
Lecture notes 1

The small corrections theorem

1.1 Overview

The fuzzball paradigm provides a clear and concrete resolution of the informa-
tion paradox. We have taken a consistent theory of quantum gravity – string
theory – and found by explicit computation that black hole microstates have
the structure of ‘fuzzballs’ where no traditional horizon exists. The fuzzball
radiates from its surface like any normal body, and there is no problem with
entanglement or information loss.

In spite of this success, many people were reluctant at first to accept the
fuzzball paradigm. Years of work with the traditional picture of the black hole
had led to a strong prejudice that the horizon should be a region where the local
quantum state is the vacuum. Further, many people working with standard gen-
eral relativity were reluctant to accept the additional structure – strings, branes
and extra dimensions - brought in by string theory. Without this additional
structure one does not get fuzzballs, and the natural conclusion is that black
hole evaporation leads to the information of the hole getting locked in a planck
mass ‘remnant’.

In string theory we believe that remnants do not exist. Many string theorists,
however, were also reluctant to accept that the nature of the horizon was severely
altered away from the vacuum. What then was their resolution of the puzzle?

We will see in this chapter that there was a pervasive belief that the puzzle
could be resolved through the cumulative effect of small corrections. In this
view the physics at the horizon can continue to be the physics of the local
vacuum at leading order. Quantum gravity effects will, however, lead to small
subleading effects to this vacuum dynamics. We know that the evaporation of
the hole involves a very large number of radiated quanta. It was hoped that
these small subleading effects would some how introduce ‘delicate correlations’
among all the quanta involved in the process, and that these small correlations
would resolve the information paradox.

In 2004 Hawking conceded that information was probably not lost in the
process of black hole evaporation, using a version of this small corrections ar-
gument. But most other relativists did not concur. Their belief was that if
we make a tiny change in the evolution at the horizon, then we will get only a
tiny change in the entanglement between the emitted quanta and the remaining
hole. How then could small corrections resolve the problem?

In 2009 a theorem was proved showing that the paradox cannot be resolved
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2 LECTURE NOTES 1. THE SMALL CORRECTIONS THEOREM

by the idea of small corrections. Thus to avoid the ever-increasing entanglement
between the radiated quanta and the hole, we will need corrections of order unity
to the low energy dynamics at the horizon. In other words, the horizon cannot
be local vacuum to leading order; we need a significant departure from the
traditional picture of the hole.

The proof of this theorem used a nontrivial tool from quantum information
theory: the strong subadditivity of quantum entanglement entropy. The power
of the theorem lies in its generality: given general assumptions like the usual
locality of interactions in situations with weak curvature, the theorem says that
small corrections cannot stop the entanglement from growing monotonically,
regardless of the nature or origin of these small corrections.

This theorem did much to put the idea of fuzzballs on a firm footing, and
increase its acceptance as the resolution of the paradox in string theory. After
all, if severe changes are needed at the horizon, and one has found that specific
states in the theory are fuzzballs which have no horizon, then it is reasonable
to accept that all states of the hole will have a similar nature.

We will describe the small corrections belief in some detail. Then we will ex-
plain the strong subadditivity relation, and sketch the proof of the small correc-
tions theorem. We will then discuss some misconceptions about the information
puzzle that relate in one way or another to the small corrections belief.

1.2 The origins of the small corrections belief

A black hole radiates energy, and in this regard seems like behave like any other
thermodynamic system. What can we say about information and entanglement
in usual thermodynamic systems?

Thermodynamic systems are large, in the sense that they have many degrees
of freedom. This leads to a principal characteristic of such systems: they obey
the law of large numbers. Consider a box of volume V , containing N atoms of
a gas at temperature T . Suppose we ask: what is the pressure P of this gas?
There are two ways of addressing this question:

(a) We consider the 3N degrees of freedom arising from the motion of the
N atoms, and compute the pressure they create.

(b) We use the ideal gas law PV = NkT and find the pressure P .

