
TOPIC IV

STRING THEORY

General relativity is a beautiful, complete theory of gravity. It agrees well with
observations. For example it predicts the correct precession of the orbit of
Mercury, and its prediction of a ‘big bang’ is verified by the observation of the
cosmic microwave background. We will now seek to extend this theory, adding
new features to reach string theory. But these additional features have not been
observed as yet; in fact they may not be observable for several decades to come.
So a natural question to ask is: why should we consider string theory?

General relativity as formulated by Einstein is a classical theory; it does not
incorporate the ideas of quantum mechanics. Electrodynamics as formulated by
Maxwell was also a classical theory, but some effort yielded a natural quantum
extension, called quantum electrodynamics. Other fundamental interactions –
the weak and the strong force – were also naturally obtained as fully quantum
theories, with a structure entirely analogous to quantum electrodynamics. But
with gravity the situation turned out to be very different, and attempts to
extend gravity to a quantum theory met with repeated failure.

We will see below that this failure is due to the fact that gravity is essentially
different in nature from other interactions; it is mediated by a particle – the
graviton – which has spin 2 rather than spin 1. Particles of spin 2 lead to
a strong divergence in quantum ‘loop diagrams’; a divergence that cannot be
renormalized away as is done in theories where the interaction is mediated by
spin 1 particles. After some years of effort is was realized that this divergence is
a robust feature of the spin 2 interaction, and fundamentally new ideas would
be needed to eliminate it and get a sensible theory.

String theory is a natural and beautiful extension of general relativity, where
the troublesome divergence gets automatically removed. We will see that the
classical gravity theory exhibits certain discrete symmetries, called T and S
duality. If we require that these symmetries persist in the full quantum theory,
then we are led to a unique theory – string theory. The string of string theory
has a natural symmetry of its own, called modular invariance, and it is this
symmetry that leads to a removal of the pesky divergence.
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At first it seems we have paid a heavy price for quantizing the theory in this
way. We see 3+1 spacetime dimensions around us, but string theory is consis-
tent only in 9+1 spacetime dimensions. Thus we have to imagine that 6 extra
directions are curled up into circles that are too small to resolve with current
experiments. Further, we have traditionally thought of elementary particles as
being pointlike. In string theory we do have pointlike particles, but we also have
extended objects, like strings and branes.

But remarkably, these curious features of the theory are exactly the ones
that will lead to a resolution of all our puzzles with black holes. Black holes
have an entropy that is much larger than the entropy of normal matter. But
we will see that this entropy is exactly reproduced when the energy of the black
hole is put into extended objects instead of point particles. Further, we will see
that these extended objects stretch and grow in size as their energy content is
increased; this makes the black hole swell into a fuzzball, a structure with no
horizon. The fuzzball radiates energy from its surface like any other normal
body, and we avoid the information paradox.

These successes with black holes are closely tied to the remarkable unique-
ness of the theory. Usual theories of particle physics allow a fair bit of latitude
in our choice of particle content, particle masses and interaction strengths. But
in string theory properties of the elementary objects and their interactions are
completely fixed; any alteration leads to a breakdown of consistency of the quan-
tum theory. Because of this uniqueness, one gets a definite prediction for the
microscopic entropy of black hole; this is now just the logarithm of the number
of states of strings and branes that can be made with a given energy. This
microscopic entropy is found to agree perfectly, including its overall numerical
coefficient, with the Bekenstein entropy of the hole predicted by thermodynam-
ics. A similar situation holds for the fuzzball construction. If we try to make a
fuzzball solution using incorrect numbers – for example a wrong value for the
tension of the string – then the resulting fuzzball will exhibit pathologies like
naked singularities or closed timelike curves. But with the uniquely predicted
properties of strings and branes, the fuzzballs are regular quantum solutions
of the theory, radiating energy in a way that is in exact agreement with the
prediction of thermodynamics.

In our discussion below, we will not follow the historical development of
string theory. Instead we will start by examining the symmetries of classical
gravity theory. We will see how requiring these symmetries at the quantum
level forces us to the rigid structure of string theory, with its definite particle
properties and interactions. Knowing these details will then set the stage for
us to understand the structure of black holes in the theory, and the consequent
resolution of the information paradox.
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Extra dimensions

We begin by taking a look at the idea of extra dimensions. This idea precedes
string theory; in fact it has been the central tool in most proposals that seek to
unify the fundamental forces of nature.

1.1 How gravity differs from other interactions

From the earliest days of physics, there has been a desire to unify different
phenomena into a unique overall theory. Two of the most basic interactions in
nature are the force of gravity and the force of electrostatics. At a classical,
nonrelativistic level, these forces appear very similar:

~Fgravity = −Gm1m2

r2
r̂ (1.1)

~Felectrostatics =
k q1 q2
r2

r̂ (1.2)

Both are inverse square law forces. But gravity is attractive when both masses
have their natural positive value, while the electrostatic force is repulsive be-
tween like charges. We now know that this difference signals a very deep dif-
ference between the two forces. This difference will become manifest when we
incorporate relativistic effects, and will be even more significant in the develop-
ment of the corresponding quantum theories.

The electromagnetic interaction is mediated by a spin 1 particle – the photon
– written as Aµ. The single vector index µ corresponds to the index carried by
the electromagnetic current Jµ. The interaction is described by a Lagrangian
of the form

Lint ∼
∫
AµJ

µ (1.3)

The index carried by Aµ allows the contraction of indices which makes the
Lagrangian density a scalar, as it should be.

Fig.?? shows the trajectories of two charged particles, each of which can be
thought of as defining a ‘current’. The interaction (1.3) causes the first particle
to emit a photon, and the same interaction causes the second particle to absorb
the photon. This exchange of a photon leads to the electromagnetic interaction
between the two particles.

The component J t encodes the charge q of a particle, and the components
~J = {Jx, Jy, Jz} encode the flow of this charge. In the nonrelativistic limit,

3



4 LECTURE NOTES 1. EXTRA DIMENSIONS

we can think of the particles as being essentially stationary, and then they
are described only by their charges qi. This gives the interaction Felectrostatic
in (1.2). (The motion of the charges generates magnetic interactions, which
are much weaker than the electrostatic one when all speeds are nonrelativistic:
vi � c.)

The situation would have been similar with gravity, if we could just replace
the charges qi by masses mi. But it turns out that the gravitational interaction
is proportional to the energy E rather than the mass m. In the nonrelativistic
limit E ≈ m, and we recover the interaction Fgravity in (1.2). But the difference
between E and m is clearly visible when we consider the effect of gravity on
photons. Astrophysical observations show that light is deflected by gravity; this
is seen for example in the phenomena of gravitational lensing. Photons have
m = 0, but E 6= 0, so we see that the gravitational interaction notices E rather
than m.

But E is not a scalar; it is the time component of a 4-vector pν . So the
scalar charge q gets replaced by a vector pν . This fact brings in an extra index
ν, so that the current Jµ gets replaced by an object Tµν called the ‘stress-
energy tensor’ or the ‘energy-momentum tensor’. Correspondingly, the spin 1
photon Aµ gets replaced by by a spin 2 graviton hµν . At linear order in hµν the
interaction Lagrangian has the form

Lint =
1

16πG

∫
hµνT

µν (1.4)

The component Tµν of the energy-momentum tensor describes the flow of the
ν component of the 4-momentum in the spacetime direction µ. One can show
that the energy-momentum tensor is symmetric

Tµν = T νµ (1.5)

Thus we can take hµν to be symmetric as well. This accords with the fact that
the graviton can be thought of as the perturbation of the metric

gµν = ηµν + hµν (1.6)

since the metric is naturally symmetric by its definition. The relation (1.6)
relates the description of gravity through the exchange of gravitons to our earlier
discussion of gravity as a curvature of spacetime.

1.2 Unifying gravity and electromagnetism

Is there any way to unify the electromagnetic theory, which is described by a
spin 1 field Aµ, with the gravitational theory which is described by a spin 2 field
hµν?

Soon after the advent of general relativity, Kaluza proposed an ingenious way
to effect such a unification. Our usual 3+1 dimensional spacetime is described
by coordinates x0, x1, x2, x3. But suppose there is an additional space direction,



1.2. UNIFYING GRAVITY AND ELECTROMAGNETISM 5

which we will call x5. We use indices µ, ν, . . . to range over the usual dimensions
0, 1, 2, 3 and the indices A,B, . . . to range over all dimensions 0, 1, 2, 3, 5. The
unperturbed metric then has the form

ηAB = diag{−1, 1, 1, 1, 1} (1.7)

A small perturbation to this 4+1 dimensional metric will have the form

gAB = ηAB + hAB (1.8)

The information in this metric can be decomposed into the following parts:

(i) The components
gµν = ηµν + hµν (1.9)

with µ, ν = 0, 1, 2, 3 are correct in number to describe the metric in 3+1 dimen-
sions.

(ii) The components
g5µ = gµ5 ≡ Aµ (1.10)

are correct in number to describe the electromagnetic field in 3+1 dimensions.

(iii) The component
g55 ≡ 1 + C (1.11)

describes a scalar field C in 3+1 dimensions.

Thus we seem to get a beautiful unification of gravity and electromagnetism.
In the process we get a scalar ‘matter’ field C as well. Let us see where this line
of thought takes us.

1.2.1 Compactification of extra dimensions

A natural question at this stage is: if there is a fifth dimension x5, then why
don’t we see it, the same way we see the other space directions x1, x2, x3?

The simplest answer is to assume that the direction x5 is small. Instead of
taking the direction x5 to be an infinite line, we can take x5 to be a circle of
radius R. If R is very small, then our experiments of today cannot resolve this
circle, and we do not see it as a new direction. But we still get new components
of the metric like g5µ = Aµ and g55 = 1 + C, so we do get the electromagnetic
field and the scalar matter field. Since the direction x5 is now finite in extent
(rather than infinite), we call it a ‘compact’ direction. We say that the full
4+1 dimensional theory has been ‘compactified’ on a circle S1 down to 3+1
dimensions.

This compactification solves another issue as well. We want the fields hµν , Aµ, C
as fields on 3+1 dimensional spacetime. Thus they should be functions of
x0, x1, x2, x3. but not depend on x5. How can such a requirement be natu-
ral?
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In the classical theory, making x5 compact does not imply that the gAB are
independent of x5; all that is required is that the functions have the correct
periodicity:

gAB(x5 + 2πR) = gAB(x5) (1.12)

But now consider the quantum theory. For convenience, we restrict attention to
the single direction x5. A particle is now described by a wavefunction ψ, which
must have the above periodicity

ψ(x5 + 2πR) = ψ(x5) (1.13)

The allowed wavefunctions then have the form

ψn = ein
x5

R , n = 0,±1,±2, . . . ... (1.14)

The momentum pn of such a wavefunction is given by the relation

p̂ψn = −i ∂
∂x5

ψn =
n

R
ψn ≡ pnψn (1.15)

giving
pn =

n

R
(1.16)

A quantum wavefunction describes the state of some particle in the theory.
Suppose this particle had a mass m. Then the momentum (1.16) would imply
an energy

En =
√
p2n +m2 =

√
n2

R2
+m2 ≥ |n|

R
(1.17)

Suppose R is much smaller than the wavelengths λ that we encounter in the lab.
Then En will be larger than the energies that we can access in our experiments,
except for the case n = 0. But n = 0 corresponds to the wavefunction ψ0 = 1, so
this wavefunction is independent of x5. Thus our requirement that gAB do not
depend on x5 is automatically satisfied when we work at energy scales E � 1/R.

1.3 The scalar C

So far we have written G55 = 1 +C and assumed that C was small. Let us now
allow G55 to be arbitrary. Note that G55 is a positive number, since it gives the
length squared of a spacelike direction. We can incorporate this positivity by
writing

G55 = eC (1.18)

For small C, we recover our earlier approximation G55 + 1 + C.
Let us assume for simplicity that

g5µ = gµ5 = 0 (1.19)



1.4. RESCALED METRICS 7

Then the metric has the form

gAB =


 gµν

 0

0 g55

 (1.20)

While the form of the metric puts gµν and g55 into different blocks, these two
parts of the metric do not actually decouple in the dynamics. This dynamics is
governed by the Einstein action

S =
1

16πG

∫
d5x
√
−g5R5 (1.21)

where g5 is the determinant of the 5-dimensional metric gAB and R5 is the
curvature scalar this full metric. We see that

√
−g5 =

√
−g4e

C
2 (1.22)

But the curvature scalar R5is a given by a very nonlinear expression in terms
of the components gAB , and R5 does not separate into an Einstein Lagrangian
R4 describing the dynamics of the components gµν and an action for the scalar
C.

Interestingly, though, a slight redefinition of variables does effect such a
separation. Define for the directions x0, x1, x2, x3 a ‘rescaled’ metric

gEµν = eCgµν (1.23)

We can perform some algebraic manipulations to change variables from gµν to
gEµν in the action S; we can also do an integration by parts to put the resulting
action in standard form. These steps are detailed in Appendix ??. We find after
these steps

S =
1

16πG

∫
d4x
√
−gE4

(
RE4 −

1

2
∂µC∂

µC

)
(1.24)

Here gE4 is the determinant of the 4-d metric gEµν , the curvature scalar RE4 is
computed using this same 4-d metric, and the indices in ∂µC∂

µC are raised
with this metric as well. Since the gravity part of the action has taken the
standard form of the 4-d Einstein metric with this choice of variables, we call
the rescaled metric (1.21) the Einstein metric of the 4-d theory which is obtained
by dimensional reduction from 5-d.

1.4 Rescaled metrics

The idea of defining rescaled metrics will be very useful in string theory. So let
us pause for a moment to consider this idea in more generality.

When we have a scalar present in our theory, a natural question arises about
the definition of the metric. The metric tensor gµν is a symmetric tensor with
two indices. But so is

g̃µν = eαCgµν (1.25)
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for any choice of α. Can we not think of g̃µν as the metric instead of gµν?
We have seen that one use of defining a rescaled metric like (1.23) is in the

context of dimensional reduction: the rescaling allows us to decouple the action
for the scalar C from the metric of the remaining directions. But this is not the
only use of rescaled metrics. In our overview of general relativity, we had found
two different equations involving the metric:

(a) Given a spacetime with metric gµν , the paths of particles on this space-
time were given by the geodesics of this metric; i.e., the paths with extremal
length when length was measured using this metric.

