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 In calibration problems, an exogenous state variable and an endogenous response 

variable or proxy are both observed in a set of calibration observations.  We wish to make 

inferences about the unobserved state variable from an additional observation on the 

response variable under a diffuse prior.  Hoadley (1970) argued that an informative prior 

is required in order to obtain a proper posterior distribution.  Hunter and Lamboy (1981) 

proposed a solution, but were sharply criticized at the time.  This paper presents a new 

derivation of the Hunter-Lamboy posterior distribution under a diffuse prior that meets 

these objections.  At the same time, it is shown that Hoadley’s approach was based on a 

subtle inconsistency in the application of Bayes’ Rule.  

 The reinstated Hunter-Lamboy posterior is applied to the problem of calibrating 

the ice core index of Thompson et al. (2003) to instrumental temperatures.  It is found, 

contrary to the famous claim of Gore (2006), that this index is in fact uninformative about 

the question of whether Medieval Warm Period was warmer or cooler than the present.   

 It is shown that the “classical” confidence intervals proposed by Fieller (1954) are 

a good approximation to the posterior confidence intervals when the calibration slope 

coefficient is highly significant relative to the desired confidence interval tail probability.  

However, when the slope is only marginally significant, the Fieller intervals become 

increasingly distorted and then meaningless.  The proposed posterior confidence intervals 

simply become wider as the slope loses significance, but remain bounded.   

 Extensions to multiple proxies, sequentially organized data, and prior restrictions 

on the calibration slope coefficient are outlined but not implemented.   



I.  Introduction 

 In the classical calibration problem, as reviewed by Osborne (1991) and Brown 

(1993), an exogenous state variable xi is measured indirectly by an endogenous response 

variable yi that has an affine, but noisy, relation to it:  

 iii xy εβα ++= .       (1) 

We have a set of calibration observations on both for i = 1, … n.  In the benchmark case 

considered here, it is assumed that the measurement errors εi are i.i.d. Gaussian with E(εi | 

xi) = 0 and var(εi) = σ2.  We wish to make inferences about the unobserved state variable 

x′ for an additional observation or observations outside the calibration set, for which we 

have only the observed response y′.2  This response obeys the same rule, 

  ''' εβα ++= xy .       (2) 

 Such calibration problems arise in such diverse fields as thermodynamics, 

pharmacology, urology, and chemical analysis (cf. Brown 1993), zoology (du Plessis and 

van der Merwe 1996), and paleoclimatology (e.g. Mann et al. 1999, Kaufman et al. 

2009).  In econometrics, applications could include the reconstruction of historical Gross 

National Product from fragmentary records (e.g. Romer 1989), or the historical standard 

of living from height data (e.g. Steckel 1995).   

 Solving (2) for x′ yields  

  βεα /)''(' −−= yx ,       (3) 

so that the natural or “classical” calibration estimator of x′, proposed by Eisenhart (1939), 

is 

  ,       (4) βα ˆ/)ˆ'(ˆ −=′ yx
                                                 
2  I here use x′ and y′ for the reconstruction values, following the nomenclature of Brown (1982). 
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where α̂  and  are the Ordinary Least Squares (OLS) estimates of α and β from (1).  

The expression in (4) is also the Maximum Likelihood estimator of x′ (Hoadley 1970, 

Brown 1993).  

β̂

 The present paper presents a new derivation of the Hunter and Lamboy (HL, 

1981) posterior distribution for x′ under an uninformative, diffuse prior.  The resulting 

confidence intervals (CIs), or credible intervals as they are often called in the Bayesian 

context, are always bounded and contiguous, and may readily be constructed with equal 

tail probabilities.   

 The traditional or “classical” method of computing confidence regions advocated 

by most authors is based on a theorem of Fieller (1954).  However, this approach leads to 

unsatisfactory sets that may be unbounded at one or even both ends, and may even be 

discontiguous.  Even when they are bounded intervals, the classical CIs are in most cases 

excessively skewed away from the mean of the calibration values of the state variable, so 

that the two tail probabilities are unequal.  Hoadley (1970) attempts to construct a 

Bayesian alternative, but is unable to do this without an unnecessarily informative prior.   

 The reinstated Hunter-Lamboy method is applied to the problem of calibrating the 

Thompson et al. (2003) ice core isotope ratio index to instrumental temperature.  This 

index was made famous in Al Gore’s An Inconvenient Truth (2006), where it was said to 

provide definitive confirmation that temperatures during the Medieval Warm Period 

(MWP) were lower than those at present.  It is found that the index does imply a point 

estimate of temperature that is uniformly below the 1961-1990 instrumental average from 

the beginning of the series in 1001-1010 AD until the 1930’s.  However, the 95% 

posterior CI for the temperature anomaly typically extends from at least -1.8°C to 
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+1.2°C, so that the reconstruction is in fact uninformative.  Although this index does not 

point to a MWP, it by no means rules one out, contrary to the claim of Gore.  The 

multiproxy temperature reconstruction of Loehle and McCulloch (2008) instead shows a 

statistically significant MWP, relative to the bimillenial average, during most of 817-

1036 AD plus 1249-1265 AD, as well as a significantly cool Little Ice Age (LIA) during 

most of 1442-1746 AD.   