Clearly method (b) is the easier one to use. It gives an approximate answer,
which misses the detailed information contained in the full description (a). One
may say that the answer provided by (b) is a ‘corase-grained’ answer, while
‘fine-grained’ details can be obtained by doing the full computation (a).

All this is of course correct and well known. But it suggested the following
line of thought about black holes:

(a) Hawking took the classical metric of the black holes, and computed the
evolution of quantum modes on this metric to leading order. This computation
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leads to an ever growing entanglement between the emitted quanta and the
remaining hole, and therefore leads to a problem at the endpoint of evaporation.

(b) There can, however, be small corrections to Hawking’s leading order
evolution; such corrections may arise, for example, from quantum gravitational
effects. The correction to each created pair must be small, since we are assuming
the traditional picture of the hole to leading order. But the number of created
pairs N is very large; we have N ∼ (M/mp)

2.

(c) The small corrections can induce delicate correlations among this large
number of quanta. Near the endpoint of evaporation, we are required to do
the following computation. We have to look at the wavefunction of the entire
system: the quanta that have been radiated and their partners that fell into the
hole. We have to then find the entanglement between the quanta outside the
hole and everything that is inside the hole.

(d) It is possible that when we compute this entanglement, the small correla-
tions between all the quanta give rise to a significant correction to the entangle-
ment computed at leading order by Hawking. In fact, by the time we reach near
the endpoint of evaporation, the entanglement of the radiation with the remain-
ing hole might go to zero. In this case the hole can evaporate away completely,
with no violation of quantum mechanics: all the information in the matter which
initially made the hole would be encoded in the delicate correlations among the
emitted quanta, and there would be no troublesome entanglement of these ra-
diated quanta with a tiny remnant.

If the above scenario was correct, then there would be no information para-
dox in the first place. We would say that Hawking did a computation using
the evolution to leading order, but this was analogous to a ‘coarse-grained’ ap-
proximation in statistical physics. The ‘fine-grained’ details were hidden small
quantum correlations caused by subleading effects. When we take these small
corrections into account, the troublesome growth of entanglement vanishes.

This looks like an easy way out of the paradox. It is very appealing, in part
because there are so many possible sources of small corrections to the leading
order computation. How can we be sure that one or more of these will not
invalidate the original Hawking argument? To investigate the issue, let us begin
by formulating it in more mathematical terms.

1.2.1 A bit model for small corrections

We have modeled the emitted radiation quantum as having two states, |0〉 and
|1〉. At leading order we assumed that the vacuum at the horizon produces an
entangled pair of quanta. The emitted quantum is called b, and its partner that
falls into the hole is called c. The state of this entangled pair was modeled by

|ψ〉pair = |0〉b|0〉c + |1〉b|1〉c (1.1)
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In the leading order Hawking process, each pair is produced independently, in
the same entangled state |ψ〉pair. Thus the overall state of the entangled pairs
becomes

|Ψ〉 =
1√
2

(
|0〉b1 |0〉c1 + |1〉b1 |1〉c1

)
⊗ 1√

2

(
|0〉b2 |0〉c2 + |1〉b2 |1〉c2

)
. . .

⊗ 1√
2

(
|0〉bN |0〉cN + |1〉bN |1〉cN

)
(1.2)

The tensor product sign ⊗ tells us that the state of each pair is completely
uncorrelated with the state of all other pairs, in this leading order Hawking
computation.

Let us now allow for small corrections that do introduce correlations among
the pairs. Let the state of the first pair be

|ψ〉 =
1√
2

(
(1 + ε1)|0〉b1 |0〉c1 + (1− ε1)|1〉b1 |1〉c1

)
(1.3)

where the correction parameter is small

|ε1| � 1 (1.4)

The value of ε1 can depend on the initial matter that made the hole, so the
correction above helps the emitted quantum carry a small amount of information
about the hole.