(b) Given sources carrying energy momentum Tµν on our spacetime, the
metric was determined by extremizing the Einstein action

S =
1

16πG

∫
dDx
√
−gR (1.26)

where we have set the spacetime dimension to be a general integer D.

In string theory, there are many different objects – gravitons, strings, branes
etc. Consider any one object, say the string. Then it may be that the motion of
this string in spacetime is most conveniently described not by using the metric
gµν , but by using a scaled metric (1.25), with an appropriate choice of α. This
scaled metric will then be called the ‘string metric’.

But if we use this string metric , then the action does not have the simple
Einstein form. Thus we often have a choice: we can choose the rescaling (1.25)
to make the motion of a chosen object (like a string) look simple, or we can
choose the rescaling to make the gravity action simple. What we will now do,
however, is focus on a third aspect: with a certain choice of rescaling, we can
exhibit important symmetries of the gravity action.
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T-duality

In this chapter we observe some very interesting symmetries of solutions of gen-
eral relativity, in the situation where we have one or more extra dimensions.
These symmetries are symmetries of the classical Einstein equations. If we re-
quire them to be symmetries of the full quantum theory, then we find a unique
structure emerges for this quantum theory; this unique theory of quantum grav-
ity is string theory.

2.1 The symmetry with one scalar

Consider again the action (1.24):

S =
1

16πG

∫
d4x
√
−gE4

(
RE4 −

1

2
∂µC∂

µC

)
(2.1)

This action has an obvious symmetry

C → −C
gEµν → gEµν (2.2)

Note that C appears in the metric in the form g55 = eC , and g55 itself appears
in a very nonlinear way in the 5-d Einstain action. Thus the symmetry (2.2) is
a very intersting one. When placed in the appropriate context in string theory,
this symmetry will be called S-duality.

At the level of the action (2.1) this is a symmetry at the classical level. But
it is tempting to require that this symmetry should persist in some way to a
symmetry of the full quantum theory. It is requirements like this that will lead
us to a very rigid and elegant structure to our quantum gravity theory, so that
we will arrive at string theory.

Keeping string theory in mind, let us note the analogue of (2.1) for an
arbitray number of spacetime dimensions:

(i) Start with D+ 1 dimensional spacetime, where the dynamics is given by
the Einstein action

S =
1

16πG

∫
dD+1x

√
−gD+1RD+1 (2.3)

9
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(ii) Compactify the direction xD+1 on a circle

0 ≤ xD+1 < B (2.4)

with
gD+1,D+1 = eC (2.5)

We will assume that the metric components do not depend on xD+1. For sim-
plicity, we also assume that gD+1,µ = gµ,D+1 = 0, for µ = 0, 1, . . . D − 1.

(iii) We define
gEµν = e

1
D−2C (2.6)

After the steps detailed in Appendix ??, we find

S =
B

16πG

∫
dDx

√
g
(D)
E

(
R

(D)
E − (D − 1)

4(D − 2)
C,cC

,c

)
(2.7)

which again has the symmetry (2.2).

2.2 The symmetry with two scalars

Let us see if we can get more symmetries of this kind. Extending the idea above,
we can compactify two directions. This will yield two scalars C, C̃, which will
describe the sizes of these two compact circles. We can then look for a linear
map on C, C̃ that will leave the overall action unchnaged.

We proceed in the following steps:

(i) Start with D+ 1 dimensional spacetime, where the dynamics is given by
the Einstein action

S =
1

16πG

∫
dD+1x

√
−gD+1RD+1 (2.8)

(ii) Compactify the direction xD+1 on a circle

0 ≤ xD+1 < 2πR (2.9)

with
gD+1,D+1 = eC (2.10)

We will assume that the metric components do not depend on xD+1. For sim-
plicity, we also assume that gD+1,µ = gµ,D+1 = 0, for µ = 0, 1, . . . D − 1.

(iii) The metric in the remainingD dimensions is gµν , with µ, ν = 0, 1, . . . D−
1. Define a rescaled metric

gSµν = eαCgµν (2.11)
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where the constant α will be determined by requirements that we will place
below.

(iv) Now compactify a second direction xD−1 on a circle

0 ≤ xD−1 < A (2.12)

with
gSD−1,D−1 = eC̃ (2.13)

Again, we assume that the metric components do not depend on xD−1. For
simplicity we also assume that gSD−1,i = gSi,D−1 = 0, for i = 0, 1, . . . D − 2.

Note that A is a quantity with units of length, but it is not the actual length
of the xD−1 circle. The physical length of this circle involves the metric. If we
use the string metric gSµν to measure lengths, then the length of this circle is

L̃ = e
C̃
2 A (2.14)

Thus we have two scalars C and C̃, as well as the metric gij describing the
remaining D − 1 directions, with i, j = 0, 1, . . . D − 2.

Now we look for a symmetry similar to (2.2):

C̃ → a C̃ + bC

C → c C̃ + dC

gSij → gSij (2.15)

That is, we look for choices of the 5 parameters α, a, b, c, d such that under the
map (2.15) the action (2.8) remains invariant.

The relevant algebra is given in Appendix ??. One finds that the following
choice of parameters indeed gives a symmetry:

α =
1±
√
D − 1

D − 2
, a = −1, b = 0, c = ∓ 2√

D − 1
, d = 1 (2.16)

Let us work with the upper sign; the lower sign will be related to this choice by
a simple transformation. The symmetry is then

C̃ → −C̃

C → C − 2√
D − 1

C̃

gSij → gSij (2.17)

where the ‘string metric’ gSµν is defined by

gSµν = e(
1+
√
D−1

D−2 )Cgµν (2.18)

Placed in its appropriate context in string theory, this symmetry will be called
T-duality. Let us look at the nature of this symmetry more closely.



12 LECTURE NOTES 2. T-DUALITY

2.3 Making T-duality a symmetry of the quan-
tum theory

The T-duality symmetry (2.17) maps C̃ to −C̃. The new length of the xD−1
circle is

L̃′ = e−
C̃
2 A =

A2

L̃
(2.19)

where the constant A2 supplies a quantity with the correct units to allow the
inversion of the length L̃. Note that the quantity C changes as well under the
duality (2.17). We will return to this change later, and focus on (2.19) for
the moment. We depict the inversion of L̃ in fig.??; where the xD−1 circle was
large, it becomes small, and where it was small, it becomes large. Given the very
nonlinear nature of the gravity action (2.8), it is interesting that a solution of
the form fig.??(a) can be altered to yield another solution of the form fig.??(b).

The symmetry (2.19) is a symmetry of the classical action (2.8). But given
its simplicity and elegance, one may want to have it as a symmetry of the full
quantum theory of gravity. Is this possible?

Having a symmetry that relates the spacetimes of fig.??(a) and (b) means
that by no experiment should we be able to distinguish which of these two
manifolds we have. But using quantum mechanics, we can easily devise an ex-
periment that will differentiate these two manifolds. Consider the marked circle
in fig.??. In case (a), this circle has length L̃. Any theory of quantum gravity
contains one massless particle: the graviton, which arises from the quantization
of the gravitational fluctuations hµν . Suppose we look at the wavefunctions
that we can have for this graviton on a circle of length L̃. By (??) the energy
spectrum of such graviton state is given by

En =
2π|n|
L̃

(2.20)

Thus the spacing between energy levels is ∆E = 2π/L̃.
But if we make the map (2.19), then the length of our circle changes, and

the energy spectrum on of the graviton becomes

En =
2πn
A2

L̃

=
2πnL̃

A2
(2.21)

Now the spacing between energy levels is ∆E = 2πL̃/A2.
The spacing between energy levels is a measurable quantity in quantum

theory. So we can distinguish between the cases (a) and (b) in fig.?? once we
include quantum mechanics, even though these two cases were mapped into each
other by an exact symmetry in the classical theory.

Suppose however that we wish to have our T-duality symmetry persist at
the quantum level as well. Can we modify the theory in any simple way to
achieve this?
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In case (a), the energy spacing (2.20) decreases as L̃ is increased, with the
falloff ∼ 1/L̃. This is natural for wavemodes of a massless particle; longer L̃
means longer wavelengths, and longer wavelengths mean smaller energy. By
contrast the energy spacing in (2.21) grows linearly with L̃. Is there any object
whose energy grows with L̃?

Consider an elastic band. Let the band have tension T ; i.e., the energy
required to stretch the band by length ∆l is

∆E = T∆l (2.22)

We assume that the band has a relaxed length of zero, and that T remains the
same, regardless of how much we stretch the band.

Now suppose we wrap such a band around the circle in fig.??(a). The length
of this circle is L̃, so the energy of this wrapped band will be

E = T L̃ (2.23)

We can wrap the bandm times around our circle before gluing its ends together;
then the energy will be

E = |m|T L̃ (2.24)

Here positive values of m correspond to winding one way around the circle, and
negative values to the opposite way of winding around the circle.

The energy spectrum (2.24) looks a lot like (2.21), the spectrum we would get
after the duality map. To make use of this observation, we make the following
modification to our theory of gravity:

(i) We have as usual the graviton in our theory. Wavefunctions of the gravi-
ton on a circle of length L̃ give the energy levels

En =
2π|n|
L̃

(2.25)

(ii) We also assume that there is a string in our theory. This string behaves
like an elastic band with relaxed length zero and a constant tension T . Wrapping
this string m times around the circle of length L̃ gives the energy levels

Em = |m|T L̃ (2.26)

(iii) Thus the overall spectrum of excitations in the theory with a compact
circle of length L̃ is

Emn =
2π|n|
L̃

+ |m|T L̃ (2.27)

(iv) Now suppose we make a T-duality transformation which changes the
length of the circle as follows:

L̃ → L̃′ =
A2

L̃
(2.28)
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Then the graviton modes will give the energy levels

E′n′ =
2π|n′|
L̃′

(2.29)

and the winding modes of the string will give

E′m′ = |m′|T L̃′ (2.30)

Thus the overall spectrum of excitations will be

En′m′ =
2π|n′|
L̃′

+ |m′|T L̃′ =
2π|n′|L̃
A2

+
|m′|TA2

L̃
(2.31)

(v) If the T-duality map (2.28) is to be a symmetry of the quantum the-
ory, then the excitation spectrum (2.27) should be the same as the excitation
spectrum (2.31). This can be achieved if we set

m′ = n

n′ = m

T =
2π

A2
(2.32)

In other words, the overall spectrum of the circle with length L̃ is now the same
as the overall circle with length A2

L̃
. When we change the length of the circle, we

must also interchange the ‘momentum modes’ (2.25) with the ‘winding modes’
(2.26). The dynamics of a quantum system is completely specified by its energy
levels, so we see that the circe of length L̃ cannot be distinguished from the circle
with length A2

L̃
. Thus introducing the string in our theory saves the T-duality

symmetry of the classical theory from breaking down at the quantum level.
We see that the quantity A has a very fundamental role to play in the

definition of T-duality. It is conventional to write

T =
2π

A2
=

1

2πα′
(2.33)

where

α′ =

(
A

2π

)2

(2.34)

is a quantity with units of length squared. We also write

α′ = l2s (2.35)

and call ls the string length. The reason for this nomenclature is the following.
We have assumed that the string is like an elastic band, with relaxed length
zero. But quantum fluctuations cause the string to attain a minimal nonzero
length, which as we will see is ∼ ls. Thus we can think of ls as setting the length
scale where string theory becomes relevant.
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Exploring the string

We have seen that classical gravity has a symmetry called T-duality. Requiring
that the quantum theory possess this symmetry implies the existence of a string
in the theory. Let us explore the properties of this string.

3.1 The action for the string

The configuration where a string is just wrapped on a circle is one of the simplest
configurations that we can imagine for the string. But the general configuration
looks much more complicated, where different parts of the string stretch and
contract, keeping the string in constant movement. How should we describe this
dynamics?

A point particle of mass m in general relativity has a very simple action

S = −m
∫
dτ (3.1)

where dτ is the proper time along an infinitesimal section of the worldline. The
string is a 1-dimensional object, and so sweeps out a 2-dimensional ‘worldsheet’.
It has an equally simple action

S = −T
∫
dA (3.2)

Thus extremizing the area of this worldsheet defines the dynamics of the string.

3.2 Why do strings live in 10 dimensions?

We have seen that we can wrap a string around a circle of length L; this generates
a winding mode, with mass m = TL. What happens if we don’t wrap the string
on a circle? Then it would seem that the string would collapse to a loop of zero
size, with m = 0. Can we identify this massless state with the graviton, which
is a massless particle that should exist in every quantum theory of gravity?

At a classical level, this certainly looks plausible. But in the quantum theory
we have to worry about the fact that the string will always have quantum
fluctuations, and we must consider the energy of such fluctuations.

It is easiest to start by looking at the quantum fluctuations of the string
around its winding mode. Thus assume that the direction xD−1 is compactified

15
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to a circle of length L̃, and te string is wrapped once around this circle. Now
consider small vibrations of this string in a transverse direction X, where X is
one of the directions X1, . . . XD−2. The action for these vibrations should be
obtained from the action (3.2), and turns out to be the same as the action for
the vibrations of any string

L =
T

2

∫
dtdy[∂tX∂tX − ∂yX∂yX] (3.3)

This is also the Lagrangian of a massless scalar field in 1+1 dimensions. The
quantum fluctuations in the ground state of such a field have been well studied,
and exhibit something called the Casimir effect. The vacuum energy has the
form

E0 = AL− 2π

12L
(3.4)

The constant A depends on how we cutoff the high frequency modes in defining
our field theory. The contribution of the term AL to E0 should be absorbed
into the definition of the tension T of the string; this can be done because the
classical value for E0 was TL, and so was proportional to L. The contribution
− 1

12L arises from the fact that the vibration modes of the string are not really
continuous, but have a spacing ∆E = 2π/L.

Now let us recall our T-duality map (??). The energy 2π/L of the graviton
mode was exact, in the sense that it included quantum effects. This is because
the quantization (??) of momentum is an exact relation in quantum mechanics.
But then T-duality would require that the energy of the winding mode have the
form E ∼ L, with no added term of the form ∼ 1/L. What should we do with
the Casimir energy term?