 Section II of this paper presents the new derivation of the HL posterior 

distribution for the unobserved state variable, contrasts it with the approach of Hoadley 

(1970), and answers the criticisms that were raised against the HL approach when it was 

first published.  Section III constructs a close approximation to the Thompson et al. 

(2003) ice core isotope index from source data.  Section IV calibrates this index to global 

temperature, and computes posterior 50% and 95% CIs.  The concluding section V 

compares these intervals to the classical Fieller regions, and discusses extensions of the 

method of Section II.   

 

II.  Posterior Confidence Intervals for the Classical Calibration Estimator 

 The joint prior distribution for  and the regression parameters 'x ( )2,,,p σβαx′  

that governs the entire exercise may be factored as follows:  

( ) ( ) ( ) ( )2222 p|,p,,|p,,,p σσβασβασβα xx ′=′ .   (5) 

Bayes’ Rule implies that the distribution of x′, conditional on y′ and the true parameters, 

is 

  ( ) ( ) ( )222 ,,|'p,,,'|'p,,,'|'p σβασβασβα xxyyx ∝ ,   (6) 
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so that in the benchmark case in which the prior density component ( )2,,|'p σβαx  is 

diffuse and therefore uninformative (cf. Zellner 1971: 41-53),  

  

( ) ( )
( )

( )( )

( )( ),/,/'N~

/2
/''exp

2
'exp

,,,'|'p,,,'|'p

22

22

2

2

2

22

βσβα

βσ
βα

σ
βα

σβασβα

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ′−−
−∝

∝

y

yx

xy

xyyx

    (7) 

whence  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ′

00
01

,
'

N~,,,'|p 22 σ
β
α

σβα
β
β y

y
x

.   (8) 

 The distribution of the OLS estimatorsα̂  and , conditional on the true 

parameters, is  
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Since ( ) ''' εαβ −=−− yx  is independent of the regression data, combining (8) with (10) 

yields  
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where  indicates the distribution of the ratio of two normally distributed 

random variables with mean vector μ and covariance matrix Σ (Fieller 1932, Hinckley 

1969).  This distribution has as special cases the Cauchy distribution when the numerator 

and denominator both have mean 0, and the Gaussian distribution when the denominator 

has zero variance.  In general it is heavy-tailed, with tails intermediate between these two 

cases, and is skewed unless the numerator or denominator has mean 0.  It may even be 

bimodal if the numerator is large relative to its standard deviation and the denominator 

small relative to its standard deviation.  See Marsaglia (1965) for graphs of the density in 

the special case of zero correlation.  The Cumulative Distribution Function (CDF) 

( Σμ,R2N )

( )2,,ˆ,ˆ,'|'P σβα Syx , as required for confidence intervals on x′, may easily be computed in 

terms of the bivariate normal CDF, as shown in Appendix I of the present paper, equation 

(26).   

 It may easily be seen that conditional on the true parameters, the classical point 

estimate  in (4) has the same R2N distribution as (12), only with the OLS estimates of x′ˆ

β  and βx′  replaced by their true values: 
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The R2N  posterior distribution for x′  in (12) is therefore particularly natural and 

intuitive.  Williams (1969) notes, in the context of (13), that the R2N distribution has 

undefined mean and variance.  In fact, it lies the domain of attraction of the Cauchy 

distribution, so that even the Generalized (stable domain of attraction) Law of Large 

Numbers cannot be relied upon to make the distribution of the average more compact 

than that of the contributions.  Care should therefore be exercised in merging multiple 

classical estimates by simple averaging as in Loehle and McCulloch (2008), or even by 

GLS as in Brown (1982).   

In practice, σ2 is unknown and must be estimated from the variance of the 

residuals  
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where BVT(μ, V, ν) represents the elliptical bivariate Student t distribution with mean μ, 

covariance matrix estimate V, and degrees of freedom ν (cf. Zellner 1971, ch. 3, appendix 

B.2; Genz 2004).  It follows from (11) and (14) that  
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where ( )ν,,R2T Vμ  represents the distribution of the ratio of two elliptical bivariate 

Student t random variables with mean vector μ, covariance matrix estimate V, and ν 

degrees of freedom.  Its CDF ( )2,,ˆ,ˆ,'|'P syx Sβα  may easily be computed in terms of the 

elliptical bivariate Student t CDF, as also shown in Appendix I of the present paper.3

