, and cannot pass smoothly through the horizon into a black hole
interior.

One might ask: why does a similar burning not happen with Hawking’s
original picture of black hole radiation? This picture is depicted in fig.??(b).
The Hawking quanta again have wavelength λ ∼M at infinity. But as we move
to the region

r − 2M .M (3.5)

there are no radiation quanta. Rather, we just have a region which is locally
the vacuum. We can say that near the horizon, the outgoing quanta pair up
with their infalling partners to ‘cancel’ out. This is of course just a restatement
of the fact that the region around the horizon is the vacuum, and the vacuum
modes transition to ‘real quanta’ only in the region r − 2M &M .

Thus the firewall argument is making the following observation. In Hawk-
ing’s picture of pair creation, the region near the horizon is the vacuum, and
the radiation quanta materialize as ‘real’ particles only far away from the hori-
zon. But this process of radiation creates the problem of monotonically growing
entanglement. Suppose we did not want to have this monotonically growing
entanglement; instead we wanted the entanglement to start decreasing after the
half-way point of evaporation, the way it would for a normal body. Suppose in
addition we ask that all novel black hole dynamics be confined to within the
stretched horizon rs. Then the surface of this stretched horizon would act like
the surface of a hot body, emitting quanta to the region r > rs. Such quanta
are ‘real’ quanta from the moment they are radiated, and travel out to infinity
just like any normal particle would. The energy of these quanta is very high
near r = rs; these high energy quanta then climb out of the gravitational field
of the hole and reach infinity with wavelength λ ∼ M . An infalling observer
will thus encounter high energy outgoing quanta as he come near the horizon,
and consequently get burnt.

3.4 The argument in detail

Let us now describe the firewall argument in detail. There are many ways of
presenting the argument; we will choose one that aligns most closely with the
notation and language we have used in studying the information paradox and
complementarity.

The goal of the firewall argument is to rule out the possibility of complemen-
tarity. That is, if in one description the black hole radiates information from its
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surface, then there cannot be an alternate description where the horizon looks
like a vacuum region.

We proceed in the following steps:

(a) Postulate 1 requires that radiation from the hole be like that from a
normal body. Thus the entanglement of the hole with its radiation should start
going down after the halfway point, in line with the arguments of Page. If, on
the other hand, we find that the entanglement keeps going up, even after the
halfway point, then we will have a contradiction with postulate 1.

(b) Hawking’s computation of radiation found that the entanglement keep
going up monotonically. So let us see if we have the conditions assumed in
Hawking’s computation in our present situation.

(c) By postulate 3, there should be a spacetime patch around the horizon
where the quantum state is that of the vacuum. We depict this in fig.??(a). We
consider a mode b outside the horizon and a mode c inside the horizon; these
are the same modes that in the Hawking computation, evolved into entangled
particle pairs. To make the quantum state in our patch the local vacuum, the
states in these modes b, c must be entangled. We use the same toy model of
entangled bits that we used in the Hawking computation, letting the state in
these modes be

|ψ〉 =
1√
2

(
|0〉bN+1

|0〉cN+1
+ |1〉bN+1

|1〉cN+1

)
(3.6)

We have added a subscript N + 1 to the b, c modes to signify that N steps of
emission have already occurred. We assume that N is large enough that we
are past the halfway point of evaporation, so that we need the entanglement to
decrease rather than increase at step N + 1.

(d) By postulate 2, the physics outside the stretched horizon is just normal
semiclassical physics. The mode bN+1 is outside the stretched horizon, and so
will evolve to evolve towards infinity just the way it did in Hawking’s compu-
tation. When bN+1 reaches near infinity, the particles in it will be normal local
particles.

(e) The entanglement of bN+1 with cN+1 was given by Sent = ln 2. We do
not care about the future evolution of the mode cN+1; whatever be the dynamics
inside the hole, it does not affect the physics outside the stretched horizon by
postulate 2. Thus when bN+1 reaches infinity, the entanglement of the radiation
with the hole has gone up by ln 2, instead of going down. This is in contradiction
with the requirement of postulate 1, noted in step (a) above.

(f) Thus we see that postulates 1, 2 and 3 cannot all be true. Suppose we
assume postulate 1 (that there is some mechanism that resolves the Hawking
entanglement problem) and also postulate 3 (that all novel physics is confined
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within the stretched horizon). Then we cannot have postulate 2; i..e, we cannot
have any description of the physics where the state near the hole is the vacuum.
In other words, we cannot have complementarity.