The term − 1
12L has equal contributions from the left (L) and right (R) modes

of vibration
− 2π

24L
− 2π

24L
= − 2π

12L
(3.5)

Suppose we had d transverse directions of vibration. Then the Casimir energy
would be

−2πd

24L
− 2πd

24L
= −2πd

12L
(3.6)

Now suppose we add a left moving vibration, in one of the transverse direc-
tions Xi, in the lowest allowed harmonic on the string. The energy of this left
vibration would be

EL =
2π

L
(3.7)

and it would be characterized by a ‘polarization’ direction i, with i = 1, . . . d.
We similarly add a right vibration, with

ER =
2π

L
(3.8)

and a polarization direction j. The total energy of the string is then

E = TL− 2πd

24L
− 2πd

24L
+

2π

L
+

2π

L
(3.9)
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We see that we can cancel the terms with contribution E ∼ 1/L by taking

d = 24 (3.10)

That is, we should have 24 space directions transverse to the string. Including
the direction along the string y and the time t, we see that T-duality works if
spacetime has 25 + 1 dimensions.

Making T-duality work has brought in two indices i, j that arise as polar-
izations on the string. We will now see that these indices are exactly what we
need for the T-duality map to make sense. Recall that we had obtained the mo-
mentum carrying mode P from a graviton that was moving in the y direction.
But a graviton has the form hij , where i, j are two directions transverse to the
direction of motion of the graviton. Thus the momentum mode P also had two
indices with the range i, j = 1, . . . d. To summarize, the T-duality map works
as follows, in spacetime with dimension 25 + 1:

(i) The momentum mode P is present in any theory of quantized gravity.
We have a massless graviton hij , moving at the speed of light along the compact
direction y, carrying energy and momentum

E = P =
2π

L
(3.11)

The polarization indices are in the 24 directions transverse to the direction y.

(ii) The duality map changes the length L as

L′ =
2π

T

1

L
(3.12)

(iii) The momentum carrying graviton is changed to a string wrapped along
the direction y. This string carries a left and a right excitation, with polariza-
tions i, j respectively. With these excitations, the energy of the string is

E = TL′ =
2π

L
(3.13)

where the energy of the vibrations has cancelled the negative Casimir energy.
We thus get an agreement under our T-duality map of the energies (3.11) and
(3.12), as well as an agreement of the polarizations.

There are two further observations that we need to make:

(a) Consider the string that is not wrapped on any circle; classically the
lowest allowed energy state would then have E = 0. Quantum fluctuations
however again bring in a negative Casimir energy. This time we do not have the
energy scale 1/L that appeared in relations like (3.4). The only energy scale we
have is the one set by the tension T = 1

2πα′ of the string. We find

m2 = 8πT [− d

24
+N ] (3.14)
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where N is the number of oscillators we add for each of the left and right moving
vibrations. We again find that the number of transverse dimensions should be
24, and that we should add one left and one right moving vibration. This
gives a massless particle (m2 = 0), with two transverse polarization directions
i, j. This massless particle can therefore be identified with the graviton. We
have therefore found that bosonic string theory lives in a total of 24 + 2 = 26
spacetime dimensions.

(b) One may choose to not add any left or right vibrations to the string. In
that case (3.14) gives, with d = 24

m2 = −8πT (3.15)

Such a particle is called a tachyon. It is sometimes said that tachyons travel
faster than the speed of light, but this is not the case; the presence of a tachyon
signals the fact that the vacuum of the theory is unstable, and that there exists
a state with even lower energy – the ‘true’ vacuum – which will be attained if we
add a lot of tachyonic particles. So while we have obtained a massless graviton
in our theory by choosing a spacetime dimension D = 26, we have a situation
where 25 + 1 dimensional Minkowski spacetime is not the stable vacuum of the
theory.

This situation can be remedied if we add fermions to the theory, thus moving
from string theory to superstring theory. Before we do this, let us take a brief
look at the nature of fermions.

3.3 Fermions

Consider the circle shown in fig.??, parametrized by the angular coordinate
0 ≤ φ < 2π. We can think of this circle as a circle in the x − y plane. Now
consider the wavefunction ψ of a particle living on this circle. We can have the
wavefunctions

ψ = e
i
~nφ (3.16)

where we have temporarily restored the factor ~ that we have been setting to
unity. The angular momentum of this wavefunction is given by

J = −i~ ∂

∂φ
= n~ (3.17)

If we rotate our system around in a complete circle

φ→ φ+ 2π (3.18)

then the wavefunction (3.16) returns to itself if n is an integer. Thus requiring
periodicity of the wavefunction under the transformation (3.18) tells us that the
angular momentum is quantized in integral units of ~.

This angular momentum is termed ‘orbital angular momentum’. Elementary
particles like electrons have, in addition, an intrinsic angular momentum termed
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‘spin’. Interestingly, the spin of fermionic particles like electrons and quarks is
1
2~; thus it is not an integral unit of ~. Under the transformation (3.18) we then
find

ψ → −ψ (3.19)

Since we must have returned to the same physical situation after such a rotation,
we find that ψ and −ψ should be considered equivalent values of the fermion
wavefunction.

Let us now see how this fact will impact string theory when we add in
fermions.

3.4 Superstring theory

Consider the string wound on a circle of length L. The transverse vibrations were
described by functions Xi(σ), i = 1, . . . d where d is the number of transverse
directions. In a supersymmetric theory, we have a fermion for each boson in
the theory. Thus we let the string also have fermionic vibrations, described by
functions ψi(σ), i = 1, . . . d.

The bosons were naturally periodic around the σ circle

Xi(σ) = Xi(σ + 2π) (3.20)

But because of (3.19) we have two possibilities for the fermions:

(i) We let the ψi be periodic around the φ circle

ψi(σ) = ψi(σ + 2π) (3.21)

This is called the Ramond (R) boundary condition. The wavefuntions of the
fermions will have the same form as for bosons

ψ = einσ, n integer (3.22)

(ii) We let the ψi be antiperiodic around the φ circle

ψi(σ) = −ψi(σ + 2π) (3.23)

This is called the Neveu-Schwarz (NS) boundary condition. The wavefunctions
of the fermions will have the form

ψ = ei(n+
1
2 )σ, n integer (3.24)

The Casimir energy for a boson X on the circle of length L was

E = − 2π

24L
− 2π

24L
= − 2π

12L
(3.25)



20 LECTURE NOTES 3. EXPLORING THE STRING

where the two contributions came from the left and right movers. For periodic
fermions (3.21) we have

E =
2π

24L
+

2π

24L
=

2π

12L
(3.26)

For antiperiodic fermions (3.23) we have

E =
2π

48L
+

2π

48L
=

2π

24L
(3.27)

Now consider d sets of bosons and fermions Xi, ψi. Let us focus on the
left movers; the right movers give the same numbers. For periodic boundary
conditions the Casimir energy would be

E = −2πd

24L
+

2πd

24L
= 0 (3.28)

Thus we do not need to add any vibrations to cancel the Casimir energy. For
antiperiodic boundary conditions the Casimir energy of the left movers would
be

E = −2πd

24L
+

2πd

48L
= −2πd

48L
(3.29)

Let us again try to cancel this by adding a vibration mode. With bosons, the
lowest allowed energy of excitation was 2π/L. But with antiperiodic fermions,
the vibrations (3.24) give a lowest allowed energy of π

L , corresponding to the
choice n = 0. Thus we need to choose d such that

−2πd

48L
+
π

L
= 0 (3.30)

which gives
d = 8 (3.31)

for the number of directions transverse to the string. Adding in the direction
along the string and the time direction, we find that spacetime must be 9 + 1
dimensional. This is the origin of the statement that superstring theory must
live in 10 spacetime dimensions.

Note that the fermion mode ψi we added carried a transverse index i. We
get a similar index j from the right movers. So just like the bosonic case, the
string state where the Casimir energy has been cancelled carries a pair of indices
i, j. Extending the analysis to strings that are not wrapped on a circle, we again
find a massless particle with two indices i, j.

The graviton hij also has two indices, so we have found a state of the string
that can describe the massless graviton. But a closer look reveals that we have
actually found more. The graviton is ‘transverse traceless and symmetric’. This
means the following. Suppose the graviton is moving in the direction X1. Let
us exclude the direction X1 and the time X0, and let i, j range over all the other
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space directions X2, . . . XD−1. Then we have a graviton state is characterized
by a symmetric and traceless matrix hij .

We have indeed found that the indices i, j range over the transverse values
X2, . . . XD−1. But we can make any matrix Mij in this transverse space, since
we can choose any value of the index i from the left movers and the index j
from the right movers. We can find the graviton in this subspace of states Mij

by decomposing Mij into three parts

Mij = hij +Bij + φ (3.32)

where

hij =
1

2
(Mij +Mji)−

1

D − 2

∑
k

Mkk

Bij =
1

2
(Mij −Mji)

φ =
1

D − 2

∑
k

Mkk (3.33)

The part hij is symmetric and traceless, and gives the graviton. The part Bij
is antisymmetric. We will soon see that it gives the gauge field coupling to the
string, just as a vector potential Ai gives the gauge field coupling to an electron.
The last part φ is a scalar. How should we interpret φ?

We have seen that if we have an extra compact direction, then the size of this
direction can be thought of as describing scalar φ(x) in the remaining directions.
String theory lived in 9+1 dimensions, but of we interpret this scalar φ as the
size of an extra direction, then we have 10+1 spacetime dimensions. Thus we
have two ways of studying our theory:

(i) As string theory in 9+1 dimensions. Here φ is a scalar field in the theory,
called the dilaton. It has a very important role to play, as it gives the strength
of coupling between strings.

(ii) As a theory in 10+1 dimensions, where one of the space directions has
been compactified to a circle. This direction is traditionally called x11, and the
length of this circle is 2πR11. This 10+1 dimensional theory is called M-theory.

The 10+1 dimesnional M-theory description provides a remarkable perspec-
tive on the structure of string theory, giving a simple picture of all the different
elementary excitations of the theory. For actual computations, however, the
9+1 dimensional string theory perspective is often more useful. The reason is
that M-theory has no small parameters in it. But if we compactify on a circle
to get string theory, then we can consider the limit where this circle is small,
and then this smallness serves as a useful expansion parameter.
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3.4.1 Charged particles

Given that we have discovered an extra circle x11 in string theory, we now
automatically find new fundamental objects. Consider the 10+1 dimensional
gravity theory. We can take the massless graviton of this theory and give it a
wavefunction

ψ = ei
x11

R11 (3.34)

This graviton has an energy and momentum

E = P =
1

R11
(3.35)

From the 9+1 dimensional string theory perspective, this looks like a pointlike
object with mass m = E. This object is called the D0 brane. The prefix D will
be explained shortly, but the number 0 says that this is a pointlike object – an
object of 0 spatial dimensions. We could have also chosen the wavefunction

ψ = e−i
x11

R11 (3.36)

This graviton has an energy and momentum

E = −P =
1

R11
(3.37)

The two choices P = ±E suggests that we have two particles of equal and
opposite charges, and indeed P can be interpreted as a charge of the pointlike
particle that we see in the 9+1 dimensional string theory perspective.

But if the D0 brane is a charged particle, then there should be a gauge field
Aµ that it should couple to. There is indeed such a gauge field. When we have
an extra compact circle x11, then we had seen that we get the field

g11,µ ∼ Aµ (3.38)

Investigation of the gravity Lagrangian reveals that this gauge field does couple
to the D0 brane exactly as required for the normal coupling of a gauge field to
a charged particle.

3.4.2 BPS particles
If P gives the charge q of the D0 brane, and E gives the mass m, then we find
that

m = |q| (3.39)

that is, the strength of the charge q equals the mass. We will see that this is
a basic property of all the elementary objects in string theory. This property
will play a very central role in our study of black holes. A particle satisfying
the relation (3.39) is called a BPS particle. This term refers to the Bogolmoyi-
Prasad-Sommerfeld bound first noted for monopoles, where it was found that
all states in the theory had m ≥ |q|.
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Usually we think of mass and charge being measured in different units, so let
us see what (3.39) means in physical terms. Consider two BPS particles with
the same charge. Place one at at the location ~x and another at the location ~x′.
There are two forces between these particles:

(i) The force of gravitational attraction. We take the particles to to be
well separated, and then we can use the Newtonian expression (??) for this
gravitational attraction.

(ii) The force of electrostatic repulsion, which arises from the fact that each
particle carries a charge. If the particles are taken to be well separated, then
we can use the classical formula (1.2) for this electrostatic repulsion.

For a BPS particle, these two forces exactly cancel; i.e., there is no net force
between two copies of the same particle.

Interestingly, the BPS relation (3.39) arises in three different ways:

(a) From the natural charge and mass obtained by dimensional reduction of
massless particles, as in (3.39).

(b) In supersymmetric theories we will see that

M ≥ |Q| (3.40)

for all states of the theory. BPS particles have M = |Q|, and so saturate the
bound. The supersymmetry is characterized by a set of characterized by a
set of supersymmetry operators Q̂α. BPS particles are described by states |ψ〉
satisfying

Q̂|ψ〉 = 0 (3.41)

where Q̂ is a linear combination of the Q̂α.

(c) Black holes have a mass M , but we can also allow them to have a charge
Q. It turns out that when we write the metric produced by an object of mass
M and charge Q, then we get a good solution only for

M ≥ |Q| (3.42)

The limiting case
M = |Q| (3.43)

is called the ‘extremal’ hole. If we try to write a solution for M < |Q|, then
we find that the singularity of the black hole is outside the horizon. Such a
singularity is called a naked singularity, and it is unclear how to define physics
in the presence of such singularities. Extremal black holes have a Hawking
temperature TH = 0. This means that a hole cannot radiate neutral particles
and reach a situation with M < |Q|, so the bound (3.42) is preserved during
the natural evolution of the hole.
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In supersymmetric theories, we will see that (b) can be derived from (a).
That (c) is true has a very interesting implication. One would like to think that
black holes are just another combination of elementary objects in our quantum
gravity theory, and their behavior is just like that of any other bound state
in the theory. But we have seen that this expectation runs into trouble: we
cannot find the states which should account for the entropy of the hole, and the
evaporation of the hole leads to difficulties with unitarity. The inequality (3.42)
satisfied by classical black holes provides some indication that a understanding
of the black hole as a normal bound state may be possible. Since all states in
a supersymmetric theory satisfy (3.40), it is reassuring that black holes do not
violate this inequality. We will find that the simplest black holes in string theory
are the extremal ones with M = |Q|, and that they can indeed be understood a
bound states of the elementary constituents of the theory.

