
1 The contrast between he fuzzball and wormhole paradigms

Below we explain briefly what fuzzballs are, and how the fuzzball paradigm resolves the
information puzzle.

1.1 What problem are we trying to solve?

The Hawking puzzle arises because (i) the semiclassical description of the hole appears to
be valid around the horizon because curvatures are low (ii) entangled pairs are created at
such a horizon, leading to an ever-rising Page curve. he small corrections theorem makes
this puzzle into a rigorous result: if (i) semiclassical dynamics holds around the horizon to
leading order and (ii) there are no relevant nonlocal Hamiltonian interactions between the
hole and its faraway radiation, then the Page curve cannot come down

A fuzzball is an object which does not have a semiclassical horizon; i.e., the local
low energy dynamics near the black hole surface departs by order unity from low energy
semiclassical dynamics. The fuzzball conjecture says that all microstates of all holes are
fuzzballs. Evidence towards this conjecture is found by using the full gravity theory – string
theory and constructing microstates of the hole. In all cases where it has been possible to
construct the microstate, one has found a fuzzball rather than the traditional hole with
horizon. The generic fuzzball is expected to be a quantum mess, but sometimes simple
supergravity solutions can be found when the dual CFT state has ‘many excitations in
the same mode’. The fuzzball radiates from its surface like a normal body, so there is
no information paradox. Gibbons and Warner explained how the structure of fuzzballs in
string theory bypasses various no-hair theorems of usual 3+1 gravity.

By contrast, in the wormhole paradigm one assumes that in the exact quantum gravity
theory the black hole radiates like a piece of coal; this is called the central dogma. One
then tries to show that this description as a piece of coal is somehow compatible with the
semiclassical picture of the hole with horizon. Both these aspects are very puzzling to the
fuzzball folks. Why are we assuming that the black hole in the exact theory is like a piece
of coal? After all, the whole point of the information puzzle was to show how quantum
gravitational effects changed the semiclassical hole to something that radiated like a piece
of coal. The second part is equally confusing. The small corrections theorem says that one
cannot make the piece-of-coal behavior compatible with a smooth horizon. The only way
out is to have nonlocal effects between the hole and infinity, so are the wormhole people
postulating such nonlocal dynamics in their exact quantum gravity theory? the issue has
been confused further by claims that different ways of taking low energy limits can yield
such nonlocality, but how this can happen has not been clear to the fuzzball community.

1.2 The essential quantum gravity effect

The essential question in the information paradox is: Why does the Hawking’s argument
break down when all it uses is dynamics around then horizon which is a region of low
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curvature?
In the fuzzball paradigm this question is answered by the dynamical effects of the

fuzzballs in the process of gravitational collapse. The gravitational vacuum has an impor-
tant component arising from virtual fuzzballs: the natural suppression of such fluctuations
for large size fuzzballs is offset by the large degeneracy of such fuzzballs. The formation
of closed trapped surfaces results in a stretching of these ‘extended size’ virtual objects,
leading to a breakdown of semiclassical dynamics and a transition over the crossing time
scale to on-shell fuzzballs.

By contrast in the wormhole paradigm it is generally argued that new effects somehow
appear at the Page time. For example a new Quantum Extremal Surface develops at this
Page time. In the proposed resolution of the ‘bags-of-gold’ problem it is argued that once
the entropy inside the hole becomes of order the Bekenstein entropy, small overlaps between
semiclassical states prevent a further rise of entropy; thus this change also happens after a
time of order the black hole evaporation time. (By contrast, in the fuzzball paradigm, the
bags-of gold geometry never forms because the collapsing star turns into fuzzballs much
before the Page time.)

The essential physical argument in the wormhole paradigm can be traced to the idea
that there is a subleading saddle point in gravitational dynamics which is missed in the
leading order Hawking calculation. A subleading saddle point, by definition, produces small
corrections to leading order dynamic. Thus one is forced to look for resolutions of the puzzle
through effects that are small, and which therefore must act over long timescales like the
Page time. As mentioned above, all such resolutions conflict with the small corrections
theorem, and it would b e great to understand in detail what the proposals are really
saying.

2 Wormhole terms from path integrals?

First we recall the computation as averages over states, then we convert these to path
integrals.

