
Lecture notes 1

The no-hair theorem

1.1 The no-hair theorem

We have seen that the no-hair theorem of black holes is central to the information
paradox. This theorem says that the Schwarzschild metric

ds2 = −(1− 2M

r
)dt2 +

dr2

(1− 2M
r )

+ r2(dθ2 + sin2 θdφ2) (1.1)

gives the unique structure for the black hole. In other words, one cannot have
any deformations of the horizon.

From this description it may appear that the no-hair theorem is a classical
theorem; i.e., it says that the classical Einstein equations admit no deformation
of the classical metric (1.1). But this fact alone would not be very significant
for the information paradox. Hawking pairs are produced by a quantum effect
around the horizon of the metric (1.1). In deriving this pair creation, Hawking
assumed that the quantum state around the horizon was the same as the vacuum
state of empty spacetime. If we could have a different quantum state around the
horizon, then we would not be able to claim that the the state of the produced
pairs is necessarily the entangled state found by Hawking, and we would not be
able to argue that there is a paradox.

In this section we will see that quantum state around the metric (1.1) admits
no deformations, as long as assume the usual perturbative structure of quantum
field theory. This is the form of the ‘no-hair’ theorem that will be useful in
understanding the information paradox. Later, we will see how non-perturbative
effects in string theory violate the no-hair theorems, and allow a resolution of
the information paradox.

1.1.1 Quantizing fields around a star

Consider a scalar quantum field φ̂. In flat spacetime, we quantize this field by
taking a large box of volume V and setting periodic boundary conditions. This
gives the following expansion of φ̂ in modes

φ̂ =
∑
~k

(
f~k â~k + f∗~k â

†
~k

)
(1.2)

Here the functions
f~k =

1√
V
ei
~k·~xe−iωt (1.3)
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satisfy the wave-equation for the scalar field φ

�f~k = 0 (1.4)

The vacuum |0〉 is the state annihilated by all the â~k

â~k|0〉 = 0 (1.5)

We can add one particle of momentum ~k1 to this vacuum state by acting with
a creation operator

|ψ〉 = â†~k1
|0〉 (1.6)

We can add several particles by using multiple creation operators

|ψ〉 = â†~kn
. . . â†~k2

â†~k1
|0〉 (1.7)

The entire space of states near the vacuum state |0〉 can be obtained in this
way. What we cannot obtain this way are nonperturbative effects that generate
objects like topological solitons, but we normally assume that such objects have
a large energy, and so should not included in defining the class of states that
are ‘close’ to the vacuum.

Now consider a neutron star, which has a metric of the form

ds2star = −A(r)dt2 +B(r)dr2 + r2(dθ2 + sin2 θdφ2) (1.8)

When the metric of this star has settled down to the time independent form
(1.8), the quantum state around the star also settles down to a state that we
can call the vacuum state |0〉star. The quantum field φ̂ can again be expanded
in a manner similar to (1.2). But the coefficient functions f should now satisfy
the scalar waveequation �gφ = 0, where �g is the d’Alembertian operator on
a spacetime with metric ds2star. Since the star is spherically symmetric, it is
useful to use spherical polar coordinates, in which the f have the form

fnlm = fnlm(r)Ylm(θ, φ)e−iωt (1.9)

and the field φ̂ can be written as

φ̂ =
∑
n,l,m

(
fnlm ânlm + f∗nlm â

†
nlm

)
(1.10)

We again have
â~k|0〉star = 0 (1.11)

and we can add particles to the vacuum state by the action of creation operators

|ψ〉 = â†nklkmk
. . . â†n2l2m2

â†n1l1m1
|0〉star (1.12)

In this way we can explore the entire space quantum states close to the ground
state of the star.
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Figure 1.1: caption ...