But if the state of the modes bN+1, cN+1 is not the vacuum state (3.6), then
it contains particles in these modes. We can consider these modes when their
wavelengths are very small. For any wavelength λ, we can consider the mode
bN+1 as a wavepacket localized at a distance ∼ λ from the horizon, and the
mode cN+1 will be at the same distance inside the horizon. We can choose
any wavelength λ & lp, since the stretched horizon is at a distance lp from
the horizon, and outside this stretched horizon we have assumed the normal
semiclassical behavior of modes by postulate 2. We will therefore have a nonzero
particle number in all modes near the horizon, with

lp . λ .M (3.7)

where the upper limit gives the wavelength of the Hawking particles when they
have left the vicinity of the horizon. An infallling observer will encounter with
very high energy particles as he comes close to the horizon. Since physics here is
assumed to be normal semiclassical physics, we conclude that he will get ‘burnt’
by these high energy particles. This is the firewall argument.

3.5 The flaw in the firewall argument

Let us now see the problem with the firewall argument. We will see that while
the argument itself is technically correct, the difficulty lies with the starting
assumptions. We proceed in the following steps:

(i) Start with a black hole of radius rh = 2M . The stretched horizon is at
rs = 2M + lp.

(ii) Consider a spherical shell of mass δM falling onto the surface of this
hole. We let this shell be composed of massless quanta moving radially inwards.
Then this shell moves in at the speed of light. As a consequence, no signal from
this shell reaches the stretched horizon until the shell itself actually hits the
stretched horizon. This infalling shell is depicted in fig.??(a).

(iii) By postulate 2 of the firewall argument, the physics in the region r > rs
is normal semiclassical physics. Thus nothing unusual happens as the shell
moves from r =∞ to r = rs; we just get the classical geometry created by the
infall of the shell δM onto the hole of mass M . In particular, since causality is
obeyed in the classical geometry, the stretched horizon cannot not move out to
r > rs until after the shell reaches r = rs.

(iv) Consider the situation where the shell of mass δM is just about to reach
the the stretched horizon of our black hole of mass M . The total mass in the
region r ≤ rs is now

MT = M + δM (3.8)
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The horizon radius for this mass is

rT = 2M + 2δM (3.9)

Recall that rs = 2M + lp. We can easily ensure that

rT > rs (3.10)

by taking
δM � mp (3.11)

Thus we have the following situation: we have a mass MT which is well inside
its Schwarzshild radius rT . In fact the mass is confined inside a radius rs, which
is close to the horizon radius of the starting hole of mass M , while the new
horizon radius corresponds to a mass M + δM . This is depicted in fig.??(b)

(v) Now consider the region

rs < r < rT (3.12)

In this region the metric is given by usual Einstein gravity. This is because the
original stretched horizon could not have responded in any way (since it has not
yet been touched by the infalling shell), and the physics in the region r > rs is
assumed to be given by normal semiclassical physics. Thus in this region the
light cones point inwards, just the way they would in the interior of any horizon.

(vi) We now see that the information in the shell δM is causally trapped.
If we want this information to get out of the location rs to the outside region
r > rT then we need to make this information move outside the light cones; i.e.,
we need the information carriers to move faster than the speed of light.

But if we postulate that information can travel outside the light cone, then
there was no information puzzle in the first place.

But most theories of quantum gravity respect causality, so they do not have
superluminal motion. In any theory that respects causality, the information
in the shell δM can never emerge till this shell stops being trapped inside a
horizon. Note that if we have causality, then the stretched horizon cannot even
continue to stay at the location r = rs; once the light cones tilt inwards as in
fig.??(b), the structure at the stretched horizon has to fall monotonically to
smaller r values. In fact since the original hole and the shell are all now inside
the horizon rT , we have the same behavior that we had for matter in a classical
black hole, where everything inside the horizon ends up at the singularity.

(vii)
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3.6 How fuzzball complementarity bypasses the
firewall argument

The firewall argument says that we cannot have complementarity; i.e., we cannot
have the sense of free infall if we preserve postulates 1 and 2. Yet we have argued
in section ?? that it is possible to get information out of the hole, and yet have
fuzzball complementarity, where observers who fall in freely with energies E � T
see approximately free infall. Does the firewall argument rule out the conjecture
of fuzzball complementarity? We will see that the answer is no. We proceed in
the folloiwng steps:

(i) We start by observing that the spirit of fuzzball compelmentarity is very
different from the spirit of the complementarity that the firewall argument
was addressing. The firewall argument addresses ‘traditional complementar-
ity’, where in some description the region around the horizon is the vacuum.
In paricular the argument focuses of the field modes that will emerge to make
Hawking radiation quanta; thus we call these E ∼ T modes. With fuzzballs, we
already know that the region around the horizon is not the vacuum. Thus what
we seek to do is get an effective dynamics of the fuzzball in the limit

E � T (3.13)

and ask if in this approximation the dynamics of the fuzzball can mimic free
infall. The modes E ∼ T are not in the vacuum state, since they are the
ones that will carry the information of the fuzzball state out to unfinity. The
firewall argument has no condition like (3.13), and so does not address the idea
of fuzzball complementarity.