3.5 The scalar φ as a coupling

We have seen that quantizing the string gives rise to a massless scalar φ. We can
interpret this scalar as encoding the size of an extra direction x11, giving a 10+1
dimensional theory called M-theory. We will find that this scalar plays a very
fundamental role in the 9+1 dimensional string theory: it gives the coupling
constant g of the theory. Let us make this relation precise.

The 11-D M theory has the gravitational action

S =
1

16πG

∫
d11x
√
−g11R11 (3.44)

Following our earlier notation, let us write

g11,11 = eC (3.45)

and for the moment assume
g11,µ = 0 (3.46)

Let us choose the compact circle x11 to have a coordinate range

0 ≤ x11 < 2πR11 (3.47)

Then the dimensionally reduced 9+1 dimensional action has the form

S =
2πR11

16πG

∫
d10x
√
−g10e

C
2 [R10 + . . . ] (3.48)

Recall that we defined a string metric

gSµν = e
C
2 gµν (3.49)

in terms of which T-duality could be expressed in a simple way. In terms of this
metric, we find

√
−g10 = e−

5C
2

√
−gS10, R10 = e−C [RS10 + . . . ] (3.50)
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so that we have

S =
2πR11

16πG

∫
d10xe−

3C
2

√
−gS10[RS10 + . . . ] (3.51)

Now we recall that in an interacting theory like electromagnetism, the coupling
constant e shows up in the action as follows

S = − 1

4e2

∫
d4xF 2 (3.52)

Thus G acts like the coupling constant squared of the gravitational theory.
But since we also have the factor e−

3C
2 in the action, we see that the effective

coupling is
g2 ∼ Ge 3C

2 (3.53)

A larger value for C implies a larger size for the circle x11. Thus the size of this
extra circle governs the coupling constant of string theory. Note that C can be
different at different points, so that this coupling is a field, rather than a fixed
constant. We will find this fact to be very useful in our analysis of black holes:
we can imagine the coupling to be weak or strong, and thus relate computations
at weak coupling (where we do not expect black holes) to computations at strong
coupling (where we do expect black holes).

Since g will play a central role in our theory, we define a field φ through

g = eφ (3.54)

From (3.53) we see that

C =
4φ

3
(3.55)

Note that we have not yet obtained a complete definition of g. We have
related φ to C through (3.55), and C was related to the size of the compact
direction. But we have not yet specified R11, which governs the coordinate
range for x11 through (3.47). Changing this coordinate range will change C,
which will change φ and therefore g. How should we choose R11?

Recall that to see T-duality, we compactify a direction x9 as

0 ≤ x9 ≤ 2πR9 (3.56)

and use the string metric to measure distances. The T-duality map is then

R′9 =
l2s
R9

(3.57)

Thus the value
R9 = ls (3.58)

gives a ‘self-dual’ point; a circle of this length maps back to itself under T-
duality.
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This was the perspective of string theory. But now consider the perspective
of M-theory, which has an additional circle x11. In the above setting, we have
two compact circles, x9 and x11. Now we can perform two different kinds of
operations:

(a) Consider x11 to be the extra circle of M-theory. This gives a 9+1 dimen-
sional string theory, where another direction x9 has been compactified.

(b) Consider x9 to be the extra circle of M-theory. This also gives a 9+1
dimensional string theory, where another direction x11 has been compactified.

These two different ways of viewing the theory is called the 9− 11 flip. We
will soon see its significance. For now, we will fix the normalization of g as
follows. Suppose we set the length of the x9 circle at its self-dual value

L9 = 2πR9 = 2πls (3.59)

Then we require that the value g = 1 describe the situation where the x9 and
x11 circles have the same length.

Let us see what we get by imposing this requirement. With the string metric
(3.49), the metric in the x11 direction is

gS11,11 = e
C
2 g11,11 = e

C
2 eC = e

3C
2 (3.60)

In this string metric, the length of the direction x11 is

L11 = 2πR11e
3C
4 = 2πR11e

φ = 2πR11g (3.61)

When g = 1, this is L11 = 2πR11. We set this equal to the length of the x9
direction at the self dual point L9 = 2πls. Thus

2πR11 = 2πls (3.62)

which gives
R11 = ls (3.63)

This is the relation that we were seeking. With this relation, the length of the
x11 direction, at a general value of g, is from (3.61)

L11 = 2πlsg (3.64)

3.5.1 T-duality
With the relation (3.64), we can write the mass of a D0 brane (??) in an inter-
esting form:

mD0 =
2π

L11
=

1

gls
(3.65)

Thus the mass, measured in string units, is given in terms of the coupling con-
stant of the theory. This is interesting; in the usual theory of electrowweak
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interactions, there is no relation between the coupling and the masses of parti-
cles. There is one kind of object in field theory, however, whose mass is related
to the coupling. This is a soliton, given by a classical solution to the field
equations. Given the form of the action (3.52), one finds that the mass of a
soliton is m ∼ 1

e2 , where e is the coupling. The elementary particles (i.e. those
which are not solitons) have masses that have no powers of e. In the present
case we have m ∼ 1/g, so the power of the coupling is halfway between that of
elementary particles and solitions. We will see that this difference is a matter
of which metric we choose: with one metric we can make the D-brane look like
an elementary particle, while with another metric we can make it look like a
soliton.

Let us now recall the T-duality transformation (2.17), where we now set
D = 10:

C̃ → −C̃

C → C − 2

3
C̃

gSij → gSij (3.66)

The length of the x9 circle is

L9 = 2πR9e
1
2 C̃ (3.67)

The first relation tells us that the length of x9 changes as

L′9 =
(2π)2l2s
L9

(3.68)

The next relation tells us that

g′ = eφ
′

= e
3
4C
′

= e
3
4Ce−

1
2 C̃ = eφ

ls
L

= g
ls
L

(3.69)

Now we can ask the question: we want T-duality to be a symmetry of our
quantum theory. Under the T-duality map, a graviton moving along x9 became
a string wrapped along x9, and a string wrapped along x9 became a graviton
along x9. But the D0 brane is another object in the theory? What happens to
it when we apply the T-duality transformation?

Since T-duality is a symmetry, and the string length did not change under
this duality, the mass of the object should remain

m =
1

gls
(3.70)

We shoud however write this in terms of the new coupling; thus

m =
1

g′ls

ls
L

=
1

g′ls

L′

ls
(3.71)
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where in the last step we have written everything in terms of the quantities after
the duality. We now see something interesting; the mass is linearly proportional
to the new length of the x9 direction. This tells us that the new object obtained
after the duality should be some kind of a string, wrapped along the x9 direction.
We will call this string a D1-brane. The tension of this D1 brane is defined by
m = TD1L

′
9, which gives

TD1 =
1

g′l2s
(3.72)

Thus we find that, measured in string units, the tension of the D1 brane is again
the reciprocal of the coupling.

3.6 Fermions

Thus far we have mostly ignored the fermions of our theory. But at this stage
in our discussion of T-duality, they play a crucial role. When we do a T-duality,
the fermions change their nature in a way we will now describe. The theory we
obtained from 11-d M theory by compactfication on a circle is called type IIA
string theory, for reasons we will see shortly. After a T-duality in a direction
like x9, the fermions change their nature so that we get type IIB string theory.
A second T-duality will bring us back to IIA and so on. To understand the
difference between IIA and IIB theories, let us recall what fermions are.

3.6.1 Spinors

A vector V a is a representation of the rotation group. This group is the set of
all transformations that leave the length of the vector unchanged. Tensors are
then built by by taking linear combinations of products like V aW b, and give
other representations of the rotation group.

But there is a group that is simpler than the rotation group; this is the
group of reflections. A reflection is done across a plane, as shown in fig.??(a).
A reflection also keeps the length of a vector unchanged. In fig.??(b) shows two
planes, with an angle θ/2 between them. Reflecting in the first plane and then
in the second plane results in a rotation through an angle θ. Thus a reflection
is a ‘square-root’ of a rotation. The set of rotations in all possible planes is the
group of reflections. Each plane is described by its normal vector n̂.

We would like a representation of the reflection group. That is, we want a set
of numbers {s1, . . . sn} that will be multiplied by a matrix Γ[n̂] under reflection
in the plane with normal n̂. Consider 3-d space x1, x2, x3. Let Γi be the matrix
for reflection in the plane with normal in the direction xi. Reflecting twice in
the same plane brings a vector back to itself, so we need

(Γi)2 = I, i = 1, 2, 3 (3.73)

Now consider a plane with normal ni. For reflection in this plane we take the
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matrix niΓi. For ni = ( 1√
2
, 1√

2
, 0). Then we have

Γ =
1√
2

Γ1 +
1√
2

Γ2 (3.74)

We again need Γ2 = I. We find

Γ2 =
1

2
I +

1

2
I +

1

2
[Γ1Γ2 + Γ2Γ1] (3.75)

Thus we need
[Γ1,Γ2]+ ≡ [Γ1Γ2 + Γ2Γ1] = 0 (3.76)

i.e., different Γi anticommute.
It is easy to find three matrices Γi with these properties

Γ1 = σ1 =

(
0 1
1 0

)
, Γ2 = σ2 =

(
0 −i
i 0

)
, Γ3 = σ3 =

(
1 0
0 −1

)
(3.77)

The fact that these are 2 × 2 matrices tells us that the representation is 2-
dimensional; i.e., the spinor will have 2 states. These give the two spin states of
the electron – up and down. But it is more useful to consider the representation
given by the Γi in a more abstract way. First we note that Γ3 can be chosen as

Γ3 = −iΓ1Γ2 (3.78)

since this satisfies the requirements (3.75) and (3.76). For the remaining Γi, we
define the ‘raising’ and ‘lowering’ combinations

Γ+ =
1√
2

(Γ1 + iΓ2), Γ+ =
1√
2

(Γ1 + iΓ2) (3.79)

which satisfy
(Γ+)2 = 0, (Γ−)2 = 0, [Γ+,Γ−]+ = I (3.80)

As a starting state of the representation, we consider the ‘lowest weight state’
|−〉, defined by

Γ−|−〉 = 0 (3.81)

We can generate another state through

Γ+|−〉 ≡ |+〉 (3.82)

but since (Γ+)2 = 0, we cannot raise the state any further. We also have

Γ−|+〉 = Γ−Γ+|−〉 = [Γ−,Γ+]+|−〉 = |−〉 (3.83)

so the raising and lowering operations toggle between the states |±〉. We also
find

Γ3|−〉 = −iΓ1Γ2|−〉 = −1

2
(Γ+ + Γ−)(Γ+ − Γ−)|−〉 = −|−〉

Γ3|+〉 = |+〉 (3.84)
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so no new states arise, and |±〉 form a complete representation.
Rotation through an infinitesimal angle δθ in the x− y plane is given by the

operation

(Γ1 +
δθ

2
Γ2)Γ1 = I + i

δθ

2
Γ3 ≈ ei δθ2 σ3 (3.85)

Composing such infinitesimal rotations we find that under rotation through an
angle θ (

|+〉
|−〉

)
→ ei

θ
2σ3

(
|+〉
|−〉

)
=

(
ei
θ
2

e−i
θ
2

)(
|+〉
|−〉

)
(3.86)

Thus rotation through θ = 2π does not bring the states |±〉 back to themselves;
we need a rotation through θ = 4π. Thus particles like the electrons described
by such spinors have spin 1

2 , and their wavefunction changes sign under a 2π
rotation. We have used this fact in section ??, when considering the possibility
of antiperiodic boundary conditions for fermions.

We can make spinor representations in any dimension in a similar way, so
let us take the case of M-theory. The spacetime is 10+1 dimensional, but for
simplicity we rotate time as t→ −iτ and look at 11 Euclidean dimensions for a
start. We have 11 matrices Γi, satisfying

[Γi,Γj ]+ = 2δij (3.87)

We can write
Γ11 = −iΓ1Γ2 . . .Γ10 (3.88)

and

1√
2

(Γ1 ± iΓ2) = Γ±(1),
1√
2

(Γ3 ± iΓ4) = Γ±(2),
1√
2

(Γ5 ± iΓ6) = Γ±(3)

1√
2

(Γ7 ± iΓ8) = Γ±(4),
1√
2

(Γ9 ± iΓ10) = Γ±(5) (3.89)

The lowest weight state |0〉 is defined by

Γ−(a)|0〉 = 0 (3.90)

We can act on this state by the raising operators Γ+
(a). We can apply each raising

operator 0 or 1 times, so we have 25 = 32 states in all. For states obtained by
applying an even number of raising operators

|ψ〉even : |0〉, Γ+
(a)Γ

+
(b)|0〉, Γ+

(a)Γ
+
(b)Γ

+
(c)Γ

+
(d)|0〉 (3.91)

we find that
Γ11|ψ〉even = |ψ〉even (3.92)

while for states obtained by applying an off number of raising operators

|ψ〉odd : Γ+
(a)|0〉, Γ+

(a)Γ
+
(b)Γ

+
(c)|0〉, Γ+

(a)Γ
+
(b)Γ

+
(c)Γ

+
(d)Γ

+
(e)|0〉 (3.93)
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we find that
Γ11|ψ〉odd = −|ψ〉odd (3.94)

There are 16 states |ψ〉even satisfying (3.92) are called states with positive chi-
rality, and the 16 states |ψ〉odd satisfying (3.94) are called states with negative
chirality.

Let us now explain why all this is important at the present stage of our
discussion of T-duality. The 11-d M-theory has spinors with 32 components.
The string theory is however 10 dimensional, so the reflection group only involves
matrices Γ1 . . .Γ10, but no matrix Γ11. In 10 dimensions it turns out that the
spinor representations have only 16 components: we can either take the set
|ψ〉even or the set |ψ〉odd. Since our string theory is really rewrite of an 11-d
theory, all 32 components of the M theory spinor have to show up, and so we get
one 16 dimensional positive chirality representation and 16 dimensional negative
chirality representation. The string theory obtained by reducing M-theory on
the x11 circle is called type IIA string theory; the II stands for the fact that we
have found two spinor representations, and the letter A will serve to distinguish
this theory from type IIB string theory that we will find presently.