At first it may seem that we will get a similar story for the black hole metric
(1.1). But here we have to contend with the singularity in the metric coefficients
at r = 2M . Wavefunctions of the form (1.9) which have a time dependence e−iωt
are called ‘stationary state wavefunctions’; since the time evolution for such
wavefunctions is just a change of overall phase, the probability density is time-
invariant. For the black hole, we have seen that in the interior region r < 2M
the light cones point inwards. If we assume that no effects can propagate outside
the light cone, then we find that everything moves inexorably towards smaller
values of r. Thus we do not expect to describe the interior region r < 2M by
stationary wavefunctions of the form (1.9).

Let us therefore restrict attention to the region outside the horizon r >
2M . What we will see now is that a stationary wavefunction in this region will
necessarily have a singularity in the limit r → 2M . This will mean that we
cannot find stationary wavefunctions to describe the quantum field around the
Schwarzschild hole. In consequence, we cannot act with creation operators to
make new states that are close to the vacuum. This is what makes the state
around the horizon unique.

To see the problem, consider a spherically symmetric wavefunction

f = f(r)e−iωt (1.13)

and examine it at a point r0 = 2M+ε just outside the horizon. We can set up a
local orthonormal coordinate system around this point. The relevant directions
are r, t, where the local coordinates will be

dt̃ = g
1
2
tt(r0)dt = (1− 2M

r0
)

1
2 dt ≈ (r0 − 2M)

1
2

(2M)
1
2

dt (1.14)

dr̃ = g
1
2
rr(r0)dr ≈ (2M)

1
2

(r0 − 2M)
1
2

dr (1.15)

The waveequation gives
∂2f

∂t̃2
=
∂2f

∂r̃2
(1.16)

with solutions of the form
f ∼ eiω̃(r̃−t̃) (1.17)
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With the above scaling of t, we have

ω̃2f =
∂2f

∂t̃2
=

2M

(r0 − 2M)

∂2f

∂t2
= − 2M

(r0 − 2M)
ω2f (1.18)

The local energy density ρ and pressure p are given by ω̃

ρ = p ∼ ω̃ ≈ (2M)
1
2

(r0 − 2M)
1
2

ω (1.19)

A stationary wavefunction is characterized by a definite value of ω. We then find
that the energy density and pressure of this wavefunction diverge as r0 → 2M .
Since the problem arises in a small neighborhood of the horizon, we are looking
at points very close to the horizon, it is easy to see that a similar analysis holds
for any other spherical harmonic Ylm. Thus there are no regular solutions f to
the waveequation �φ = 0.

We are therefore unable to write the field operator φ̂ in the form (1.10), and
so cannot find a set of stationary excitations of the form (1.12).

We considered a scalar field φ above, but a similar analysis can be done
for a vector field like the photon field Aµ, and again one finds no stationary
excitations of the vacuum. Most importantly, we can write the metric as

gµν = ḡµν + hµν (1.20)

where ḡµν is the Schwarzschild metric (1.1) and hµν is a small perturbation. We
can then regard hµν as a quantum field. If we explore the quantum states of
ĥµν , then we will explore the space of all perturbative quantum deformations of
the black hole. The waveequation for hµν is a little more complicated that the
one for a scalar φ, but in a suitable gauge it again reduces to the d’ Alembertian
operator acting on hµν , and we again find no stationary wavefunctions f that
are regular at the horizon.

To summarize, we can regard the stationary solutions f to an equation like
�φ = 0 in two different ways:

(i) As solutions to the classical wave equation. In the case of the graviton field
hµν , this will tell us that there are no small, time-independent deformations of
the metric (1.1) that give a smooth deformation of the horizon. In this classical
domain, one can make additional assumptions and prove that the metric (1.1)
is unique even if we allow deformations that are not small.