 The present paper first uses Bayes’ Rule to derive ( )2,,,'|'p σβαyx  from 

( )2,,,'|'p σβαxy  under a diffuse prior for ( )2,,|'p σβαx .  Then the regression 

parameters are estimated using the calibration data and the true values are integrated out 

to obtain ( )2,,ˆ,ˆ,'|'p syx Sβα .  Hoadley (1970: 361-364) likewise considers the use of a 

diffuse prior for x′.  However, he instead first estimates the regression parameters to 

obtain the classical Student t distribution with n-2 degrees of freedom for  as a 

function of :  
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where  

( ) ( )ββαβαα sxsxssx 22 21v ′+′++=′      (17)  

is the estimated variance of  as a function of y′ x′ .  Hoadley then notes that holding y′ 

constant and considering this expression as a function of x′ , it has tails that are 

asymptotically proportional to x′/1  and therefore integrate to infinity when multiplied 

                                                 
3  Hunter and Lamboy (1981) report the exact formula for the density of the ratio of two Student t random 
variables, but then one must still integrate this density numerically in order to compute CIs, so that it is 
easier just to use the BVT CDF to compute the R2T CDF directly.   
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by a uniform prior.  He concludes that “an improper uniform prior on [x′] leads to a 

nonsensical Bayes estimator,” and therefore rejects the uniform prior.  Brown (1982; 

1993, p. 98) and Osborne (1991) concur with Hoadley that a proper prior is required in 

the case, considered here, of a single response variable.   

Hoadley consequently introduces an informative prior that is based on the 

assumption that  is drawn from the marginal distribution of the calibration values, and 

shows that this leads to the “inverse” estimator favored by Krutchkoff (1967), based on a 

calibration regression in which the independent variable x is regressed on the dependent 

variable y.  Although there are applications in which such a prior would be justified, the 

present paper is primarily concerned with the important case of an uninformative diffuse 

prior.

x′

4

However, there is a subtle fallacy in Hoadley’s reasoning:  Because the Student t 

density (16) is conditioned on the regression data, Hoadley’s prior for x′ must be as well 

– Bayes’ Rule requires  

  ( ) ( ) ( )222 ,,ˆ,ˆ|'p,,ˆ,ˆ,'|'p,,ˆ,ˆ,'|'p sxsxysyx SSS βαβαβα ∝ , 

not  

  ( ) ( ) ( )'p,,ˆ,ˆ,'|'p,,ˆ,ˆ,'|'p 22 xsxysyx SS βαβα ∝ .  

It is not immediately obvious why conditioning the prior for  on the regression data 

would make any difference.  However, consider generalizing the joint prior (5) that 

governs the entire exercise to be conditioned on an information set Ω that may or may not 

be empty:   

'x

                                                 
4  In the case of a sequential state variable that follows a stochastic process with stationary increments, an 
informative prior that depends on the nearest of the calibration state variables is appropriate, as discussed 
below.  Even then, however, this prior should be applied before the regression coefficients are integrated 
out, and not afterwards.   
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( ) ( ) ( ) ( )ΩΩΩ′=Ω′ |p,|,p,,,|p|,,,p 2222 σσβασβασβα xx . (18)  

Since Hoadley’s prior for x′ implicitly depends on the regression data, his Ω must also 

contain the regression data in each of the other terms in (18), including ( )Ω,|,p 2σβα .  

However, conditioning the prior for the regression parameters on the regression results is 

inconsistent with using the same regression results to inform the posterior for the 

parameters.  Hoadley’s sequence of operations is therefore invalid.   

 It has been shown here that there are no real problems with the Bayesian approach 

under a diffuse prior, provided that a diffuse prior for the conditional density 

( )2,,|'p σβαx  that arises from the factorization (5) is applied before the regression 

parameters are integrated out, rather than a diffuse prior for the conditional density 

( )2,,ˆ,ˆ|'p sx Sβα  after the true regression parameters have been eliminated.   

 Hunter and Lamboy (HL, 1981) derived, in density form, exactly the same R2T 

posterior distribution for x′ as we do above, but using a diffuse prior for x′+= βαη  

instead of for x′ itself as in the above derivation.  In the same issue of Technometrics, Hill 

(1981), Lawless (1981), and Orban (1981) sharply criticized HL under the assumption 

that they were treating the prior for their η as being independent of that for the regression 

parameters.  Hill noted that if the prior for η is uniform, the implicit prior for x′ must be 

proportional to |β|, so that the priors for η and x′ cannot both be independent of the 

regression parameters, and argues that the latter is the more natural assumption.   