The corrections to the second pair can depend on the initial matter that
made the hole, and also on the state of the first pair. Suppose the first pair was
created in the state |0〉b1 |0〉c1 . Then we let the state of the second pair be

|ψ〉 =
1√
2

(
(1 + ε2)|0〉b2 |0〉c2 + (1− ε2)|1〉b2 |1〉c2

)
(1.5)

If, on the other hand, the state of the first pair was |1〉b1 |1〉c1 , then we let the
state of the second pair be

|ψ〉 =
1√
2

(
(1 + ε3)|0〉b2 |0〉c2 + (1− ε3)|1〉b2 |1〉c2

)
(1.6)

Thus we have allowed the earlier created pair to influence the later pair through
a small correction in the state of the later pair. The overall state for both pairs
looks quite complicated

|Ψ〉 =
1√
2

(1 + ε1)|0〉b1 |0〉c1
( 1√

2

(
(1 + ε2)|0〉b2 |0〉c2 + (1− ε2)|1〉b2 |1〉c2

))
+

1√
2

(1− ε1)|1〉b1 |1〉c1
( 1√

2

(
(1 + ε3)|0〉b2 |0〉c2 + (1− ε3)|1〉b2 |1〉c2

))
(1.7)
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But all we need to note is that the number of correction parameters εi grows
very rapidly with the number of emission. After N steps of emission we have
2N−1 correction parameters in the state. Note that

2N = eN log 2 ∼ e
α
(

M
mp

)2

(1.8)

where α is order unity. Here we have recalled that the number of quanta emitted

by the hole is N ∼
(
M
mp

)2
.

This exponentially large number of correction parameters create an expo-
nentially large number of correction terms to the leading order state (??). Thus
to get an effect of order unity, it would appear that we can take each correction
term to be exponentially small; i.e., we can take

|εi| < ε, ε ∼ e−α
(

M
mp

)2

(1.9)

Corrections this small can of course have many sources. A simple one is is the
idea of nonperturbative quantum gravitational fluctuations of the black hole
metric. A full understanding of such effects would need a detailed computa-
tion in a full theory of quantum gravity, but we can estimate the order of the
corrections by a statistical argument using phase space arguments, as follows.

A black hole has a large number of states, given by Exp[Sbek(M)]. The
matter which made this black hole had, in comparison, a very low entropy,
Smatter(M), and therefore a small number of possible states Exp[Smatter(M)].
Suppose we ask for the probability P that the black hole change suffers a quan-
tum fluctuation to a state of ordinary matter. Then we may expect that

P ∼ eSmatter

eSbek
∼ e−(Sbek−Smatter) ∼ e−Sbek ∼ e

−4
(

M
mp

)2

(1.10)

This argument would suggest corrections of order ε ∼ P , which is is compatible
with the requirement (1.9) on the magnitude of these corrections.

It would therefore seem that there is no paradox at all; the black hole ge-
ometry is expected to have exponentially small corrections from its natural
quantum fluctuations, and these small corrections will induce subtle corrections
to the quantum state of the large number of created particles. Taking these
corrections into account would remove the large entanglement between the {bi}
and {ci} found in the leading order Hawking state (1.2), and would also encode
in the radiation the information about the initial matter which made the hole.

A version of this idea was suggested in [?]. In 2004 Hawking himself en-
dorsed a similar reasoning, using the language of Euclidean field theory. If we
rotate time to Euclidean signature, then the black hole is described by a smooth
instanton. But there are also instantons with larger action, which give expo-
nentially small subleading corrections to the full Euclidean path integral. Once
these subleading corrections were taken into account, the paradoxes created by
the leading instanton – the traditional black hole solution – would be removed.
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1.2.2 The counterargument
In 1996 Hawking and Kip Thorne had jointly taken a bet with John Preskill;
Hawking and Thorne maintained that information was lost in black holes, while
Preskill bet that when a final understanding of black holes was obtained, one
would find that quantum mechanics was preserved. Based on his argument
of 2004, Hawking conceded the bet to Preskill, sending him a set of sports
encyclopedias. But Thorne refused to concede the bet; after all no one had
shown that the small corrections do act in the required way to resolve the
paradox. In fact most relativists were unconvinced by Hawking’s 2004 argument.
Their belief can be summarized as follows. The leading order Hawking state
(1.2) exhibits an entanglement between the radiation and the hole of order
N ln 2. Suppose each step of emission had a small correction of order ε. Then
we should expect no more than a small reduction in the entanglement, say

N ln 2 → (1− ε)N ln 2 (1.11)

This small reduction in entanglement would not resolve the paradox, since we
need this entanglement to go to zero at the endpoint of evaporation.