2.1 Averaging states

Take two system which are entangled as

|Ψ⟩ =
∑
i,a

Cia|i⟩|a⟩ (1)

with ∑
i,a

|Ci,a|2 = 1 (2)
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Tracing out the first system gives the density matrix for the second as

ρB =
∑
i,a,a′

CiaC
∗
ia′ |a⟩⟨a′| (3)

Thus
Tr[ρ2B] =

∑
i,j,a,a′

CiaC
∗
ia′Cja′C

∗
ja (4)

For a given choice of Cia, this is difficult to evaluate. But we can compute the average
⟨Tr[ρ2B]⟩, using

⟨CiaC
∗
i′a′⟩ = Dδii′δaa′ (5)

where D is a constant. To find D, we set i = i′ and a = a′, and sum over i, a. This gives

1 = Dmn (6)

where i = 1, . . .m and a = 1, . . . n. Thus D = 1
mn . We now compute

⟨Tr[ρ2B]⟩ =
∑

i,j,a,a′

⟨CiaC
∗
ia′Cja′C

∗
ja⟩ (7)

=
1

m2n2

∑
i,j,a,a′

[δiiδaa′δjjδa′a + δijδaaδijδa′a′ ] (8)

=
1

m2n2
[m2n+ n2m] =

1

m
+

1

n
(9)

Thus we see that ⟨Tr[ρ2B]⟩ can never become too small; the smaller of m,n givers this
quantity by the above expression. What was interesting in this computation was that
there was a term with Wick contraction between the two different copies of the system
(which we can call a ‘wormhole’ connecting the two copies).

2.2 Converting to path integrals

We had
⟨CiaC

∗
i′a′⟩ = Dδii′δaa′ (10)

We assume that the two systems are not interacting, so that

E = E1 + E2 (11)

We then write
Cia = De−

βEi
2 e−βEa

2 eiθia (12)
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where D is a constant and θia is a random phase. To fix D we write

1 =
∑
i

∑
a

CiaC
∗
ia = |D|2e−βEie−βEa = |D|2Z1Z2 (13)

where
Z1 =

∑
i

e−βEi , Za =
∑
a

e−βEa (14)

Thus

D = Z
1
2
1 Z

1
2
2 (15)

We finally obtain the following

CiaC
∗
i′a′ = |D|2e−

βEi
2 e−βEa

2 e−
βEi′

2 e−β
Ea′
2 eiθiae−iθi′a′ (16)

We have
⟨eiθiae−iθi′a′ ⟩ = δii′δaa′ (17)

Thus

⟨CiaC
∗
i′a′⟩ = |D|2e−

βEi
2 e−βEa

2 e−
βEi′

2 e−β
Ea′
2 δii′δaa′ = |D|2e−βEie−βEa′ δii′δaa′ (18)

Note that we assume that the average is such that the coefficients Cia are random
variables that have no higher point correlations, so we can do Wick contractions in Thus
we get

⟨Tr[ρ2B]⟩ =
∑

i,j,a,a′

⟨CiaC
∗
ia′Cja′C

∗
ja⟩ (19)

= |D|4
∑

i,j,a,a′

[e−βEie−βEaδiiδaa′e
−βEje−βEaδjjδa′a + e−βEie−βEaδijδaae

−βEie−βEa′ δijδa′a′ ]

(20)

= |D|4
(∑

i

e−βEi

)(∑
j

e−βEj

)(∑
a

e−2βEa

)
+|D|4

(∑
i

e−2βEi

)(∑
a

e−βEa

)(∑
a′

e−βEa′
)

(21)

=
1

(Z1(β))2(Z2(β))2
(
(Z1(β))

2(Z2(2β)) + Z1(2β)(Z2(β))
2
)

(22)

=
Z2(2β)

(Z2(β))2
+

Z1(2β)

(Z1(β))2
(23)

We can now write these. as path integrals in the usual Feynman way. We can then ‘fill-
in’ the cylinders with a cap to write the path integral as. Gibbons-Hawking path-integral.

But in this case, what have we done? We have assumed that the Gibbons-Hawking
entropy is the entropy of the black hole, so we have not addressed the information puzzle.
But we have also not computed the entanglement of any given gravity state, since we have
done an averaging in the process.

4



3 Is the QES prescription compatible with the linearity of
quantum theory?

We will look at the set up which gives the entropy of a black hole using the QES prescription.
Looking at the prescription with states near the black hole state, we will note a conflict
with the linearity of quantum mechanics.