 However, independence of the priors, as insisted upon by the HL critics, is in fact 

nowhere required.  The full joint prior for the exercise may either be expressed in terms 

of x′ as in (5), or in terms of the HL η as  
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  ( ) ( ) ( ) ( )2222 p|,p,,|p,,,p σσβασβαησβαη = .   (19) 

The assumption that our ( )2,,|p σβαx′  is constant with respect to x′ is equivalent to the 

HL assumption that their implicit ( )2,,|p σβαη  is constant with respect to η.  It is 

immaterial whether either of these is proportional to |β| or its inverse, since any such 

constant will simply drop out in the normalizing integration when Bayes’ Rule is applied 

as in (7).5

 

III.  The Thompson Ice Core Index 

 The reinstated Hunter-Lamboy CI method is illustrated by calibrating the 

millenial ice core isotope ratio index of Lonnie Thompson et al. (2003) to recent global 

instrumental temperatures.  This index was famously described by Al Gore in his Nobel 

Peace Prize-winning An Inconvenient Truth (2006: 60-65), as follows: 

 Scientist Lonnie Thompson takes his team to the tops of glaciers all over 
the world.  They dig core drills down into the ice, extracting long 
cylinders filled with ice that was formed year by year over many centuries.   

 
 Lonnie and his team of experts .... can .... measure the exact temperature 

of the atmosphere each year by calculating the ratio of different isotopes 
of oxygen (oxygen-16 and oxygen-18), which provides an ingenious and 
highly accurate thermometer. ....   

 
 The thermometer to the right measures temperatures in the Northern 

Hemisphere over the past 1,000 years. .... [T]he so-called global-warming 
skeptics often say that global warming is really an illusion reflecting 
nature’s cyclical fluctuations.  To support their view, they frequently refer 
to the Medieval Warm Period.   

 
 But as Dr. Thompson’s thermometer shows, the vaunted Medieval Warm 

Period (the third little red blip from the left, below) was tiny compared to 
                                                 
5  HL (1981: 327) erroneously accept that the difference between their approach and that of Hoadley (1970) 
is that they assume a uniform prior on their η, whereas Hoadley considers a uniform prior for x′.  In fact, 
the difference is that HL condition their prior for η or equivalently x′ on the true parameters, whereas 
Hoadley inappropriately conditions his prior for x′ on the parameter estimates, as noted above. 
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the enormous increases in temperature of the last half century (the red 
peaks at the far right of the chart).   

 
 These global warming skeptics ... launched a fierce attack against another 

measurement of the 1,000-year correlation between CO2 and temperature 
known as “the hockey stick,” a graphic image representing the research of 
Michael Mann and his colleagues.  But in fact, scientists have confirmed 
the same basic conclusions in multiple ways – with Thompson’s Ice core 
record as one of the most definitive.  (Gore 2006: 60-64).   

 

 McIntyre and McKitrick (2003, 2005) had argued that the “hockey stick” 

reconstruction of Mann et al. (1999) is based on invalid stripbark bristlecone treering 

data, as well as improper use of Principal Components Analysis.  As it happens, the graph 

that Gore (2006) presents as “Dr. Thompson’s Thermometer” actually was the disputed 

“hockey stick” temperature reconstruction for which it was supposed to provide 

definitive independent confirmation, spliced together with an instrumental temperature 

record as if they were a single series, and had nothing to do with Thompson’s ice core 

data.6   

Thompson, who served as a member of the Science Advisory Board for An 

Inconvenient Truth, had indeed published a similar-looking graph based on decadal 

averages of ice core oxygen isotope ratios in Figure 7 of Thompson et al. (2003), which 

is reproduced in Figure 1 below.   

                                                 
6  In fact, two of the 12 series employed by Mann et al. (1999) for the crucial 1000-1400AD period were 
Quelccaya δ18O and precipitation series, so that the hockey stick is not completely independent of even the 
true Thompson ice core index.   
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Figure 1.   
Thompson et al. (2003), Fig. 7, with original caption. 

 
 
 Panel d) of Fig. 1 is the disputed Mann et al.  “hockey stick” reconstruction itself, 

overlain with a Northern Hemisphere temperature index.  Gore was supposed to have 

used panel c), but mistakenly used panel d) of the same figure instead, merging its two 

lines into a single graph.7  The slightly positive values around 1320 AD in panel d) 

                                                 
7  This substitution was confirmed by Lonnie Thompson in response to a question by the author at a 
seminar at Ohio State University, Jan. 11, 2008.   
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became the “third little red blip from the left” representing the “vaunted Medieval Warm 

Period” according to Gore.   

 The actual Low Latitude composite ice core index in panel c) does turn up sharply 

in the 20th century, much like the instrumentally augmented hockey stick.  However, the 

axes at the top of panels a)-c) do not indicate temperature, but merely composite Z-scores 

computed from δ18Oice measurements.  Thompson et al. in fact did not calibrate these Z-

scores to temperature, let alone provide CI’s for such a calibration, so that “Dr. 

Thompson’s Thermometer” was not yet a thermometer at all.   The present paper 

attempts to fill this deficiency, by calibrating this index to instrumental temperature, and 

computing confidence intervals.   

 Thompson et al. provide decadally averaged data for 5 of the 6 cores used in their 

article in a spreadsheet online at <bprc.osu.edu/Icecore/Climatic-change-2003-Fig5-

table.XLS>.  Unfortunately, however, the Himalayan composite Z-score (henceforth 

HCZ) series is missing, along with the data for Quelccaya, so that even though the last 

column is identified as “6 core composite”, it is in fact based only on the two included 

Andean cores, and is definitely not the series plotted in panel c) of their Fig. 7.   