Now suppose we make one direction x9 compact. We can do a T-duality
along x9. This T-duality takes us from 10-dimensions back to 10-dimensions,
but one of the two 16 component spinors flips its chirality. Since type IIA
theory had two spinors of opposite chirality, now we have two spinors of the
same chirality.

This is clearly a different theory, and we call it type IIB string theory. We
cannot get this theory by dimensional reduction from 11-d; the 11-d theory
has one 32 component spinor, and this always breaks up into a pair of opposite
chirality spinors in the 10-d reduced theory. So this theory has to be understood
only as a 10-d string theory.

The D0 brane we had found was in type IIA string theory; this brane came
from looking at the 11-d theory and considering a graviton moving along x11.
But the D1 brane we found was obtained by a T-duality. This T-duality brings
us to type IIB string theory, so the D1 brane is an object not i the original IIA
theory, but in the IIB theory.

The T-duality in x9 had converted the D0 brane of IIA into a D1 brane
wrapped along x9 in IIB string theory. Now imagine compactifying a direction
x8 in this IIB string theory. We can do a T-duality in x8, and ask what happens
to the D1 brane wrapped along x9. As in the case of the D0 brane, we argue
that the mass of the brane in string units must not change. We are led to a new
object, which is now a D2 brane, with tension

TD2 =
1

gl2s
(3.95)

This second T-duality has brought us back to IIA theory, so the D2 brane is an
object in IIA string theory. Proceeding in this way we find the objects:

IIA : D0, D2, D4, D6

IIB : D1, D3, D5 (3.96)
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we can also find D7, D8 and D9 branes, but these objects are a little different
from the other branes. A D7 brane has only 2 transverse space dimensions, and
its gravitational potential behaves as ln r where r is the distance from the brane.
Thus its potential does not die off at infinity. In making black holes we will be
seeking to get spacetime that is flat at infinity, so we will not use branes higher
than D6.

The tensions of these branes is

TDp =
1

glp+1
s

(3.97)
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Electric-magnetic duality

4.1 Gauge fields

A charged particle like the electron couples to the gauge field Aµ describing
electromagnetism. String theory will have charged branes which generalize the
notion of charged particles, and corresponding gauge fields which generalize Aµ.

Let us first note how a particle with charge q couples to a gauge field Aµ in
curved spacetime:

(i) Consider the worldline described the the charged particle in spacetime.
Consider an infinitesimal segment of this worldline, which extends from the
spacetime point ξµ to ξµ + dξµ.

(ii) Let Aµ(ξ) be the value of the gauge field at the point ξµ. Compute the
scalar Aµ(ξ)dξµ.

(iii) The action Sint describing the interaction of the charged particle with
the gauge field is given by adding these contributions over the worldline

Sint = q

∫
Aµdξ

µ (4.1)

Since the charge q is typically quantized in integral units of a basic value q0, we
absorb q0 into the definition of Aµ. Then particles with unit charge have the
interaction

Sint =

∫
Aµdξ

µ (4.2)

We will use a similar convention when studying branes below.
Now consider a string. This is a 1-dimensional object, so it sweeps out a

2-dimensional ‘world-sheet’ in spacetime. We follow the same steps as before:

(i) Consider an infinitesimal area on the worldsheet, located around a point
ξµ in spacetime. This area element is described by a parallogram, with sides
dξµ(1), dξ

µ
(2). Recall that in ordinary 3-d space, the area of two parallogram

defined by vectors ~V , ~W lying in the x− y plane is given by the cross product

A = ẑ · (~V × ~W ) = VxWy − VyWx (4.3)

33
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In our present case, the infinitesimal area element will be described by

dξµ(1)dξ
ν
(2) − dξ

ν
(1)dξ

µ
(2) (4.4)

(ii) The gauge field will in this case have two indices: Bµν(ξ). Compute the
scalar

1

2
Bµν(dξµ(1)dξ

ν
(2) − dξ

ν
(1)dξ

µ
(2)) (4.5)

Note that we can assume that the gauge field is antisymmetric

Bµν = −Bνµ (4.6)

since the gauge field multiples the antisymmetric tensor defining the area ele-
ment.

(iii) The interaction of the string with the gauge field is given by integrating
over all the area elements on the worldsheet

Sint =

∫
1

2
Bµν(dξµ(1)dξ

ν
(2) − dξ

ν
(1)dξ

µ
(2)) ≡

∫
BdA (4.7)

Thus we need a field Bµν to serve as the gauge field coupling to the string.
This field should be massless, as all gauge fields are, and should be antisymmet-
ric (eq. 4.6)). But in section ?? we have found a field with just these properties:
some of the massless modes of the string produced the graviton hµν , but other
have an antisymmetric tensor Bµν . This is an example of the beautiful interlock-
ing nature of string theory: each object that is needed in the theory is naturally
present in the theory, without having to be added as an optional feature.

We have a similar coupling to gauge fields for the higher dimensional branes
of the theory. Consider a p-brane; i.e., a brane extended in p space directions.
This brane sweeps out a p+1 dimensional worldvolume in spacetime. We follow
the same steps again:

(i) Consider an infinitesimal hypercube on the worldvolume, located around
a point ξµ in spacetime. This hypercube has sides dξµ(1), dξ

µ
(2), . . . dξ

µ
(p+1). It

defines a volume element

dV :
1

(p+ 1)!
[dξµ1

(1)dξ
µ2

(2) . . . dξ
µp+1

(p+1) + permutations] (4.8)

where we add terms with all permutations of the indices µ1, . . . , µp+1, with sign
given by the sign of the permutation.

(ii) The gauge field will have p + 1 indices: Aµ1µ2...µp+1
(ξ), and will be

antisymmetric under the interchange of any pair of indices. Compute the scalar

Aµ1µ2...µp+1
(ξ)dξµ1

(1)dξ
µ2

(2) . . . dξ
µp+1

(p+1) (4.9)
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where the antisymmetry of A takes into account the permutations in (4.8).

(iii) The interaction of the string with the gauge field is given by integrating
over all the area elements on the worldsheet

Sint =

∫
Aµ1µ2...µp+1

(ξ)dξµ1

(1)dξ
µ2

(2) . . . dξ
µp+1

(p+1) ≡
∫
AdV (4.10)

Where would we find the required gauge fields Aµ1µ2...µp+1
? Recall that the

string had two kinds of states: the NS sector states where the fermions were
antiperiodic around the string, and the R sector states where the fermions were
periodic. When both left and right moving fermions are in the NS sector, we
obtained the fields hµν , Bµν , φ. It turns out that when both left and right movers
are in the R sector, we get exactly the needed gauge fields Aµ1µ2...µp+1

. We can
also take the left movers in the NS sector and the right movers in the R sector
(or vice versa); this produces fermionic fields, which naturally pair up with the
bosonic fields hµν , Bµν , φ,Aµ1µ2...µp+1 as required by supersymmetry.

4.2 Electric-Magnetic duality

Maxwell’s theory of electromagnetism has a beautiful symmetry

~E ↔ ~B (4.11)

as long as we have no sources for the fields. But the sources we find in nature
violate this symmetry. While we find charged particles that are a source for ~E

~∇ · ~E =
ρ

ε0
(4.12)

there is no source for ~B
~∇ · ~B = 0 (4.13)

People have long wondered whether there could be magnetic monopoles – sources
of charge for ~B, so that we would have

~∇ · ~B = µ0ρm (4.14)

Then we would have an exact electric-magnetic duality symmetry in the theory,
and electrically charged particles like electrons would map under this duality to
magnetically charged monopoles.

In this section we will see that in string theory we do have exact electric-
magnetic duality.

4.2.1 The duality in electromagnetism
To understand the structure of the duality, let us first rewrite the electromag-
netic case in relativistic form. The basic variable is a gauge field Aa. This gives
a field strength

Fab = ∂aAb − ∂bAa (4.15)
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The traditional electromagnetic fields are encoded in F :

E1 = F01, E2 = F02, E3 = F03, B1 = F23, E2 = F31, B3 = F12 (4.16)

To interchange ~E with ~B, we define the Levi-Civita tensor εabcd. This is totally
antisymmetric in its indices, so it vanishes when any two of the indices are equal.
We set ε0123 = 1. For any other permutation of indices, we get a value 1 if the
permutation is even (i.e. involves an even number of index interchanges) and a
value −1 if the permutation is odd. We write

F̃ab =
1

2!
εabcdF

cd (4.17)

The change F → F̃ gives the map (4.11); for example

Ẽ1 = F̃01 = F23 = B1 (4.18)

We can now define a dual gauge field Ãa through

F̃ab = ∂aÃb − ∂bÃa (4.19)

While an electrically charged particle couples to the gauge field Aa as (4.1), a
magnetically charged particle couples to Ãa

Sint = qm

∫
Ãµdξ

µ (4.20)

In string theory we have branes extended in p spatial directions, and gauge
fields with indices Aµ1,...µp+1 . How should we define electric-magnetic duality
in this situation? We proceed as follows:

(i) Let the spacetime have dimension D.

(i) A p-brane has a p+ 1 dimensional world volume, and couples to a gauge
field Aµ1...µp+1

with p+ 1 indices, as in (4.10).

(ii) The field strength of A is Fµ1...µp+2
, with p+ 2 indices.

(iii) To define the dual field strength, we use the Levi-Civita tensor in D
dimensions. This gives

F̃µ1...µD−p−2
= εµ1...µD−p−2µD−p−1...µDF

µD−p−2...µD (4.21)

so F̃ has D − p− 2 indices.

(iv) We define a dual gauge potential Ã such that

F̃µ1...µD−p−2
= ∂µ1

Ãµ2...µD−p−2
+ cyclicpermutations (4.22)
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where the permutations are defined with signs as in (??). This dual gauge field
Ã has D − p− 3 indices.

(v) A gauge field with D − p− 3 indices couples to a brane with D − p− 4
space directions. Thus the dual of a p brane in D spacetime dimensions is a
D − p− 4 brane.

For the above example of electromagnetism, we have a spacetime dimension
D = 4 and pointlike electric charges, so p = 0. The magnetic dual charges will
have p′ = D − p− 4 = 0, so the magnetic monopoles will be pointlike as well.

Now consider type IIA string theory, where D = 10. This theory has a D0
brane, with p = 0. Its dual under electric-magnetic duality will be a brane with
p′ = D− p− 4 = 10− 4 = 6. We do indeed have a brane with this dimension in
the theory: the D6 brane. Proceeding in this way, we find the electric-magnetic
duality pairs:

IIA : D0 ↔ D6

D2 ↔ D4

(4.23)

IIB : D1 ↔ D5

D3 ↔ D3

(4.24)

Note that the D3 brane of IIB theory is self-dual: it carries both electric and
magnetic couplings with equal strength.

Both IIA and IIB theories have the elementary string, for which we have

IIA, IIB : NS1 ↔ NS5

(4.25)

Thus we see that the set of elementary objects that we have found in the
theory neatly falls into pairs of electric-magnetic duals.
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M theory

5.1 M theory

We have seen that string theory has a logical and compelling structure. Ele-
mentary qualitative requirements – like the preservation of T and S dualities
at the quant level – force a unique the particle and gauge field content for the
theory, so that at the end the theory has no free parameters. One may however
feel that the theory is quite complicated, given the large number of possible
branes. We will now see that this complicated looking structure actually arises
from something much simpler, if we use the perspective of 11-d M theory.

The dilaton φ was a scalar in string theory which signalled the existence of
an extra dimension x11; if this extra dimension was compactified to a circle,
then we obtained IIA string theory where the dilaton described the size of this
extra circle. One is therefore led to ask what each object in string theory looks
like in the 11-d M theory. Let us start with the elementary string of string
theory. What does this look like in M-theory?

A clue comes from the difference in metrics that we used to study M-theory
and string theory. For the M-theory the metric was called gµν . For string theory,
we write

g11,11 = eC (5.1)
and define the string metric

gSµν = e
C
2 gµν (5.2)

In the string metric gS , the length of a string was a fixed value ls everywhere.
But if we used the M-theory metric g, then this length would depend on the
local value of C. The metric measures lengths squared, so a factor Exp[−C/2]
in the metric gives a factor Exp[−C/4] when measuring lengths; thus the length
of the string using the M-theory metric g will be

l′s = lse
−C4 (5.3)

We can rewrite this fact in terms of the string tension. The tension of the string
in the string metric is defined as

TNS1 =
1

2πα′
=

1

2πl2s
(5.4)

Using the M-theory metric this will become

T ′NS1 =
1

2πl′2s
= TNS1e

C
2 (5.5)
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From (5.1) we see that Exp[C/2] is proportional to the length of the direction
x11. Thus (5.5) says that the tension of the string seen in 10-d is linearly
proportional to the length of the extra circle of M-theory. This suggests that we
think of the 1-dimensional string as arising from a 2-dimensional sheet, where
one direction of this sheet has been wrapped around x11. This 2-d sheet is called
the M2 brane.

We can write down the tension TM2 of this M2 brane. In the string metric,
the length of x11 is

L11 = 2πgls (5.6)

Thus the tension of the string would be

TNS1 = L11TM2 = 2πglsTM2 (5.7)

Using (5.4) we find

TM2 =
1

(2π)2gl3s
(5.8)

where this tension is given in the string metric. We can of course convert it to
the 11-d metric g, noting that TM2 has units of (length)−3:

T ′M2 = e
3
4CTM2 = eφTM2 =

1

(2π)2l3s
(5.9)

This does not involve the factor Exp[C/2] governing the size of the x11 direc-
tion. This is exactly as it should be, because we want the M2 brane to be a
fundamental object in 11-d M theory with no reference to any compactification.

5.1.1 Developing the theory

We can now uncover the structure implied by M-theory, as follows:

(A) We have seen that M-theory has an elementary object: the M2 brane.
If we wrap this M2 on the compact circle x11, we get the string NS1 of IIA
string theory. But we can also choose to not wrap the M2 in this fashion – we
can let both of its spatial directions lie along the spatial directions x1, . . . x9 of
string theory. This gives a 2-brane in string theory, which we recognize as the
D2 brane; in particular, the tension (5.8) agrees with the tension (??) found for
the D2 brane.