3.1 The set-up

In fig.1 we depict the JT gravity description of a black hole that has evaporated past the
Page time. The part to the right of the AdS boundary is flat spacetime. The interior of AdS
has an Island I; this has quanta (drawn in green) which are entangled with radiation quanta
R (drawn in blue). We now say that quantum gravity effects add an extra ingredient not
present in J-T gravity; i.e., the QES prescription. This prescription says that we should
compute the generalized entropy of the black hole

Sgen =
A

4G
+ Sent (24)

Here A
4G is a schematic expression for the analogue of the area term in JT gravity, and Sent

is the entanglement entropy of all quanta in the region between the AdS boundary and
the QES surface (i.e., in the segment marked in yellow). One is then required to extremize
over possible positions of the QES, and then compute Sgen at this extremum. The result
gives the entropy of the CFT, which we identify with the entropy of the ’black hole’ in the
AdS.

QES AdS

boundary

flat

space
Island Radiation

Figure 1: The set up before we add any quanta

3.2 Adding a pair of quanta

We now consider three cases:

(i) In fig.2 we show the state |ψ1⟩ where we have added two quanta depicted in purple;
one just to the right of the original QES, and one far out in the flat space region. Both
quanta have spin up; thus they are not entangled. We compute the QES for this geometry,
find the corresponding Sgen, and denote its value as S0. Thus we have for this state |ψ1⟩:

SCFT
1 = SBH

1 = Sgen
1 = S0 (25)
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QES AdS

boundary

flat

space
Island Radiation

Figure 2: The state |ψ1⟩

(ii) In fig.3 we show the state |ψ2⟩ which is constructed just like |ψ1⟩, but where the
spins of both the purple quanta are down. By symmetry, all entropies must be the same
as those is case (i):

SCFT
2 = SBH

2 = Sgen
2 = S0 (26)

QES AdS

boundary

flat

space
Island Radiation

Figure 3: The state |ψ2⟩

(iii) Now we come to the crucial step. We take the linear combination of the above two
states

|ψ3⟩ =
1√
2
(|ψ1⟩+ |ψ2⟩) (27)

The purple quantum in the AdS region was described by the CFT since it was to the right
of the QES. The superposition (27) says that the entanglement entropy of the CFT has
increased by ln 2:

Slinearity = SCFT
3 = SBH

3 = S0 + ln 2 (28)

where we have assumed the normal change of entanglement entropies that we get on taking
a linear superposition of the states |ψ1⟩ and |ψ2⟩.

On the other hand, the QES prescription gives something different. We are required to
first check if moving the QES surface to a different location can give a lower value of Sgen.
For example if we move the QES to the right of the purple quantum then we will not get
the contribution ln 2 to Sent. We may have to pay a slightly higher cost in the value of A

4G ,
but we assume that we still get a lower Sgen by moving the surface this way. (After all,
this is exactly like the movement of the QES which makes the Page curve goes down after
the Page time.) We will therefore find

S0 < SQES prescription < Slinearity (29)

This new QES location is depicted in fig.4.
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New QES AdS

boundary

flat

space
Island Radiation

Figure 4: The location of the new QES when the two purple quanta are entangled.

3.3 The conflict

The relations (28) and (29) give

SQES prescription < Slinearity (30)

This is the conflict.

3.4 A second example

Consider a black hole geometry created by a shock wave of mass M in the AdS region.
The AdS region is joined to an infinite flat spacetime as in the above discussion.

A Cauchy slice through this geometry looks as follows (fig.5):

QES

AdS

boundary

flat

space
Radiationr=0

Figure 5: An unentangled state. The quantity Sgen is minimized for the QES position
r = 0, where the A

4G term vanishes.

We have N quanta in the AdS region, and N quanta in the far away flat space region.
The quanta in the AdS region each have a spin which can be up or down; let us call
these possibilities 0 and 1 respectively. Thus the state in the AdS region has a form
01001110101. . . .. Let the state in the flat space region have the same spins. Let us denote
the overall state as

|ψ⟩01001110101.... (31)

This state is not entangled between the AdS and flat regions. Thus in the expression

Sgen =
A

4G
+ Sent (32)

we have Sent = 0. The quantity Sgen is then minimized by taking the QES at the origin,
so that A

4G = 0. By our hypothesis all quanta in the region between the AdS boundary
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and the QES are described by the state of the CFT. Thus the spins in a state like (31) are
directly captured by the state of the CFT. Let the corresponding CFT state be denoted as

|ψ⟩CFT
01001110101.... (33)

The overall state (31) has the form

|ψ⟩01001110101.... = |ψ⟩CFT
01001110101.... × |ψ⟩radiation01001110101.... (34)