 On March 3, 2008, I e-mailed Lonnie Thompson and several of his co-authors 

requesting the missing series in this spreadsheet, but received no reply.  Nevertheless, it 

is possible to at least approximately reconstruct the 6-core composite from the five 

decadal δ18Oice series in the spreadsheet, plus archived annual values for the Quelccaya 

Summit core, with the help of formulas embedded in the spreadsheet.   
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Figure 2 shows the decadally averaged δ18Oice values from the spreadsheet for the 

three 3 Himalayan cores, Guliya, Dunde and Dasuopu.8  Each decadal value is identified 

by the date at the top of its interval.  These dates are even multiplies of 10, so that the 

decades used for these three series are 1001-1010, 1011-1020, etc.  Note that only 

Dasuopu has data for the final decade of the study, 1991-2000 (through 1997).  Guliya 

ends with 1981-1990, and Dunde with 1981-1987.   All three of these Himalayan series 

visually match those in Figure 5 of Thompson et al. (2003).   

 
Figure 2. 

Decadal averages of δ18Oice for the three Himalayan cores:  Guliya, Dunde, and Dasuopu. 
  
                                                 
8  The decadally averaged data from this spreadsheet for the 3 Himalayan cores has been archived at 
ftp://ftp.ncdc.noaa.gov/pub/data/paleo/icecore/trop/dasuopu/dasuopu-d18o.txt, <... /dunde/dunde-d18o.txt>, 
and <... /guliya/guliya-d18o.txt>.  However, the decadal Andean data from the spread sheet is not archived 
there except inadvertently at the lower right side of the Guliya file. 
    IPCC AR4 WGI expert reviewer Stephen McIntyre (2006, 2007) notes that several inconsistent versions 
of Guliya and Dunde have been used in the climate literature.  The present paper simply uses the version in 
the spreadsheet constructed for Thompson et al. (2003).   

ftp://ftp.ncdc.noaa.gov/pub/data/paleo/icecore/trop/dasuopu/dasuopu-d18o.txt
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 Only two of the three Andean cores used, Sajama and Huascarán Core 2, are 

tabulated in the online spreadsheet.  Each of these decadal values is associated with two 

dates identified as “bottom”, and “to decade”, but both are even multiples of 10, starting 

with (1000, 1010), (1010, 1020), etc.  Evidently these Andean cores were averaged over 

decades beginning with an even multiple of 10 such as 1000-1009, 1010-1019, etc., so 

that the header “to decade” refers to the first year of the following decade.  This 

interpretation is reinforced by an annotation that the most recent value for Huascarán 

Core 2 covers the period 1990 to 1993.   

 The third Andean core is identified by Thompson et al. (2003) only as 

“Quelccaya,” even though annual δ18Oice data is archived at ftp.ncdc.noaa.gov for two 

different Quelccaya cores, Core 1 and the Summit Core.  It was found that averages of 

the Summit Core for decades beginning with even multiples of 10 gave a perfect visual 

fit to the graph of the “Quelccaya” series in Fig. 6 of Thompson et al. (2003), while 

decades ending with even multiples of 10 had obvious differences.  Core 1 had obvious 

differences under either interpretation, and clearly was not the source of their Fig. 6.  The 

average of the two cores also has obvious differences.   

The archived annual data for the Quelccaya Summit Core (Thompson et al. 2005) 

only extend to 1984, yet Thompson et al. (2003) use data for Quelccaya through 2000 

based on newer shallow cores (see caption to their Fig. 7 in Fig. 1 above) that are not 

available numerically.  Accordingly, these two values were read visually off Fig. 6 of 

Thompson et al. (2003) as -17.67 per mil for 1980-1989 and -16.64 per mil for 1990-

1999.   

ftp://ftp.ncdc.noaa.gov/


16 

 Decadal averages of δ18Oice for the three Andean cores, Quelccaya Summit, 

Sajama, and Huascarán 2, are shown in Figure 3 below.  The Sajama series is a good 

visual match to that in Figure 6 of Thompson et al. (2003).  The relative sizes of the local 

peaks in the Huascarán 2 series since 1790 are not quite the same as in Figure 6 of 

Thompson et al. (2003), although the general shape of the two series are very similar.  As 

noted above, Quelccaya is a perfect match, but only provided the Summit Core is used 

with decades beginning with 0.   

 

Figure 3 
Decadal averages of δ18Oice for the three Andean cores Quelccaya Summit, Sajama, and 

Huascarán 2. 
 