These opposing views on the role of small corrections created a very strange
split in the field of black hole physics, for several years. Many relativists believed
that (1.11) was true. With traditional approaches to quantum gravity (i.e.,
without using the additional structure of string theory), they could find no way
to alter the vacuum nature of the horizon, and were therefore led to conclude
that black hole evaporation would lead to remnants. Many string theorists, on
the other hand, thought that the relations (1.9) and (1.10) implied that there
was no information puzzle; the hole could have the traditional vacuum horizon
to leading order, and yet completely evaporate away with no problem since
subleading corrections would remove the troublesome entanglement.

Interestingly, no one wrote down an explicit choice of the small parameters
{εi} which would remove the entanglement between the {bi} and {ci}. In 2009,
it was proved that no such choice exists; thus the intuition (1.11) is correct, and
small corrections do not resolve the information puzzle. This proof used a non-
trivial relation in quantum information theory, called the strong subadditivity
of quantum entanglement entropy.

We start with some definitions related to quantum entanglement, and then
note the strong subadditivity relation between entanglement entropies. We will
then use this relation to prove the ‘small correction theorem’, which shows that
small corrections can generate only a small reduction in entanglement.

1.3 Entanglement entropy

Consider two physical systems, A and B. We require that these systems be
disjoint; i.e, they are characterized by different degrees of freedom, though they
can interact with each other. An example would be two boxes, each filled with
a gas. The boxes can exchange heat energy, but the degrees of freedom for box
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A describe the atoms in box A and the degrees of freedom for box B describe
the atoms in box B.

We are interested in the overall state of the union of the two boxes; we will
call this system A + B. Let |ψ〉 be a possible state for system A and |χ〉 a
possible state for system B. The simplest state for A+B is of the type

|Ψ〉 = |ψ〉 ⊗ |χ〉 (1.12)

Such states are called factored states.
More complicated states can be obtained by taking linear superpositions of

factored states. Let the Hilbert space of A have dimension NA and the Hilbert
space of B have dimension NB . Let ψi, i = 1. . . . NA be an orthonormal basis
for A and χj , j = 1, . . . NB be an orthonormal basis for B. Consider a state of
the form

|Ψ〉 =

k∑
i=1

1√
k
|ψi〉 ⊗ |χi〉 (1.13)

with any k ≥ 1. This is called an entangled state: the state of A is entangled
with the state of B. A is in the state |ψi〉 if is in the state |χ1〉. A is in the
state |ψ2〉 if is in the state |χ2〉, and so on. We define a quantity Sent(A):
the entanglement of the system A with everything else; in the present case the
‘everything else’ is just the system B. The number of terms in the sum in (1.13)
is a measure of how entangled A is with everything outside itself, and for the
state (1.13) we will get

Sent(A) = ln k (1.14)

If k = 1 then we get the unentangled state (1.12), and then the above expression
gives Sent(A) = 0.

Note that in our situation (1.13) where the only degrees of freedom involved
are those in A and B, we also have

Sent(B) = ln k (1.15)

In general we have
Sent(A) = Sent(A

c) (1.16)

where Ac is the complement of A; i.e., the set containing all the degrees of
freedom in our total physical system, excluding the degrees of freedom in A.