(ii) One may still ask if the firewall argument can be extended in some way
to rule out the idea of fuzzball complementarity. In other words, how does the
limit (3.13) relate to the steps in the firewall argument?

Consider a particle with E � T falling towards the horizon. We have seen
above that the difdficulty with the firwall argument is postulate 2, which says
that no novel effects happen before an infalling particle reaches the stretched
horizon. By contrast, the usual classical horizon extends out to meet the in-
coming particle; thus this horizon meets the infalling particle before the particle
reaches the stretched horizon. In fuzzball complementarity, we conjecture that
tuneling into fuzzballs happens just before the particle would have fallen through
its horizon; this is how we evade the causaility problems that arise if the particle
does get trapped behind a horizon. Thus we violate postulate 2 of the argument.

(iii) In more detail, we can make the following estimates. An infalling particle
of energy E will lead to an increase in entropy by

∆Sbek ≈
E

T
(3.14)
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We assume that the entropy S is reflected in the surface area A of the fuzzball,
through the usual relation Sbek = A

4G . Then the increase (3.14) implies an
increase in the area

∆A ≈ 4GE

T
(3.15)

For a rough approximation, let us assume that the deformation of the horizon
is of the shape of a hemisphere with area ∆A. Suppose we are dealing with a
Schwarzschild hole in D spacetime dimensions. The radius of this hemisphere
is

sh ∼ (∆A)
1

D−2 ∼
(
GE

T

) 1
D−2

∼
(
E

T

) 1
D−2

lp (3.16)

where lp is the planck length in D spacetime dimensions, defined through G =
lD−2
p . Thus the transition to fuzzballs happens at a distance ∼ sh from the
original horizon.

Now we note that the temperature of the radiation drops with the distance
from the horizon. At a distance R from the horizon, this temperature is

T ∼ 1

sh
(3.17)

The firewall argument relies of the fact that an infalling object will burn up by
interaction with this raditon before new effects (that lead to complementarity)
can start. But as E increases, we see that sh increases and T drops. Consider
a quantum that is sent towards the hole, starting with energy E at infinity and
falling to a distance s from the horizon. Let s̄ be the value of s at which the
probaibility of interacton with the radiation becomes order unity. We find []

s̄ ∼
(
E

T

) 1
2(D−2)

lp (3.18)

Assuming that D > 2, we see that for E � T ,

sh � s̄ (3.19)

Thus the transition to fuzzballs happens before significant interaction with the
radiation can occur. We therefore see that the firewall argument cannot rule
out the possibility of fuzzball complementarity.

(iv) To put all this in another language, the firewall argument and the con-
jecture of fuzzball complementarity are focusing on quite different degrees of
freedom. The firewall argument is concerned with the E ∼ T modes that will
emerge as Hawking, and focuses on how these modes are entangled with other
modes in the problem. Fuzzball complementarity, on the other hand, is con-
cerned with the dynamics of new degrees of freedom that are created when an
energetic quantum falls onto the hole. The number of these new degrees of
freedom is given by (3.14). Since the entropy is the logarithm of the number of
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states, the number of states Nf after the addition of energy E is related to the
number Ni before the infall by

Nf
Ni

=
Exp[Sbek(M + E)]

Exp[Sbek(M)]
≈ Exp[Sbek(M) + ∆Sbek]

Exp[Sbek(M)]
= e∆Sbek ≈ eE

T (3.20)

where M is mass of the hole before infall and ME is the mass after. If E � T „
we see that

Nf
Ni
� 1 (3.21)

so that most of the states of the hole after infall are new states that were not
accessible to the system before the infall. These new states are not entangled
with anything outside the fuzzball, and so are not subject to the statements
about entanglement used in teh firewall argument. But it is the dynamics of
these new states that is conjectured to mimic ‘approximately free infall’ for the
infalling quantum, so we see that the degrees of freedom involved in the firewall
argument and the degrees of freedom responsible for fuzzball complementarity
are quite different.
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Unruh radiation

In the mid seventies, an interesting effect was discovered by Fulling [], Davies
[] and Unruh []. Take flat spacetime, and consider a quantum field φ on this
spacetime. Let φ be in the vacuum state; i.e., there are no particles of the field
φ in our state. Thus

â~k|0〉M = 0 (4.1)

where the subscript M indicates that |0〉M is the vacuum of Minkowski space.
Now consider a detector that can detect particles of the field φ. If this detec-

tor is kept at rest, it will detect no particles. It will also detect no particles if it
is moving with constant velocity, since the vacuum |0〉M is a Lorentz invariant
state. But suppose we let the detector move with an acceleration. Then the
detector detects particles of φ; in fact it detects a thermal bath of such par-
ticles, with a temperature T that is proportional to the acceleration a. This
phenomenon is called the Unruh effect.