The same is true of any of the 2N states that come from different possible choices of
the spins in the AdS region; of course in each case the spins in the flat space region are
taken to be the same as the spins in the AdS region. Let us call the set of these states like
(31) as

|ψ⟩k, k = 1, . . . 2N (35)

For each k we have

|ψ⟩k = |ψ⟩CFT
k × |ψ⟩radiationk , k = 1, . . . 2N (36)

Now take the state

|ψ⟩entangled =
(
2N

)− 1
2

2N∑
k=1

|ψk⟩ (37)

The state (37) is entangled between the CFT and flat space regions. By the linearity of
quantum mechanics, this entanglement is

Slinearity
ent = ln[2N ] = N ln 2 (38)

But the QES prescription gives a different answer when we choose N appropriately.
Recall that the geometry in the AdS region is created by a shock wave carrying energy
M . Suppose this black hole radiates away after emitting Ntotal quanta. The Page time
corresponds to the radiation having Ntotal

2 quanta. We choose

Ntotal

2
< N < Ntotal (39)

so that the number of quanta in our radiation region corresponds to the number expected
at some point after the Page time. At such a point the QES surface will be nontrivial as
in fig.6:

QES AdS

boundary

flat

space
Island Radiationr=0

Figure 6: Superpositions over states of the type in fig.5. Now Sgen can extremized for a
nontrivial position for the QES where A

4G > 0; in fact this will the case when the number
of quanta exceeds the number radiated by the Page time.
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The entanglement between the CFT and the everything else will be, under the QES
proposal

SQES
ent <

Ntotal

2
ln 2 < N ln 2 (40)

since we want the entanglement to start decreasing after the Page time.
The relations (38) and (40) give

SQES
ent < Slinearity

ent (41)

which is the conflict between the QES prescription and linearity.

4 What is the AEHPV model trying to do?

The AEHPV model tries to argue that the semiclassical hole which creates Hawking pairs
is somehow compatible with the black hole in the exact theory behaving like a piece of coal.
To do this the authors write a map between the exact and approximate theories. Below we
write down what seems to us to be this map reduced to its absolute basics; we then note
that such a map seems to tell us nothing, as it can be made between any system and any
smaller system.

4.1 The overall idea

We have two different quantum mechanical systems:

(i) One model, which we call U , which is the usual unitary evaporation of a normal body
like a piece of coal. Here the Page curve goes up and comes down as expected on general
grounds. This is supposed to be the description of the black hole in the full quantum
gravity theory.

(ii) A second model, which we call H. This model describes the semiclassical Hawking
evaporation process, where entangled pairs (bi, ci) are produced and the bi escape to infinity.
The state of each entangled pair is

|ψ⟩pair =
1√
2
(|0⟩b|0⟩c + |1⟩b|1⟩c) (42)

(iii) We make a map V from the H Hilbert space to the U Hilbert space. Take a basis
|hi⟩ in the H Hilbert space and a basis |ua⟩ in the U Hilbert space. Then a state in the H
space given by

|ψ⟩ =
∑
i

di|hi⟩ (43)
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maps under V to a state in U given by

|χ⟩ =
∑
a

ca|ua⟩ (44)

where
ca =

∑
i

Vaidi (45)

In general we think of H having a larger Hilbert space than U , so this map V will project
down to a space U of smaller dimension than the dimension of H.

(iv) The idea is that the H model will give a good approximation for appropriate
quantities in the U model. In this way we can hope to show how a semiclassical Hawking
computation can be consistent with a unitary model U in some the exact quantum gravity
theory.

Question: Here U was supposed to describe the black hole in the full quantum gravity
theory. But the above steps (and the steps that will follow) will be the same if U describes a
piece of coal instead of the exact black hole. We will not use any property of the quantum
gravity theory (e.g. string theory) anywhere. Then how can any such map (24) tell us
anything about the black hole puzzle?

4.2 The map V at different times

(i) Let the system U evolve unitarily in a sequence of time steps labeled by an integer
t = 0, 1, 2, . . .. The system H also evolves in the same time steps. The map V at timestep
t will be called Vt.