(ii) As a set of modes f that enter into the field expansion of a quantum
operator like φ̂. The nonexistence of regular, stationary solutions f then tell
us that the quantum state around the black hole cannot be altered to a nearby
stationary quantum state. Thus a black hole horizon will settle down to a
situation where the quantum state around the horizon is the vacuum state that
that Hawking used in his derivation of pair creation.
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What we will see later is that in string theory, the assumptions made in
the classical no-hair theorems turn out to be violated in string theory. As a
consequence a horizon never really forms, and then we are not forced to the
uniqueness of the quantum state near the surface of the hole.

1.1.2 Counting states
We have seen that there are no quantum states ‘near’ the standard vacuum
state for the region near the horizon of a black hole. But it is interesting that
if we had indeed been able to find regular solutions f to the waveequation, and
thus been able to construct new states of the form (1.12), then the number of
such states would have been of the correct order to account for the Bekenstein
entropy of the black hole. Let us review this estimate, since when we do find
‘hair’ for the black hole, a similar argument will tell us that the entropy of this
hair will naturally be of the correct order to account for the entropy of the hole.

Consider a scalar field φ, and recall the form (1.9) of the field modes f . In
the spherical harmonic Ylm, we have −l ≤ m ≤ l, so there are (2l+ 1) states for
each value of l = 0, 1, 2, . . . . The function Ylm oscillates as eimφ, so the angular
wavelength of oscillation is

∆φ ∼ 1

m
∼ 1

l
(1.21)

At the horizon radius rh = 2GM , this corresponds to a physical wavelength

λ ∼ rh∆φ ∼ rh
l

(1.22)

Suppose we allow all wavelengths upto the planck scale; i.e., λ & lp. This
corresponds to

l .
rh
lp
≡ lmax (1.23)

This number of Ylm in the range (1.23) is ∼ l2max. Suppose we take a take the
lowest allowed value of n in fnlm; this corresponds to deformations close to the
horizon. Let us assume that we have ∼ 1 excitations 0 or 1 quantum in each
mode â†nklkmk

; for simplicity let us just take the occupation numbers of the
modes to be 0 or 1. Then the number of allowed states is

N ∼ 2l
2
max (1.24)

and the entropy is of order

S = lnN ∼ l2max ∼ (
rh
lp

)2 ∼ A

G
(1.25)

where A ∼ r2h is the area of the horizon and G ∼ l2p. Thus we indeed recover
the Bekenstein entropy.

Even though we have found no regular modes f in the present treatment,
we will find structure at the horizon when we consider the fuzzball construc-
tion in string theory. What we will do is find analogues of the deformations
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fnlm for modes l = 0, 1, 2. . . . . We cannot reasonably hope to get an accurate
wavefunction for all the states of the hole; in fact we cannot write down all the
wavefunctions even for a planet like the earth, since the best we can do today
is write wavefunctions for molecules with a few atoms. But once we find that
the states analogous to the low angular harmonic modes are ‘fuzzballs’ with no
horizon, we can extrapolate the picture to one where the angular wavelength
becomes as small as the planck scale. This will again yield the estimate (1.25),
giving us a qualitative picture for the general states of the black hole.

1.1.3 Summary
Our discussion above addresses a common misconception about the no-hair
theorem. The proofs of many of the no-hair theorems were classical, so one
might think that the metric of the black hole is unique only at the classical level.
This would then seem to leave open the possibility that the hole could have many
different quantum states when we move away from the classical approximation,
and that the entropy of the hole would arise from these possibilities for the
quantum state. If such were the case, then the information of the hole would
reside near the horizon, and this information could be encoded in the radiation
from the surface of the hole. In that case here would be no information paradox.

But we see that the same functions f that give classical perturbative defor-
mations of fields around the hole, also serve to give the possible wavefunctions
that can be added to the hole to change its quantum state. The absence of
regular functions f then tells us that the quantum state of the hole is unique
around the horizon. Thus we need a nontrivial change in our picture of the hole
to resolve the information paradox. In string theory we will find that the hori-
zon does not really form; then it is indeed possible to have different quantum
states near the horizon, and these will account for the entropy of the hole.
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