(B) The M2 brane has a 3-dimensional worldvolume, and so will couple to
a gauge field CABC in the 11-d M theory. If we wrap one direction of the M2
along x11 to get the string, then one direction of this worldvolume is along x11.
The other two directions lie in the 10 directions of string theory, and give the
gauge field Bµν coupling to the fundamental string. If we do not wrap the M2
along the x11 direction, then all components of CABC lie along the 10 directions
of string theory, and give the gauge field Aµ1µ2µ3

coupling to the D2 brane.
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(C) Let us now ask that M theory possess electric-magnetic duality. The
dual of a p = 2 brane in a spacetime with dimension D = 11 will be a p′ brane
with

p′ = D − p− 4 = 5 (5.10)

Thus M-theory should have an M5 brane. We have two choices:

(i) We can wrap the M5 on the circle x11; this gives the D4 brane of IIA
string theory.

(ii) We can not wrap the M5 along x11; this gives the NS5 brane of IIA string
theory.

The gauge field C̃ dual to C couples to the M5 brane, and gives the gauge
field couplings to the D4 and NS5 in string theory.

We have already seen that the D0 brane of IIA arises from a graviton moving
along x11 in M-theory. This completes the content of IIA string theory, except
for one object: the D6 brane. The source of this brane in M-theory is a very
interesting object called a KK-monopole, and will play an important role in our
understanding of black holes.

5.1.2 The KK-monopole

The D0 brane arises from the pure gravity theory of 11-d; it does not involve
the particle content introduced through the M2 and M5 branes. We will now
see that its dual under electric-magnetic duality is also an object in pure gravity
– it arises as a topological soliton. This soliton is obtained by twisting the extra
circle x11 in a certain way. Since this circle is involved in the idea of Kaluza-Klein
higher dimensional theory, the monopole is called the Kaluza-Klein monopole,
or the KK-monopole for short.

We proceed in the following steps:

(A) The structure of the KK monopole will not involve 6 of the noncompact
spatial directions of M-theory. Thus let the metric in these directions be trivial

ds2 →
d∑
i=1

dxidxi (5.11)

Whatever structure we make in the remaining directions will stretch uniformly
along these 6 spatial directions; this will generate a D6 brane in IIA string
theory.

(B) In the remaining 3 noncompact directions, introduce polar coordinates
r, θ, φ. The monopole described below will be a localized object centered around
r = 0. For the next steps we will focus only on the directions r, θ, φ and x11.
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(C) Consider any given value of r. The directions θ, φ form a sphere S2.
Imagine dividing this S2 into a north and a south hemisphere.

At each point of this S2 we have a copy of the circle x11; let us parametrize
this circle by a coordinate 0 ≤ ξ < 2π. For all the circles over the North
hemisphere, mark a point corresponding to ξ = 0. Do the same for the south
hemisphere.

(D) We now wish to glue the North and South hemispheres at the equator.
In this glueing, the x11 circle over each point of the equator on the North side
will glue to the corresponding circle at the equator on the south side. The
simplest possibility is to perform this gluing by aligning the χ = 0 points on the
North circles with the χ = 0 points on the corresponding South circles. If we do
this, we will recover the original flat spacetime of 10+1 dimensional M theory
compactified on a circle. But we can make different gluing, as follows.

Start with the point φ = 0 on the equator, and glue the North and South
circles while aligning the points χ = 0. Now move to a point φ > 0. At
this point, perform the gluing after a rotation of the South circle; thus the
point χ = 0 on the North will be aligned with the point χ = φ on the South.
Proceeding in this way all around the equator, we find that the point φ = 2π is
glued with a 2π rotation between the North and South circles. This is of course
equivalent to no rotation at all; thus it coincides with the gluing we started with
at φ = 0, as it should.

(E) The above gluing process twists the circle x11 nontrivially over the S2

at radius r. We call this a Hopf fibration of a circle S1 over S2. If we had taken
the trivial gluing mentioned above, then we would get a simple product space
S1 × S2. With the twist, the manifold we get from the directions θ, φ, x11 is
topologically a 3-sphere S3. This fact is not immediately obvious, but can be
seen from the explicit metrics we will give below.

(F) While we have created a smooth change of topology at each value of
r > 0, it may seem that we will get a singularity at r = 0. This is because the
equator in the above construction will get smaller as r → 0. The x11 circle will
to rotate by 2π over this small length, so it will generate diverging gradients at
r = 0.

But as it turns out, there is no singularity at r = 0. At each r the surface
formed by θ, φ, x11 is topologically S3. As we go to smaller r, the θ, φ directions
become smaller. Suppose we also make the x11 circle shrink in length as r → 0.
Then we get a set of nested spheres S3, with size that is getting smaller as
r → 0. This gives a smooth four dimensional space, where r is still the radial
direction and the S3 gives the angular sphere. Thus the full spacetime will be
a smooth manifold with a topological ‘knot’ in it; this geometry is called the
KK-monopole.

(H) We can make an anti-monopole by reversing the direction of the twist.
Thus in step (D), the point χ = 0 on the North will be aligned with the point
χ = −φ on the South.
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5.1.3 The metrics of D0 and D6 branes

When we perform a dimensional reduction to 10-d string theory, the KKmonopole
will generate D6 brane. To see how this is the magnetic dual of the D0 brane,
let us look at the metrics describing the D0 and D6 branes.

Metric of the D0 brane

The D0 brane arises from a massless graviton travelling at the speed of light in
the direction x11. There are two kinds of metrics that we can write

(i) The metric of a massless point particle moving along x11.

(ii) The metric if a line of massless particles distributed uniformly along x11,
each moving along x11.

The metric is known in each case; it is called the Aichelberg-Sexl metric.
Taking the line of particles as in (ii) is called ‘smearing the source’ along the
x11 direction. When a large number of particles in involved, as in black holes,
(ii) is a more natural metric to consider. It is given by

ds2 = −dt2 + dx211 +
P

r7
(dt+ dx11)2 +

9∑
i=1

dxidxi (5.12)

where r = (
∑9
i=1(xixi))

1
2 . The parameter P characterizes the strength of the

source; the letter P stands for the fact that this source carries momentum in
the x11 direction.

In the dimensionally reduced IIA theory, we have a gauge field Aµ arising
from the metric components g11µ. At large values of r, we have

A0 ≈ g11,0 ≈
P

r7
(5.13)

Thus the gauge field Aµ arising from g11µ is the field coupling to the D0 brane.
The field strength corresponding to (5.13) will have the components F0r, so the
D0 is an electrically charged particle producing an electric field ~E = E(r)r̂.

The metric of the D6 brane

The field strength of the D0 brane had the components F0r. The dual field
strength F̃ defined as (4.21) will then have components only in the angular
space directions, and the gauge potential Ã can also be taken with components
only in these angular space directions. Thus the magnetic dual of the D0 brane
should produce a potential of this nature.
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Let us now write down the metric which was described qualitatively in sec-
tion 5.1.2:

ds2 =
1

1 + Q
r

[dx211 +Q(1− cos θ)dφ2] + (1 +
Q

r
)[dr2 + r2(dθ2 + sin2 θdφ2)] +

6∑
i=1

dxidxi

(5.14)

This metric is a solution of the Einstein equations in vacuum; i.e., with no source
of energy momentum. Let us note the relevant features of this metric:

(i) At large r, the gauge field has the component

Aφ ≈ g11,φ ≈ Q(1− cos θ) (5.15)

Thus its components are in the angular space directions, and in fact this is
exactly the gauge field expected for a magnetic monopole.

(ii) As r → 0, the length of the x11 direction vanishes:

1

1 + Q
r

dx211 ≈
r

Q
dx211 (5.16)

so the x11 circle pinches off at r = 0. But the direction x11 is not orthogonal to
the φ direction, and we need to use alternative coordinates to make the physics
clearer near r = 0.

(iii) These alternative coordinates are:

r̃ =
√
r, 0 < r̃

θ̃ = θ
2 , 0 ≤ θ̃ < π

2

ỹ = x11

2Q , 0 ≤ ỹ < L

2Q

φ̃ = φ− x11

2Q , 0 ≤ φ̃ < 2π

(5.17)

In these coordinates the metric near r = 0 becomes

ds2 ≈ 4Q[dr̃2 + r2(dθ̃2 + cos2 θ̃dỹ2 + sin2 θ̃dφ̃2)] (5.18)

which is the metric of R4 in polar coordinates. Thus the solution (5.14) is
regular at r = 0.
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5.1.4 The action of M-theory
We have seen that M-theory has a very simple structure. The only branes are
M2 and M5. They both couple to one gauge field CABC ; one electrically and
one magnetically. The action thus involves just the metric and CABC

S =
1

(2π)8l9p
[

∫
d11x
√
−g[R− 1

48
FABCDF

ABCD]

+
1

6

∫
d11x εA1A2A3A4A5A6A7A8A9A10A11C

A1A2A3FA4A5A6A7FA8A9A10A11

(5.19)

Here F is the field strength of C. The last term is a Chern-Simmons (CS) term;
its existence and precise coefficient can be deduced from T-duality applied to
metrics with off diagonal components gij . Such CS terms will play an interesting
role in the breaking of the no-hair theorem in string theory.

Despite the conceptual simplicity of M-theory, it is hard to compute with at
the quantum level. This is because there is no small parameter that can be used
to define a perturbation series. If we compactify a circle x11, then the size of this
circle gives the dimensionless coupling g, and we can do useful computations in
IIA string theory in the domain g � 1.
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Bound states in string theory

We have seen that string theory requires a definite set of elementary objects,
with definite tensions. To make black holes, we will have to make a bound state
of a large number of these elementary objects. As we will now see, the rules
for binding are also simple and intuitive, and the binding energies are given by
simple expressions.

6.1 Bound state of D0 branes

We get a D0 brane of IIA string theory by taking a graviton hij and giving it
momentum along x11; thus the graviton has a wavefunction (eq.(??))

|ψ〉1 ∼ ei
x11

R11 (6.1)

where R11 is the coordinate radius of x11. This graviton has energy and mo-
mentum

E1 = P1 =
1

R11
(6.2)

Now consider the state
|ψ〉n ∼ ein

x11

R11 (6.3)

This has momentum and energy

En = Pn =
n

R11
(6.4)

In IIA theory, this wavefunction has the charge of n D0 branes. Thus we find
the following:

(i) There exits a bound state where n D0 branes bind together, for all values
of n.

(ii) This bound state has zero binding energy, since

En − nE1 = 0 (6.5)

Such bound states are called ‘threshold bound states’, since they can be broken
with zero expense in energy.
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(iii) The graviton hij carried indices i, j, so the D0 brane had a variety of
possible spin states. We could also replace the graviton by any of the other
massless quanta, like Bij , φ or the gauge fields Ai1,...ik . Overall one finds 128
such bosonic states and 128 fermionic states. Thus the D0 brane comes in a
multiplet of 256 states.

This number of possibilities for spin does not depend on n; the wavefunctions
(6.3) are made with the same quanta as the wavefunctions (6.1). Thus we find
that the degeneracy of bound states with charge n remains 256 for all values of
n.

Since all elementary objects can be mapped to each other by dualities, the
degeneracy of the bound state of n branes of the same type will be

N = 256 (6.6)

6.2 Bound states of strings

We have seen that all elementary objects in string theory are related by T,S
dualities. Thus the existence of threshold bound states of D0 branes implies
that we get similar threshold bound states for each brane. Let us look at this
bound state for the elementary string NS1, since in this case the bound state
has a pictorial description which will be very useful later.

Take IIA string theory, and compactify the direction X9 to a circle of length
L. Let us wrap an elementary strings on this circle. The energy of this state
will be

E1 = TNS1L (6.7)

Now take the string and wrap it n times around the circle, before joining its
endpoint to its starting point. This is called a ‘multiwound’ string. The energy
of this string is

En = TNS1nL = nE1 (6.8)

so we again get a threshold bound state.

6.3 The D2D0 bound state

Consider IIB string theory, and compactify two directions: x8 to a circle of
length L8 and x9 to a circle of length L9. The compact directions thus form a
torus T 2.

Wrap a D1 brane along x8, and a D1 brane along x9, as shown is fig.??(a).
The total energy of this configuration is

ET = TD1L8 + TD1L9 (6.9)

In fig.??(b) we depict the bound state of these two D1 branes. It carries the
same charges: winding of one unit along x8 and winding of one unit along x9.
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Clearly, the D1 brane wound on the diagonal cycle of the T 2 is the lowest energy
state with these charges; it has energy

Ebound = TD1

√
L2
8 + L2

9 (6.10)

The binding energy is nonzero in this case

Ebinding = ET − Ebound > 0 (6.11)

Each of the two initial D1 branes had 256 possible spin states (by eq.6.6)).
The bound state is another D1 brane wrapped on a circle, so this also has the
degeneracy

N = 256 (6.12)

We can again take this example and apply T,S dualities to obtain other
bound states. For example, let us apply a T-duality in the direction x8. This
will bring us to IIA theory, with the following objects in then initial state

(i) The D1 brane along x9 becomes a D2 brane wrapping x8x9. Let L′8, L′9
be the lengths of the cycles after the duality. Then the energy of the D2 is

ED2 = TD2L
′
8L
′
9 (6.13)

(8) The D1 brane along x8 becomes a D0 brane. Its energy is

ED0 = TD0 (6.14)

(iii) The energy of the bound state is

Ebound =
√
E2
D2 + E2

D0 (6.15)

This bound state again has a degeneracy

N = 256 (6.16)

If we had more compact directions, then we could do additional T-dualities
and get other brane bound states from the D2D0 bound state. A T-duality
along x7 will give D3D1, and similarly we can get D4D2, D5D3, and D6D4. All
these combinations will have branes whose dimensions differ by 2: We have a p
brane bound to a p+2 brane, with all the directions of the p brane contained in
the p+ 2 brane. All such bound states will have their energy given in the form
(??) and the degeneracy (6.16).
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6.4 The D4D0 bound state

Take IIA string theory for concreteness, and wrap compactify x9 to a circle of
length L9. Wrap an elemnetary string NS1 along this circle; this has energy

ENS1 = TNS1L9 (6.17)

Now take a momentum mode P along x9; this has energy

EP =
2π

L9
(6.18)

We wish to find the bound state of these two objects. This bound state will rep-
resent momentum moving along a string. There is a simple geometrical picture
of this bound state: the string carries the momentum in the form of travelling
waves, as depicted in fig.??(b). Recall that the string has no longitudinal vi-
bration modes; thus the travelling wave involves only transverse deformations
of the string.