(ii) Let the evolution in the system U , from time step t to t + 1, be given by a map
R(t, t+ 1). In symbols

|χt+1⟩ = R(t, t+ 1)|χt⟩ (46)

In components, consider a state |χt⟩ in U at time t

|χt⟩ =
∑
a

ca|ua⟩ (47)

This will evolve to a state |χt+1⟩

|χt+1⟩ =
∑
a

c′a|ua⟩ (48)

where
c′a =

∑
b

[R(t, t+ 1)]ab cb (49)
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(ii) Similarly, Let the evolution in the system H, from time step t to t+1, be given by
a map RH(t, t+ 1). In symbols

|χt+1⟩ = RH(t, t+ 1)|χt⟩ (50)

In components, consider a state |ψt⟩ in H at time t

|ψt⟩ =
∑
i

di|hi⟩ (51)

This will evolve to a state |ψt+1⟩

|ψt+1⟩ =
∑
i

d′i|hi⟩ (52)

where
d′i =

∑
j

[R(t, t+ 1)]ij dj (53)

(iii) We make the map Vt at different times in such a way that the evolution in the
system U matches on to the evolution in the system H. In symbols

Vt+1 R
H(t, t+ 1) = RU (t, t+ 1) Vt (54)

We assume that RH is invertible. Then multiplying both sides of the above equation by
(RH)−1 we get

Vt+1 = RU (t, t+ 1) Vt (R
H(t, t+ 1))−1 (55)

In components, this means that we should take

[Vt+1]ai =
∑
b,j

[RU (t, t+ 1)]ab[Vt]bj [(R
H(t, t+ 1))−1]ji (56)

With such a map Vt+1, we will find, by construction, that we get the same state if we first
apply Vt and then evolve by RU , or first evolve by RH and then map by Vt+1.

Question: The above steps could have been done for any two systems H and U , with
H having dimension equal to or larger than U . So how can all this tell us anything about
black holes?

Question: The above worry about the black hole in the exact theory and the coal can
be made more detailed. For example, U could be a 1 Kg piece of coal, and H could be a 10
Kg block of wood. The Page curve of the coal will come down after its halfway evaporation
point, while the Page curve of the wood would still be rising at this time. This looks
very similar to the system U being the black hole in the exact theory and H being the
semiclassical hole. So how can making such a map help us to reconcile the semiclassical
picture of the black hole with the exact description of the hole?
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4.3 A first model

(A) First we make the unitary model U . Consider a box of gas containing N atoms, all
in their excited state, which we assume to be a spin singlet. In the first step of radiation,
one atom radiates a photon (thus coming down to its ground state). The emitted photon
is entangled with the atom left behind: if the photon is spin up, the atom left behind is
spin down and vice versa. With suitable definitions of states, we can write the entangled
state of the photon and atom as

1√
2
(|0⟩γ |0⟩a + |1⟩γ |1⟩a) (57)

where γ is the photon and a is the atom.

(B) At each step of emission, another atom deexcites, so the entanglement of the
radiation with the remaining gas after n < N steps is

Sent = n log 2 (58)

(C) After N steps of emission, we assume that the deexcited atoms start to drift off to
infinity one by one. (For simplicity, let us assume that they drift out in the same order as
the order in which they emitted photons.) The entanglement of the radiated matter with
the remaining gas goes down with each step of emission, reaching Sent = 0 after all the N
atoms have left.

This is of course just a simple model for the Page curve of a normal body.

(D) Now we consider the Hawking model H. We take this to consist of (bi, ci) entangled
pairs, with i = 1, 2, . . .M , with M ≫ N . (In the Hawking process these pairs are created
one by one, but we might as well consider the Hilbert space where the pairs that we will
use are all present at all times.)

(E) Now we make the map V , First consider the first half of the evaporation process
of the gas; i.e., steps 1, . . . N where the photons get emitted by the atoms. After the first
emission, the map V is

|0⟩b1 → |0⟩γ1 , |1⟩b1 → |1⟩γ1 , |0⟩c1 → |0⟩a1 , |1⟩c1 → |1⟩a1 (59)

After the first two emissions, the map V is

|0⟩b1 → |0⟩γ1 , |1⟩b1 → |1⟩γ1 , |0⟩c1 → |0⟩a1 , |1⟩c1 → |1⟩a1 (60)

|0⟩b2 → |0⟩γ2 , |1⟩b2 → |1⟩γ2 , |0⟩c2 → |0⟩a2 , |1⟩c2 → |1⟩a2 (61)
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After N steps the map is

|0⟩b1 → |0⟩γ1 , |1⟩b1 → |1⟩γ1 , |0⟩c1 → |0⟩a1 , |1⟩c1 → |1⟩a1 (62)

|0⟩b2 → |0⟩γ2 , |1⟩b2 → |1⟩γ2 , |0⟩c2 → |0⟩a2 , |1⟩c2 → |1⟩a2 (63)