We can of course write states more general than (1.13); the most general
state of A+B can be written as

|Ψ〉 =

NA∑
i=1

NB∑
j=1

Cij |ψi〉|χj〉 (1.17)

where we have dropped the symbol ⊗ for compactness of expression. The fact
that |Ψ〉 is normalized – 〈Ψ|Ψ〉 = 1 – gives

N∑
i,j=1

|Cij |2 = 1 (1.18)
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1.3.1 Density matrices
Suppose the system A + B is in the entangled state (1.17). Now suppose we
want to measure the expectation value of an operator ÔA which involves only
the degrees of freedom in A. Is there any simplification from the fact that ÔA
does not involve the degrees of freedom in B?

We have for the expectation value of ÔA

〈Ψ|ÔA|Ψ〉 =

NA∑
i′=1

NB∑
j′=1

NA∑
i=1

NB∑
j=1

C∗i′j′Cij 〈χj′ |〈ψi′ | ÔA |ψi〉|χj〉 (1.19)

Since there is no operator acting on the system B, the χ part of the dot product
gives a simple contribution

〈χj′ |χj〉 = δjj′ (1.20)
Thus we get

〈Ψ|ÔA|Ψ〉 =

NA∑
i′=1

NA∑
i=1

NB∑
j=1

C∗i′jCij 〈ψi′ | ÔA |ψi〉 (1.21)

We wish to extract from the full entangled state |Ψ〉 the part that is relevant to
operations acting on the degrees of freedom in A alone. To do this we define a
matrix ρ̂(A) as follows

(ρ̂(A))ii′ =

NB∑
j=1

C∗i′jCij (1.22)

The indices i, i′ range over 1, . . . NA, since they both refer to the system A. The
system B has been ‘traced out’ to leave us with a quantity that describes A
alone. In terms of ρ̂A we find

〈Ψ|ÔA|Ψ〉 =

NA∑
i′=1

NA∑
i=1

(ρ̂(A))ii′ 〈ψi′ | ÔA |ψi〉 (1.23)

The above relations can be written a little more compactly in terms of ma-
trices. Define the matrix Ĉ as (

Ĉ
)
ij

= Cij (1.24)

Then
ρ̂(A) = Ĉ†Ĉ (1.25)

Note that
Trρ̂ = 1 (1.26)

where the trace is only over the Hilbert space of A since ρ̂ is an operator taking
states of A to states of A. The expectation value (1.23) becomes

〈ÔA〉 = Tr
[
ρ̂A ÔA

]
(1.27)

where again that trace is only over the states of A.
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1.3.2 Entanglement entropy

We can now get a give a full characterization of entanglement. The entanglement
of A with the remainder of the system is given by the entanglement entropy of
the set A, defined as

Sent(A) = −Tr [ρ̂ ln ρ̂] (1.28)

This expression may look complicated in terms of the definition of ρ̂ in (1.22).
It turns out however that the form of the state |Ψ〉 in (1.17) can be simplified by
a change of basis. While it is not immediately obvious, it can be shown that one
can make an appropriate choice of orthonormal basis for A and an appropriate
choice of orthonormal basis for B so that Ψ〉 can be written as

|Ψ〉 =

N∑
i=1

Ci|ψi〉 ⊗ |χi〉 (1.29)

where
N = Min (NA, NB) (1.30)

With this choice of basis, we get

Sent(A) = −
N∑
i=1

|Ci|2 ln |Ci|2 (1.31)

When two large systems A amd B are allowed to interact with each other,
then the overall state of A + B tends towards one of maximal entanglement.
This happens on purely entropic grounds: there are more states that are highly
entangled than states that are less entangled. A maximally entangled state of
A+B has the form Take example of maximally entangled state

|Ψ〉 =

N∑
i=1

1√
N
|ψi〉 ⊗ |χi〉 (1.32)

Thus the number of terms in the sum is the maximal possible, and each term
has the same coefficient. This state has the form (1.13), so let us check that we
reproduce (1.14) from our general expression (1.28). We have

Ĉ = diag{ 1√
N
, . . .

1√
N
} (1.33)

ρ̂(A) = Ĉ†Ĉ = diag{ 1

N
, . . .