 The ice-core indices shown in Fig. 1 are composite Z-scores are supposed to be 

derived somehow from the decadal δ18Oice data shown in Figs. 2 and 3 above, but 
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Thompson et al. (2003) do not provide details of how they were computed.  Were the 

δ18Oice
 values averaged and then Z-scores computed, or were the averages computed from 

Z-scores?  Were the means and variances for the Z-scores computed before or after 

decadal averaging?  Were they computed using each entire series, or just the portion after 

1000 AD used for the study?  And were the means and variances computed to the end of 

each series, or only using the common portions?   

Although the provided data spreadsheet is incomplete, it does contain embedded 

formulas that reveal how the Z-scores would have been computed if the data were 

present:  First, each decadally averaged series was converted to Z-scores using its mean 

and standard deviation for all its available decades, but restricted to the period of the 

study, i.e. beginning with 1001-1010 for the Himalayan cores and with 1000-1009 for the 

Andean cores.  These Z-scores are shown in Figures 4 and 5 below:   
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Fig. 4 
Z-scores for the three Himalayan cores. 
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Fig. 5 
Z-scores for the three Andean cores. 

 

 Then, regional composite Z-scores were computed by averaging each region’s Z-

scores, as available.  The resulting Andean Composite Z-score series (ACZ), shown in 

Fig 6 below, is thus simply the average of the three component Z-scores for all 100 

decades.  Unfortunately, however, this series is not a perfect visual match to Fig. 1a of 

Thompson et al. (2003) (Fig. 1a above).  Although most of the high frequency wiggles 

match, the local high in the 1720s and the record low in the 1810s are greatly attenuated 

in the Thompson et al. version.  Furthermore, although the 20th century is generally the 

highest in the Thompson version, it is not quite as high as the 12th-14th centuries in our 

emulation.  Perhaps Thompson et al. in fact used Quelccaya Core 1 or the average of the 
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two Quelccaya cores in the construction of the index, even though the Summit core was 

clearly what was used in their Fig. 6.   

 

Fig. 6 
Andean Composite Z-score series ACZ. 

 

 The emulated Himalayan Composite Z-score (HCZ) series, shown in Fig. 7 

below, is based on all 3 Himalayan cores for the first 99 decades (shown in blue), and 

then abruptly is based only on Dasuopu for the final decade (shown in red), after the 

other two drop out.  The line segment connecting the point representing the 1980s (3 

cores) and that representing the 1990s (Dasuopu only) is also in red.  The resulting series 

is a perfect visual match to Panel (b) of Fig. 1.   
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Fig. 7. 
Himalayan Composite Z-score series (HCZ), using all three Himalayan cores 1001-1990 

(in blue), and Dasuopu only, 1991-2000 (in red).  The line segment connecting 1981-
1990 (3 cores) and 1991-2000 (Dasuopu only) is also in red. 

 

Finally, the spreadsheet formulas show that two regional composites were 

averaged with equal weights to obtain a single Low Latitude Composite Z-Score (LCZ), 

as shown in Figure 8 below.  The final decade, as well as the line segment connecting the 

1980s (6 cores) to the final decade (4 cores), are plotted in red.  This series is a very good 

visual match to the “6-core composite” series in Panel (c) of Figure 1 above, including in 

particular, the unprecedentedly high value for the final decade of the 1990s.  Our 

replication of the series in panel c) in Figure 7 of Thompson et al. (2003) is therefore 

reasonably successful, despite its absence from the data spreadsheet, and despite some  

inconsistencies in the Andean sub-index.   
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Fig. 8. 
Low-Latitude Composite Z-Scores, based on 6 cores for 1001-1990 (in blue), and on 4 

cores for 1991-2000 (in red).  The line segment connecting 1981-1990 (6 cores) and 
1991-2000 (4 cores) is also in red. 

 

 It is not clear why one would want to average Z-scores in this manner, since it 

makes inefficient use of the data.  However, this appears to be a common practice in 

paleoclimatology (see e.g. Kaufman et al. 2009).  The primary goal of the present paper 

is merely to replicate and calibrate the Thompson et al. (2003) composite ice core series, 

and not to improve upon it.  Section V below suggests how this data might be used more 

efficiently. 

 It is singular that although the LCZ series in panel (c) of Figure 1 ends on an 

unprecedentedly high value for the 1990s, and panels (a) and (b) of Figure 1 above shows 



23 

that this is being driven by its HCZ component rather than the ACZ component, none of 

the individual Himalayan Z-scores shown in Fig. 4 ends on a record high value.  This 

only comes about as a statistical artifact, however, because two of the Himalayan series 

drop out in the last decade, leaving only Dasuopu, which was running higher or “warmer” 

than the other series to represent the region by itself.  The effect is accentuated because 

when HCZ and ACZ are averaged together to obtain LCZ, the net weight on Dasuopu 

suddenly changes from 1/6 in the first 99 decades to 1/2 in the final decade.    

 

Fig. 9 
Himalayan Composite Z-score (HCZ), computed from all 3 Himalayan cores (in blue), 

and from Dasuopu only (in red). 
 