. . . . . . (64)

|0⟩bN → |0⟩γN , |1⟩bN → |1⟩γN , |0⟩cN → |0⟩aN , |1⟩cN → |1⟩aN (65)

Now consider the second half of the evaporation of the gas, where the atoms ai come
out one by one. At step N + 1 the map is

|0⟩b1 → |0⟩γ1 , |1⟩b1 → |1⟩γ1 , |0⟩c1 → 0, |1⟩c1 → 0 (66)

|0⟩b2 → |0⟩γ2 , |1⟩b2 → |1⟩γ2 , |0⟩c2 → |0⟩a2 , |1⟩c2 → |1⟩a2 (67)

. . . . . . (68)

|0⟩bN → |0⟩γN , |1⟩bN → |1⟩γN , |0⟩cN → |0⟩aN , |1⟩cN → |1⟩aN (69)

|0⟩bN+1
→ |0⟩a1 , |1⟩bN+1

→ |1⟩a1 , |0⟩cN+1 → 0, |1⟩cN+1 → 0 (70)

In this map note the following:
(i) the emitted quantum bN+1 in the H model is mapped to a1 in the U model; recall

that the atom a1 is entangled with the first photon γ1 which was emitted.
(ii) The quantum c1 is now mapped to zero (in earlier steps it was earlier mapped to

a1)
(iii) The quantum cN+1 is mapped to zero.
Note the entanglement in the H model has increased at the N +1 step (by log 2) while

the entanglement in the U model has decreased by log 2.

We proceed in this way till the gas has completely evaporated. At the last step labeled
2N the map is

|0⟩b1 → |0⟩γ1 , |1⟩b1 → |1⟩γ1 , |0⟩c1 → 0, |1⟩c1 → 0 (71)

. . . (72)

|0⟩bN → |0⟩γN , |1⟩bN → |1⟩γN , |0⟩cN → 0, |1⟩cN → 0 (73)

|0⟩bN+1
→ |0⟩a1 , |1⟩bN+1

→ |1⟩a1 , |0⟩cN+1 → 0, |1⟩cN+1 → 0 (74)

. . . (75)

|0⟩b2N → |0⟩aN , |1⟩b2N → |1⟩aN , |0⟩c2N → 0, |1⟩c2N → 0 (76)

Question: This map V is just a map between two different systems doing different
things. How can such a map tell us anything about the information paradox which is the
conflict between the H model (forced by semiclassical dynamics) and the U model (which
models a piece of coal) ?
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4.4 Complexity of the map

It sometimes argued that the evolution in the black hole is very complicated and chaotic,
and that this will lead to new features for the black hole bit model that are not present for
the bit model of a piece of coal. But this is not the case:

(A) The radiation from a normal body is characterized by

(i) The number N of quanta emitted
(ii) How much the bits in the body ‘scramble’ before emitting the next quantum; let

us denote this by a parameter nsc which we can define more precisely when needed.
(iii) The mean energy E of the quanta

All these parameters can be controlled at will by taking different parameters for the
body. In particular, we can get an arbitrarily large amount of scrambling between emissions
by taking the following model. We have a box of gas containing N atoms. In the box we
make a tiny aperture of size δ; the atoms escape from the box slowly as the ’radiation’
from the system. As δ is made smaller and smaller, we get more and more scrambling
between emissions. Thus such a simple model for a gas in a box can give arbitrary values
of N,E, nsc.

(B) A bit model of the black hole is characterized by

(i’) The number of bits N
(ii’) How much the bits in the hole ‘scramble’ before emitting the next quantum; let us

denote this by a parameter nsc which we can define more precisely when needed.
The energy of the quanta E does not appear in a bit model, either for a normal body

or for a black hole. We can however get any value of N,E by taking a large number N3 of
D3 branes wrapped on a T 3 of volume V , and exciting this with N quanta. As we take
N3 larger and larger, the energy of the emitted quanta decreases.

(C) It is sometimes said that a black hole is a very complicated object, and this leads
to novel phenomenon involving complexity. But this is not the case. A black hole of 100
planck masses should exhibit all the physics of black holes to a good approximation, and
it has only 1002 = 104 bits. A mole of gas in a box has ∼ 1023 bits.

Question: Thus we see that any unitary bit model of the black hole can be reproduced
by the bit model of a box of gas with a small aperture. So how can invoking any complexity
arguments tell us anything about black holes from a bit model? Whatever conclusions one
gets for the black hole will also hold for the box of gas.
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