We had seen that small transverse deformations Xi were described by a
massless scalar field defined on the string. We can take an excitation of this
scalar field with waveform

|ψ〉 ∼ e2πi
x9

L9 (6.19)

This has energy and momentum along x9 given by

E = P =
2π

L9
(6.20)

The total energy of the bound state is then

Ebound = TNS1L9 +
2π

L9
(6.21)

We did this computation for small amplitiudes of the transverse deformation,
but it is actually an exact expression for all amplitudes of deformation. We now
observe that

Ebound = ENS1 + EP (6.22)

so we again have a bound state at threshold.
We have seen that this NS1P bound state can be dualized to D4D0, or D5D1.

Thus a D1 brane will bind at threshold to a D5 brane is it lies in the plane of
the D5 brane.

What is very interesting is the degeneracy of such bound states, which we
now investigate. Suppose we have one NS1 wrapped as in (6.17), but we bind
to it n units of the momentum P. Thus the value of the energy and momentum
along x9 is

E = P =
2πn

L9
(6.23)
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The wavefunction (6.19) carried one unit of P, but we can also have wavefunc-
tions that carry any given integer k of momentum:

|ψk〉 ∼ e2πik
x9

L9 , k = 1, 2, . . . (6.24)

Such an excitation has
E = P =

2πk

L9
(6.25)

The state (6.24) has a simple interpretation. The excitations of the D1 are
described by transverse vibrations. Consider vibrations in the harmonic k; i.e.,
a vibration with wavelength λ = L9/k. We can quantize these vibrations, and
then (??) described a single quantum of excitation with this wavenumber.

We now see that we can obtain the E and P in (6.23) by taking an excitation
(6.24) with k = n. But we can also get the same overall E,P by taking any set
of excitations k1, k2, . . . kj where

k1 + k2 + . . . kj = n (6.26)

Each such partition of n gives a possible state with the quantum numbers (6.23).
Thus the bound state of NS1 and P has a degeneracy that can be very large if
n is large. The number of partitions N for n� 1 is given by

N ∼ e2π
√

n
6 (6.27)

Thus the degeneracy of the NS1P bound state can be very large for large values
of n. This fact will be crucial for us, since this large degeneracy will furnish the
entropy of black holes. So let us compute the degeneracy more carefully. We
have not one but 8 transverse directions of oscillation. Each direction gives a
different ‘flavor’ of excitations, so the total momentum n will have to be divided
among these flavors. We have 8 fermionic excitations as well, and it turns out
that each fermion acts like half a boson. Thus the total effective number of
flavors is

f = fB +
1

2
fF = 8 + 4 = 12 (6.28)

The total number of possible states are obtained by multiplying the number of
states for each flavor. The excitation level for each flavor is n/f . This gives for
the number of states

N ∼
(
e2π
√

n
6f

)f
= e2π

√
fn
6 (6.29)

Setting f = 12 gives
NNS1P ∼ e2π

√
2
√
n (6.30)

We have taken n units of P charge, but thus far kept only one unit of NS1
charge. We will now see that when we have n1 units of NS1 winding, we get a
remarkable feature called fractionation, which will be vital in our study of black
holes.
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6.5 Fractionation

Let us make a bound state with n1 units of NS1 winding along x9, and np units
of momentum along x9. Let the length of the x9 We can make an intuitive
picture of this bound state, as follows:

(i) The n1 units of NS1 winding join up into a multiwound string, with total
length

LT = n1L (6.31)

(ii) The momentum P is again carried by transverse vibrations of this string.
The wavefunctions (6.24) were periodic under x9 → x9 + L. But now the
waveform need to be periodic only under

x9 → x9 + LT (6.32)

The wavefunctions for the excitations then have the form

|ψk〉 ∼ e2πik
x9

LT (6.33)

Such an excitation has
E = P =

2πk

LT
=

2πk

n1L
(6.34)

(iii) This is a very interesting phenomenon, so let us examine it in more
detail. A momentum mode P by itself comes in units of

E = P =
2π

L
(6.35)

But when it is bound to n1 strings, it can exist in fractional units, which are
multiples of

E = P =
2π

n1L
(6.36)

Thus a P mode ‘breaks up’ into n1 pieces when it is bound to n1 strings. These
fractional pieces can then join up in any way: if k of these fractional units join
up, then we get an excitation with the quantum numbers (??).

(iii) We have np units of momentum, which give

P =
2πnp
L

=
2πn1np
LT

(6.37)

Note that np must be an integer; we cannot have a net fractional number of
units of momentum. This is because the integrality of np follows from a basic
quantum mechanical principle: the full wavefunction of the state should be
invariant under

x9 → x9 + L (6.38)
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Thus while individual excitations of the string can have fractional units of p
charge, the physically allowed states are only those where the net momentum
from all excitations is an integer.

(iv) We can now count the degeneracy of the bound state of n1 strings and np
units of momentum. The states with these quantum numbers have excitations
of the form (6.34), with ∑

j

kj = n1np (6.39)

Thus the degeneracy is (6.30)

N ∼ e2π
√
2
√
n1np (6.40)

This degeneracy grows very rapidly with the charges n1, np, and will form the
prototypical example of black hole entropy.

6.6 Nonextremal bound states

The bound states we studied above had E = P . Since P is the momentum
charge„ we can say that we have E = Q, which gives an extremal or BPS state.
But we can also make bound states that are not extremal. The wavefunctions
(6.24) has momentum in the positive direction x9, but we can consider excita-
tions with wavefunctions

|ψk〉 ∼ e−2πik
x9

L9 , k = 1, 2, . . . (6.41)

These describe travelling waves moving in the negative x9 direction, and have

E = −P =
2πk

L9
(6.42)

We can take some excitations moving in the positive x9 direction and some
moving in the negative x9 direction. Then we get states with

E > |P | (6.43)

which corresponds to nonextremal states. Recall that even though the individ-
ual excitations can have fractional momenta, the overall momenta must be an
integer.

We can now compute the ‘energy gap’ of the NS1 bound state: the minimum
energy ∆E required to excite the bound state without addition of any net charge.
First consider the singly wound string; i.e., n1 = 1. Since we want no net P
charge, we add the lowest allowed energy excitations in each of the directions
along the string, getting

∆E1 =
2π

L
+

2π

L
=

4π

L
(6.44)
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Now consider the NS1 bound state with n1 > 1. We find

∆En1
=

2π

n1L
+

2π

n1L
=

4π

n1L
(6.45)

Thus we see that the energy gap drops when n1 in increased; i.e., it needs less
energy to excite a bound state of many strings compared to a single string. This
fact will be vital to understanding how large bound states – representing large
black holes – can absorb particles of very long wavelengths.

6.7 Summary

We see that in many ways string theory is simpler than the field theories of
other interactions. We still do not have a good way of computing the binding
energy of quarks and gluons to obtain the mass of a proton. But the binding
energy of string states is given by simple geometric expressions, and a few special
examples can be used to study all other cases through the use of T,S duality
maps.
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The open string picture of D-branes

We have found the D-branes of string theory by enforcing the T and S dualities
as exact symmetries. But historically, they were discovered in a different way:
by looking at the theory of open strings.. This perspective adds a lot of insight
into the physics of D-branes, as we will now see.

7.1 Open strings

So far we have thought of strings as closed loops; vibrations can then run clock-
wise or anticlockwise around this loop. But we can also consider an open string,
which is just a line segment of finite length. What does such a string represent?

Before we can answer this question, we note a potential problem with the
open string. Just like with the closed string, the excitations of the open string
will be waves that travel along the string. But what happens when a traveling
wave reaches the end of the string? If its energy just flows off the string, then
the open string would not be a consistent object by itself; we would have to
consider the open string along with whatever entity took the energy that flowed
off the string.

There are two ways to prevent energy flowing off the end of the string:

(i) We can let the endpoint move at the speed of light. This is called the
Newmann (N) boundary condition. As the travelling wave approaches the end
of the string, its motion slows down due to time dilation from the high velocity
of the string near its endpoint. Thus the energy never reaches the endpoint
itself.

(ii) We can require that the endpoint be fixed at a point in space. This is
called the Dirichlet (D) boundary condition. Since the endpoint does not move,
the travelling wave just reflects off the endpoint and returns to the interior of
the string.

An open strings with N boundary conditions would be an elementary object
moving in spacetime, just like any other object. But what would be the meaning
of a string with D boundary conditions? This string has its endpoints fixed at a
given location, say ~x = 0. Choosing such a location would break the translation
symmetry of spacetime, which seems an unnatural thing to do. Yet the open
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string with D boundary conditions exists, and if we find no reason to exclude
it, then we must incorporate its states into our theory.

In 1994 Polchinski discovered an elegant interpretation for strings with D
boundary conditions. Suppose there was a heavy object sitting at the location
~x = 0. Then the open string with ends at ~x = 0 would represent an excitation of
this heavy object. Since the excitations are given by open strings with Dirichlet
boundary conditions, we call this object a Dirichlet-brane, or D-brane for short.

In the above instance the object would be a D0 brane; since the open strings
all end at a point ~x = 0, the heavy object must be a pointlike object at ~x = 0.
But we can also obtain other branes as follows. We require that the endpoints
of the open string have x1, . . . x8 = 0, but that x9 be arbitrary. Thus the end
points can slide along a 1-dimensional line, giving a D1 brane along x9. We say
that we have D boundary conditions along x1 . . . x8, and N boundary conditions
along x9.

By choosing a different number of directions to be of D type, we get branes of
different dimensions. A careful examination of the properties of these D-branes
reveals that ew get D0,D2,D4,D6 brane sin IIA string theory and D1,D3,D5
branes in IIB theory. Their tensions are also given by the values (??) that we
had found by using T,S dualities.

The discovery of D-branes was welcomed because it filled a hole in the overall
picture of string theory. The states of the elementary string gave the gauge
fields Bij , as well as the gauge fields Ai1,...ip+1

for various p. The gauge field
Bij coupled to the elementary string NS1. But there seemed to be no object
that coupled to the Ai1,...ip+1

.
It is not a priori required that a gauge field in a theory have charged particles

to couple to it. For example we can imagine Maxwell”s theory of ~E, ~B fields in
a world with no charged particles like electrons. But it made an elegant picture
when the D-branes were found with just the right dimensions to couple with
the gauge fields of the theory.

The D-branes have tensions T ∼ 1/g. Thus when we do perturbation theory
around g = 0 they appear as very heavy objects. This is why they were not
found earlier, and were eventually discovered through their possible excitations.
These excitations have low energy, and so are captured by open string states.

Let us now study the open string states in more detail.

7.2 Open strings and gauge theory

Consider IIB theory and take a D3 brane lying along the space directions
x1, x2, x3. The excitations of this brane will be given by open strings whose
endpoints have N boundary conditions along x1, x2, x3 and D boundary condi-
tions for x4, . . . x9.

Just like the closed string, the open string has an infinite tower of energy
eigenstates. The states of most interest however are the states with lowest
energy. In many ways the open string behaves like half a closed string. Instead
of the left and right moving waves on the closed string, we have just one set of
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vibration modes for the open string; the modes reflect off the ends of the string
and are therefore described by standing waves. There is again a Casimir energy

E = −1

2

1

ls
(7.1)

The lowest allowed states are given by acting with a fermion vibration mode ψi
which adds energy E = 1

2ls
, which makes the total mass

m2 = 0 (7.2)

This massless excitation moves at the speed of light along the D3 brane; let
this motion be along the direction x1. The fermion index i takes 8 transverse
values, i = 2, . . . 9. These massless open strings attached to the brane have the
following interpretation:

(i) The open strings with i = 4, . . . 9 represent a transverse deformation of
the brane in the direction xi. This transverse deformation travels along the
brane at the speed of light.

(ii) The open strings with i = 2, 3 represent gauge fields Ai along the D3
brane. We recall that gauge field excitations are massless and transverse, so Ai
should have an index along i = 2, 3 but not along i = 1.

From our understanding of the action of D-branes we expected transverse
vibrations to move along the brane at the speed of light. What we now learn in
addition is that the D-branes carry a gauge field along their surface.

In terms of this gauge field, we can obtain an intuitive picture of some brane
bound states. Consider the D2 brane, wrapped along the directions x1, x2.
Let these directions be compactified to circles with lengths L1, L2 respectively.
There is a gauge field A on the surface of theD2 brane. If we set A = 0, the we
get just the unexcited D2 brane. But we can also have a nonzero field strength
F12 for this gauge field. There is a natural quantization condition for F :∫

dx1dx2F = 2πn (7.3)

where n is an integer. Such an F on the D2 describes n D0 branes bound to
the D2 brane, and analysis of the D-brane action gives the energy (6.15) for this
bound state.

7.3 Multiple D-branes

So far we have considered the excitations of a single D-brane. The most re-
markable features of D-branes arise, however, when we consider more than one
D-brane.
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For concreteness take IIB theory, and a set of n D3 branes. We let the indices
a, b . . . run over 1, . . . n. Let each brane stretch along x1, x2, x3, and have the
position ~x = 0 in the transverse space x4, . . . x9.

The open string has two end points. Let the first endpoint be on brane a
and the second endpoint on brane b. Thus the open string is labelled by an
index pair (ab). This is true for all states of the open string. But let us for the
moment focus on the massless states discussed above. We have the following:

(i) The transverse excitations xi are now given by a matrix xiab with indices
a, b = 1, . . . n.

(ii) The gauge field excitations Ai with indices along the brane are now given
by matrices Aiab.