 Figs. 9 and 10 show HCZ and LCZ for the full period 1001-2000 AD, computed 

both from all 6 cores (LCZ6) as well as from only the 4 cores that make it to the final 
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decade of the study period (LCZ4).  Clearly the 1990s are not any “warmer” than the 

1940s when either HCZ or LCZ is computed on a consistent basis, despite the impression 

given in panels b) and c) of Fig. 1.   

 

Fig. 10 
Low-Latitude Composite Z-score (LCZ), computed from all 6 cores (in blue), and from 

only the 4 cores available in the last decade (in red). 
  

 The changing composition of LCZ would not alter its expected response to 

temperature if δ18Oice were a universally valid and linear indicator of annual average 

temperature, aside from a location shift to compensate for differences in latitude and/or 

altitude.  However, some of the cores, such as Quelccaya Summit and Dasuopu, are 

strongly correlated with annual average global temperatures, while others, such as 

Sajama and Dunde, are not, so that the response is not universal.  Some of the sites may 
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be reflecting historical variations in the seasonality or altitude of snow formation, or in 

precipitation patterns as the air is transported to the site, rather than average annual 

temperatures, so that the correlation, if any, with local or global annual temperature can 

only be determined empirically on a site-by-site basis.  The makeup of the composite 

series therefore can make a substantial difference for its correlation with temperature, so 

that in fact the final decade of LCZ (based on 4 cores with 1/2 weight on Dasuopu) is a 

quite different series than the preceding 99 decades (based on 6 cores with equal weights 

on all), and cannot be used in its calibration.      

 

IV.  Calibration to Global Temperature 

 Thompson et al. (2003) state that “Comparison of this [LCZ] ice core composite 

with the Northern Hemisphere proxy record (1000-2000 A.D.) reconstructed by Mann et 

al. (1999) and measured temperatures (1856-2000) reported by Jones et al. (1999) 

suggests the ice cores have captured the decadal scale variability in the global 

temperature trends.”  Of course, it would be circular to calibrate LCZ to the hockey stick 

and then to put it forward as independent confirmation of the hockey stick, so only the 

comparison to instrumental temperatures is relevant for our purposes.   

Although Thompson et al. (2003) compare their LCZ favorably to a Northern 

Hemisphere instrumental temperature index, a global temperature index would more 

appropriate for univariate calibration, given that half of the six cores are from the 

Southern Hemisphere.  Figure 11 below shows annual averages for 1850 – 2009 of the 

CRUTEM3vGL global land air index (variance adjusted) of Brohan et al. (2006), a 
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global sequel to the Jones et al. (1999) series to which Thompson et al. compare their 

series.9   

 

Fig. 11. 
CRUTEM3vGL global land air temperature index, annual averages, 1850-Oct. 2009. 

 

The widely used CRU series are partially based on confidential weather data that 

has not been made publicly available (see Met Office 2009).  Since they are not 

scientifically replicable, they should only be used with caution.  However, the alternative 

GISStemp series, produced by NASA/GISS, is only computed back to 1880, and hence 

has three fewer decades than the CRU series.  Preliminary calculations show that the 

                                                 
9  Source <http://www.cru.uea.ac.uk/cru/data/temperature/crutem3vgl.txt>.  The annual average plotted for 
2009 is incomplete, running only through October.  However, the calibration only uses the portion through 
2000. 
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correlations with GISStemp are much weaker than with CRUTEM3vGL, but this is more 

likely due to the smaller sample size than to any difference in behavior since 1880. 

 Since half of the Thompson et al. decadal ice core series are based on decades 

ending in a year divisible by 10, while the other half use decades beginning in a year 

divisible by 10, it is a matter of indifference which convention is used for the temperature 

series.  This paper arbitrarily adopts the former convention, i.e. 1851-1860 etc., and treats 

LCZ as if it were computed consistently on this basis.   

 Since the 4-core LCZ series LCZ4 does not necessarily have the same relationship 

to temperature as the 6-core series LCZ6, the two must be calibrated separately to 

temperature.  Table 1 below shows the results of regressing the 14 decadal values of 

LCZ6 for 1851-1990 on the corresponding decadal averages of the temperature series.  

For purposes of comparison, the 4-core index LCZ4, using only Dasuopu for the 

Himalayan region with a 1/2 weight as in 1991-2000, was computed for all 15 post-1850 

decades 1851-2000, and also regressed on the temperature series, as shown in the last two 

columns of the same table.   

 

Table 1 
Decadal Regression of 6- and 4- core LCZ on CRUTEM3vGL,  

1851-1990 and 1851-2000, resp. 
 