Why does the accelerating detector see particles? At a qualitative level, the
physics is similar to that of bremsstrahlung – the radiation of photons from an
accelerating electron. The electron couples to the photon field A, and so creates
in its vicinity a distortion δA photon field vacuum. For the electron at rest let
the deformation be δA(0). No photons are radiated by this deformation; after all,
we cannot extract any energy from the electron which is an elementary particle.
The same holds for an electron moving with a constant velocity v, since we can
go to a frame where this electron will appear at rest. Let the deformation in
this case be δA(v).

Now suppose the electron was at rest, and was then given a kick so that
it changed its velocity to v. The deformation of the vacuum δA(0) cannot
change immediately to δA(v). The deformation we have, δA(0), can be written
as the new required deformation δA(v) plus some additional photon excitations.
These additional excitations escape, giving the bremsstrahlung radiation from
the accelerated electron.

A similar situation holds with our particle detector. Since this detector must
measure particles of the φ field, it couples to this field and creates a distortion
δφ of φ field in its vicinity. If the detector is kept at rest, then the state of
the detector ψD and the deformation of the field δφ(0) settle to an equilibrium
state where we say that no particles are being detected. The same situation
holds if the detector is in uniform motion, but the vacuum deformation δφ(v)

is different from δφ(0). If the detector accelerates, then the deformation δφ(0)

cannot change to δφ(v) immediately, and the difference shows up as quanta of

26
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the φ field. The new feature this time – not present in the bremsstrahlung
discussion – is that the detector is not an elementary particle. Instead, it can
interact with a φ quantum and get excited to a new internal state; we say that
this excitation corresponds to the detection of a φ particle by the detector. In
particular, the detector can get excited by the φ quanta that arise from the
difference between δφ(0) and δφ(v). Thus we say that an accelerating detector
sees φ particles even though we did not start with any φ particles in our state
|0〉M .

While this phenomenon looks straightforward enough, the surprise is in the
details of the detection rate. If the detector has a constant acceleration a, then
the φ quanta that it sees form a thermal distribution, with temperature

T =
a

2π
(4.2)

Moreover, this temperature can be related to the temperature we would at-
tribute to the Hawking radiation from a black hole, if we assumed that the hole
radiated thermally from a surface placed at the horizon. This relation between
the Unruh effect and black hole physics has led to an effort to relate the two
effects, and this effort in turn has led to deep puzzles about black holes. As we
will see, one of the lessons from the fuzzball paradigm is that these two effects
are not as closely related as had been imagined. Let us now look at these issues
in more detail.

4.1 The Rindler vacuum

Consider the Minkowski metric

ds2 = −dT 2 + dX2 + dY 2 + dZ2 (4.3)

We will let the acceleration be in the X direction; thus we just consider the T,X
plane in what follows. It is useful to recall Rindler coordinates which cover the
‘right wedge’ of the T,X Minkowski spacetime

T = r sinh t, X = r cosh t (4.4)

in which the metric becomes

ds2 = −r2dt2 + dr2 (4.5)

The trajectories r = r0 = const are depicted in fig.??; these are paths of con-
stant acceleration. To see this, note the proper distance along such a trajectory
is

dτ = r0dt (4.6)

The proper velocity has components

UT =
dT

dτ
=
dT

dt

dt

dτ
= cosh t, UX =

dX

dτ
= sinh t (4.7)
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The components of the acceleration are

aT =
dUT

dτ
=

1

r0
sinh t, aX =

dUX

dτ
=

1

r0
cosh t (4.8)

Thus
aµaµ = −(aT )2 + (aX)2 =

1

r2
0

(4.9)

Thus the magnitude of the acceleration is

a =
1

r0
(4.10)

Thus the acceleration is higher for smaller r0.
The Unruh computation showed that a detector moving along the trajectory

r = r0 picked up excitations as if it was immersed in a thermal bath with
temperature

T =
a

2π
=

1

2πr0
(4.11)

Thus the temperature becomes higher as we approach r = 0. Let us now see
how these observations relate to the black hole.

4.2 The near horizon region of the black hole

The metric of the Schwarzschild black hole is given by (??). We have already
seen in section ?? that in the region

r = 2M + ε, 0 < ε�M (4.12)

the metric of this hole looks like the metric of Minkowski space expressed in
Rindler coordinates

ds2 = −r2dt2 + dr2 + dy2
1 + dy2

2 (4.13)

where
r = (4.14)



Bibliography

29