A matrix valued gauge field has a natural interpretation: it is the gauge
field for a non-abelian gauge theory. In fact we find that the entire low energy
dynamics of the set of n D3 branes is given by such a gauge theory. The
restriction to low energies implies that we only excite the massless open strings.
The open string states form a supersymmetric set, so we have as many fermionic
states as bosonic states. The supersymmetric theory is called N = 4 Yang-Mills
theory, where the term N = 4 specifies the amount of supersymmetry in the
theory. In such a theory, we have the gauge fields Aiab, the fermionic fields, and
a set of scalars that exactly match onto the xiab. The action governing the low
energy dynamics of n D3 branes is then just the N = 4 super-Yang-Mills action

S = (7.4)

It is remarkable that the entire low energy dynamics of the branes is captured
in such an elegant form. But even more striking is the physical implication
of such an action. In ordinary particle theory, each particle has 3 degrees of
freedom from its possible translations, and so n particles will have 3n degrees
of freedom. With D-branes, the diagonal elements xiaa describe the motion of
the ath brane in the transverse direction i; this is analogous to the motions
permitted for ordinary particles. But we also have the off diagonal elements in
xiab, so that the total number of degrees of freedom grows as ∼ n2. Thus the
entire concept of position xi has been generalized to a matrix. Novel features
like this will make brane dynamics very different from particle dynamics when
n is large.

7.4 S-duality

We have seen that if we have a D0 brane, then a T-duality converts this to
a D1 brane. But a D1 brane is a 1-dimensional object, just like the string of
string theory. Thus we have two 1-dimensional extended objects, and we can
ask: is there any relation between these two objects? In particular, is there a
symmetry which allows us to interchange thesde two objects, so that either one
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can be considered as the ‘fundamental string’ of string theory? We will see that
the answer is yes; the relevant symmetry is called S-duality. Let us now study
this duality, which along with T-duality, generates the full set of dualities of
string theory.

The elementary string had a tension

TNS1 =
1

2πl2s
(7.5)

while the D-sting has tension

TD1 =
1

2πl2sg
(7.6)

These do not seem to be related by a symmetry, but as we will now see, that is
just a reflection of the fact that we are using the string metric gSµν to compute
the tensions. The string metric arose as the natural one to exhibit T-duality
which mapped a graviton to a fundamental string (NS1); thus the string metric
does not treat the NS1 and D1 strings symmetrically. We will see that when we
use the Einstein metric, the two tensions do have an immediately recognizable
symmetry. But before we do that, let us pause for a moment to clarify the
meaning of measuring the tension in different metrics.

7.4.1 Measuring tensions
Consider a particle with mass m. We think of m as being a certain number
when measured with a certain choice of units. But how do we set up these units
from first principles, especially in a theory of gravity where spacetime is curved
and no standard choice of coordinates is available?

There are three steps in defining units:

(a) First we put coordinates on our manifold. These are just numbers, used
to label different points of spacetime. thus if we have a compact direction x, we
map choose coordinates so that its coordinate range is

0 ≤ x < A (7.7)

where A is just a number, with no physical meaning by itself.

(b) We now take a metric gab on this spacetime, which defines lengths
through ds2 = gabdx

adxb. The length of the coordinate interval (7.7) becomes

L = (gxx)
1
2A (7.8)

This is a physical length. We can change the coordinate length A, which will
induce a compensatory change in the metric gxx, but the value of L will remain
unchanged in this process. Note however that so far the number L has no
relation to any physical object in the theory.



58 LECTURE NOTES 7. THE OPEN STRING PICTURE OF D-BRANES

If we have a scalar field φ in our theory, then we can define different metrics

gαab = eαφgab (7.9)

which will give different values Lα in place of (7.8).

(c) Now consider a physical object in the theory, for example a string. In
its ground state, the vacuum fluctuations of this string give it a certain nonzero
size. Define some way to measure this size, and call it ls, the string length.

We can now measure lengths in units of this string length ls. For example
if we have a mass m, then its Compton wavelength ∆x through

m∆x = 2π (7.10)

If ∆x = ls, then we can write

m =
2π

ls
(7.11)

getting a mass that is ‘string scale’.

(d) Let us now relate step (b) to step (c). Consider a string in its ground
state at some point x1. Let its coordinate length be ∆x. Using the metric gab,
this corresponds to some length L1. But now consider a string in its ground
state at a different point x2. Again measure the length of this string; let it be
L2. The question now is: will the numbers L1 and L2 be the same?

The answer is: in general they will not. Suppose the tension T depended
on φ, and φ had different values at x1, x2. Then the size of the string would be
different at these two points, and the string length ls defined through T would
be different as well.

But we can choose a value α = αS , and use the corresponding metric

gSab = eαSφgab (7.12)

to measure lengths. Suppose that with this choice, the length LS of the string
in its ground state was the same at all points x. Then this metric would be
particularly suited to studying strings, and would be called the ‘string metric’.

(e) We could consider the D-string instead, and use its size to define a ‘D-
string length’ ld through TD1 = (2πl2d)

−1. We find

ld = lsg
1
2 (7.13)

Since g can be different at different points, the ratio ld/ls is not in general
a constant. We can define a ‘D-string metric’ where ld has the same value
everywhere, but this metric will be different from the string metric.

(f) Suppose we have found the mass of a particle in units of the string length

m =
a

ls
(7.14)
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where a is a pure number. Now suppose we define a metric different from the
string metric

gβab = eβφgab (7.15)

We have see that the length of a string Lβ measured using this metric will be
different at different points in this new metric

Lβ = e
β
2 φls (7.16)

But we can define a new fundamental length, whose length l is related to the
string length ls through

l = e−
β
2 φls (7.17)

Then the length of this object will appear to be the same everywhere when we
use the metric gβab. We can now express the mass m of eq.(7.14) in terms of this
new length l

m =
a

ls
=
e−

β
2 φa

l
≡ a′

l
(7.18)

Thus the mass measured in the new units l is related to the mass measured in
the old units ls by

a′

a
= e−

β
2 φ (7.19)

The tension of a p brane has units (length)−(p+1), so it changes as

T ′

T
= e−

(p+1)
2 βφ (7.20)

Let us now apply this to the derivation of S-duality. The type IIB action is
given in (??). We define the Einstein metric

gEab = e−
1
2φgSab (7.21)

This gives the action (??)

S =
B

16πG

∫
d10x

√
−gE

(
[R]E −

1

2
φ,cφ

,c

)
(7.22)

This action has the symmetry

φ → −φ
gEab → gEab (7.23)

This is a symmetry of then classical action. For it to be a symmetry of the full
quantum theory, it must also be a symmetry of the objects in the theory; i.e. a
symmetry of the brane tensions. The change (7.21) gives β = − 1

2 in (7.15). The
tension (7.5) of the NS1 brane (the elementary string) becomes, in the Einstein
frame

T ′NS1 = e
1
2φTNS1 =

1

(2π)
g

1
2 (7.24)
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and the tension (7.6) of the D1 brane becomes

T ′D1 = e
1
2φTD1 =

1

(2π)g
1
2

(7.25)

Under the symmetry φ→ −φ, we get g → g−1, and we see that

T ′NS1 ↔ T ′D1 (7.26)

Thus the fundamental string and the D-string get interchanged under S-duality.
Now consider the D3 brane of the IIB theory, which has the tension

TD3 =
1

(2π)3g
(7.27)

In the Einstein frame, this tension becomes (using (7.20)

T ′D3 = eφ
1

(2π)3g
=

1

(2π)3
(7.28)

Thus under the S-duality map g → g−1, the D3 brane remains unchanged.
Finally, consider the D5 brane, which has the tension

TD5 =
1

(2π)5g
(7.29)

In the Einstein frame, this tension becomes (using (7.20)

T ′D5 = e
3
2φ

1

(2π)3g
=

1

(2π)3
g

1
2 (7.30)

Under an S-duality g → g−1, this changes to

T ′ =
1

(2π)3
g−

1
2 (7.31)

Thus we need a new object in the theory which is a 5-brane, and which has a
tension T ′ in the Einstein frame. We will call this object the NS 5-brane. Using
(7.20), we can convert its tension (7.31) back to the string frame

TNS5 = T ′e−
3
2φ =

1

(2π)3g2
(7.32)

In quantum field theory, and object with a mass scaling with the coupling as
g−2 is called a soliton. Such objects arise as localized smooth solutions of the
classical field equations. Thus the NS5 brane is sometimes called the solitonic
brane of string theory.
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7.5 The D1D5 bound state

We start with type IIB string theory, which lives in 10-d. We compactify five
directions to circles. We will treat one of these directions differently from the
rest, so we term the compactification t4×S1. The T 4 is formed by the directions
x7, . . . x9, while the S1 is along x5. The directions x0 ≡ t and x1, . . . x4 remain
noncompact.

We take a bound state of two kinds of charges:

(i) We wrap an elementary string (i.e., and NS1 brane) along the S1 direc-
tion, with winding number nw.

(ii) We have np units of momentum along the S1.

As we have seen above, this NS1-P bound state is described by a string
carrying vibrations. We will now perform a set of duality maps:

(a) We perform an S-duality. The NS1 branes becomes D1 branes, while the
momentum mode P remains unaffected. Thus we get a D1-P bound state in IIB
theory.

(b) We perform T-dualities along the directions x6, x7, x8, x9. Under each
such duality, the D1 brane acquires an additional direction, so that we end up
with D5 branes wrapping along x5, x6, x7, x8, x9. The P modes remain unaf-
fected, so we get a D5-P bound state. Since we have performed an even number
of T-dualities, we remain in IIB string theory.

(c) We perform an S-duality. This changes the D5 branes to NS5 branes,
while the P mode remains unaffected. Thus we get an NS5-P bound state in
IIB theory.

(d) We perform a T-duality in the direction x5. The NS5 branes are unaf-
fected by this duality, while the P modes change to NS1 along x5. Thus we get
an NS5-P bound state, where the NS5 extend along x5, x6, x7, x8, x9, and the
NS1 extend along x5. The T-duality has moved us to IIA theory, so we get a
NS5-NS1 bound state in the IIA theory.

Thus we see that we can change from one bound state – NS1-P – to another
bound state – NS5-NS1 – by a sequence of dualities. We have already studied
the NS1-P bound state in some detail. Let us use the above dualities to get a
heuristic picture of the NS5-NS1 bound state:

(i) We started with nw units of winding and np units of momentum. Thus
in the NS5-NS1 bound state the number of 5-branes and 1-branes is given by

n5 = nw

n1 = np (7.33)
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(ii) In the NS1-P bound state, each unit of momentum broke up into nw
fractional units, with each fractional unit being 1/nw of a full unit of momentum.
Thus after the dualities, each NS1 brane should break up into n5 fractional units,
with each fractional unit being a string with 1/n5 times the tension of a full
NS1.

(iii) In the NS1-P system the total number of fractional momentum units
was N = nwnp. In Similarly, in the NS5-NS1 system the number of fractional
NS1 branes will be

N = n5n1 (7.34)

(iv) In the NS1-P system the N fractional units of momentum were grouped
into sets containing ki fractional units

k1 + k2 + · · · = N (7.35)

Here the number ki described the oscillator a†,µki acting on the unexcited state
of the string.

In the NS5-NS1 system the fractional strings will be similarly grouped into
sets containing ki fractional strings, with

k1 + k2 + · · · = N (7.36)

Each group with ki strings is a ‘bound unit’ of fractional strings. With ordinary
strings, we had a simple picture of their bound state: we just obtained a multi-
wound string. Thus the group with ki fractional strings will be described by a
fractional string that winds ki times around the S1 direction x5 before closing.
Each such bound unit will be called a component string, to distinguish it from
an ordinary string which lives outside the 5-branes.

(v) In the NS1-P system, each oscillator a†,µki also carried a polarization
µ = 1, . . . 8 which ranged over the 8 directions transverse to the NS1. In the
NS5-NS1 system, each component string will carry a similar polarization. It will
however be more convenient to use a different notation for this polarization, as
described below.

There are 8 spatial directions transverse to the direction x5. With out choice
of compactification, these 8 directions are broken into two sets: the 4 directions
x7 . . . x9 along the T 4 and the 4 noncompact directions x1, . . . x4. The 8 possible
values for the vector index µ can be broken into a 4-component vector in the
first set, and a 4-component vector in the second set.

Consider the 4-component vector in the T 4. This vector is a representation of
the rotation group SO(4)I , where the subscript I denotes the fact that these are
‘internal’ directions; i.e., directions along the compact T 4. The group SO(4)I
can be decomposed as

SO(4)I = SU(2)1 × SU(2)2 (7.37)
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In this decomposition, the 4-component vector becomes a spin 1
2 spinor under

each of the two SU(2) groups. Writing the corresponding spinor indices as A, Ȧ,
we label the 4 different allowed states as |ψI

AȦ
〉.

Now consider the 4-component vector in the noncompact directions. This
vector is a representation of the rotation group SO(4)E , where the subscript
E denotes the fact that these are external (i.e., noncompact) directions. The
group SO(4)E can be decomposed as

SO(4)E = SU(2)L × SU(2)R (7.38)

Here the subscripts L,R stand for ‘left’ and ‘right’ respectively; the reason
for this nomenclature will be explained later. Again, the 4-component vector
becomes a spin 1

2 spinor under each of the two SU(2) groups. Writing the
corresponding spinor indices as α, α̇, we label the 4 different allowed states as
|ψEαα̇〉.

Thus we can use our picture of the NS1-P bound state to get a heuristic
picture for the NS5-NS1 bound state. We depict these pictures in fig.??. In
fig.??(a), we have the NS1-P system, where the multiwound NS1 is carrying the
P charge as vibrations. Th vertical direction is x5, while the horizontal direction
describes x1, . . . x8. The vibrations are described by an excitation of the string

|ψ〉 = a†,µ1

k1
. . . a†,µnkn

|0〉 (7.39)

In Fig.??(b) we depict the corresponding NS5−NS1 state. The vertical direc-
tion is again x5, while the horizontal direction depicts the 4 directions x7, . . . x9
along the T 4. The oscillator a†,µ1

k1
in the NS1-P system gives a component string

with winding k1, which is shown as a multiwound strand in the figure. The po-
larization µ1 of the oscillator can be encoded in the spinor components AȦ, αα̇,
and this information is denoted by a spin arrow on the component string. The
total winding of all components strings is N = n5n1.
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