1

N
} (1.34)

and we get

Sent(A) = −Tr ρ̂ ln ρ̂ = −
N∑
i=1

1

N
ln

1

N
= lnN (1.35)
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1.3.3 Properties of entanglement entropy
As we have already noted, by its very definition the entanglement entropy of a
set A is the same as the entropy of the complement of A

Sent(A) = Sent(A
c) (1.36)

Consider two disjoint systems A and B, but also allow these to be entangled
with a third system C. (We can call C a ‘heat bath’ that is interacting with A
and B.) Then we have the subadditivity relation

Sent(A+B) ≤ Sent(A) + Sent(B) (1.37)

Note that if there was no system C, then by (1.36) we would get Sent(A+B) = 0,
and the inequality would be trivial.

We also have the ‘triangle inequality’

Sent(A+B) ≥
∣∣∣Sent(A)− Sent(B)

∣∣∣ (1.38)

The relation we will really be using is called the strong-subadditivity of quan-
tum entanglement entropy. Consider three disjoint systems A,B,C, entangled
with a fourth system D. Then

Sent(A+B) + Sent(B + C) ≤ Sent(A) + Sent(C) (1.39)

Again, we note that even though the relation involves only A, B and C, it would
be trivially true if there were no system D; this is because in that case (1.36)
would give Sent(A+B) = Sent(C) and Sent(B + C) = Sent(A).

1.4 Proof of the small corrections theorem

We can now return to our goal: to prove that small corrections to the leading
order Hawking state (1.2) cannot remove the growing entanglement between the
emitted radiation and the remaining hole.

Consider first the entanglement in the leading order state (1.2).

(a) Let the quanta emitted in emission steps 1, 2, . . . N be denoted {b1, b2, . . . bN} ≡
{b}. The entanglement of the radiation with the hole at step N is then

SN = S({b}) (1.40)

where S(A) for any set A denotes the entanglement of A with the remainder of
the system.

(b) The bits in the hole evolve to create an ‘effective bit’ bN+1 and an
‘effective bit’ cN+1. (The bit bN+1 has not yet left the region r < 10M .) The
entanglement of the earlier emitted quanta {b} does not change in this evolution.
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(If two parts of a system are entangled, and we make a unitary rotation on one
part, the entanglement between the parts does not change.)

(c) The effective bits bN+1, cN+1 must approximate the properties of the
Hawking pair (??). In (??) we have S(bN+1, cN+1) = 0, since the pair is not
entangled with anything else. We also have S(cN+1) = ln 2. Thus for our model
we must have

S(bN+1 + cn+1) < ε1 (1.41)

S(cN+1) > ln 2− ε2 (1.42)

for some ε1 � 1, ε2 � 1.

(d) The bit bN+1 now moves out to the region r > 10M . The value of Sent
at timestep N + 1 is

SN+1 = S({b}+ bN+1) (1.43)

since now bN+1 has joined the earlier quanta {b} in the outer region r > 10M .

(e) We now recall the strong subadditivity relation

S(A+B) + S(B + C) ≥ S(A) + S(C) (1.44)

We wish to set A = {b}, B = bn+1, C = cN+1. We note that these sets are
made of independent bits: (i) The quanta {b} have already left the hole and are
far away (ii) The quantum bn+1 is composed of some bits, but as it moves out
to the region r > 10M , it is independent of the bits remaining in the hole and
also the bits {b} (iii) The quantum cN+1 is made of bits which are left back in
the hole. Applying the strong subadditivity relation, we get

S({bi}+ bN+1) + S(bN+1 + cN+1) ≥
S({bi}) + S(cN+1) (1.45)

Using (1.41),(1.42),(1.43) we get

SN+1 > SN + ln 2− (ε1 + ε2) (1.46)

Thus for ε1, ε2 � 1, the entanglement keeps growing in the manner of fig.??(b)
and cannot behave like that of a normal body (fig.??(a)).

Thus we conclude that having an ‘approximate emergent space-time’ instead
of the smooth space-time used in Hawking’s original calculation [?] does not
resolve the information paradox.
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