 LCZ6 LCZ4 
 α̂  β̂  α̂  β̂  
coef. 0.842 1.794 1.219 2.146 
s.e. 0.256 0.934 0.195 0.692 
t-stat 3.290 1.921 6.252 3.101 
p(t-stat) 0.006 0.079 0.000 0.008 
n 14 15 
R2  0.235  0.425 
s2  0.363  0.354 
s2sαβ  0.186  0.083 
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r1 -0.005 -0.007 
DW  1.948  2.005 

 
 
 It may be seen that there is a positive and weakly significant correlation between 

LCZ6 and instrumental temperature (2-tailed p = 0.079), and a positive and highly 

significant correlation between LCZ4 and temperature (2-tailed p = 0.008).  The first 

order serial correlation coefficients of the residuals r1 are essentially 0, and the Durbin-

Watson statistics DW are very close to 2, so that positive serial correlation is not an issue 

with these regressions, at least not at this decadal frequency.   

 

 

Fig. 12 
CRUTEM3vGL global temperature index, with reconstructions using the 6-core LCZ and 

the 4-core LCZ, along with posterior median estimates. 
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 Fig. 12 shows the decadal averages of CRUTEM3vGL used for the calibration, 

along with the 6- and 4-core reconstructed temperatures using the classical estimator (4).  

Also shown are the medians of the posterior distribution for the 6- and 4- core 

reconstruction.  In most cases the classical reconstruction and posterior median are 

almost indistinguishable.  Since the classical estimator (4) is much easier to compute and 

explain, it is natural to focus on it as the point estimate of reconstructed temperature.  It is 

conjectured that the classical estimator coincides with the posterior mode.   

 Even though LCZ4 exceeded all previous values of LCZ6 during the decade of 

the 1990s, the temperatures reconstructed from it are somewhat lower than those of the 

1940s using LCZ6.  This comes about because the estimates of both the intercept and 

slope are higher for LCZ4 than for LCZ6 in Table 1.  Both these factors work to reduce 

the reconstructed temperature as a function of the index.   

 Figure 13 shows the temperature reconstruction for 1001-2000, using the classical 

point estimate (4) rather than the posterior median.  The reconstruction is based on LCZ6 

for 1001-1990 (in blue), and on LCZ4 for 1991-2000 (in red).  The line segment 

connecting 1981-1990 (6 cores) and 1991-2000 (4 cores) is also in red.  Although the 

final decade has a decidedly warm point estimate, it is not as warm as the 1940s, contrary 

to the impression given in Figs. 1 and 8.    
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Fig. 13.   
Reconstructed temperature point estimates, using (4) with LCZ6 for 1001-1990 (in blue) 

and LCZ4 for 1991-2000 (in red).    The line segment connecting 1981-1990 (6 cores) 
and 1991-2000 (4 cores) is also in red. 

 

 Of course, since we have relatively precise instrumental temperatures for 1850 to 

the present, the reconstruction in Fig. 13 is not our best estimate of global temperatures 

for these years.  The full reconstruction is provided here, and with its confidence intervals 

below, merely to show how the full “Dr. Thompson’s thermometer” calibrates to 

temperature.    

 The posterior cumulative distribution functions (CDFs) for the LCZ6 

reconstruction for the 99 decades 1001-1010 to 1981-1990 were computed in steps of .01 
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from -5.00 to +5.00 °C, as shown in Fig. 14 below.10  Because the slope coefficient is 

only weakly significant for this reconstruction (p = .079), the tails of the posterior 

distributions are extremely heavy and slow to converge to 0 and 1 for low and high 

temperatures.       

 

Fig. 14. 
Posterior CDFs for 99 LCZ6 temperature reconstructions, 1001-1010 to 1981-1990. 

 

 Fig. 15 below shows the posterior CDF for the LCZ4 reconstruction, computed 

for the sake of comparison for the 15 calibration decades 1851-1860 to 1991-2000.  Since 

the slope coefficient in this regression is highly significant (p = 0.008), the distribution is 
                                                 
10  CRU (<http://www.cru.uea.ac.uk/cru/data/temperature/>) gives the precision of CRUTEM3vGL (2 
standard errors) as approximately 0.05°C since 1951 and about 0.2°C in 1851, with gradual improvement 
from 1860 to 1950 except for wartimes, so that steps of 0.01°C are overkill.  Nevertheless, using Matlab’s 
mvtcdf as described in Appendix I, the program for all 100 reconstruction dates runs in just a few minutes 
on a desktop PC.  
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nearly Student t with 13 degrees of freedom, and the tails converge much more quickly to 

0 and 1 for low and high temperatures than with LCZ6.   

 

Fig. 15.   
Posterior CDF for 15 LCZ4 reconstructions, 1851-1860 to 1991-2000. 

 

 The posterior CDFs in Figs. 14 and 15 were inverted by linear interpolation at 

probabilities 0.025, 0.25, 0.50, 0.75, and 0.0975.  The resulting 50% and 95% LCZ6 

Confidence Intervals (CIs) are plotted in blue for 1001-1990 in Fig. 16 below, along with 

the “classical” point estimates from Fig. 13.  Corresponding values for LCZ4 are plotted 

in red for 1991-2000.  The line segments connecting 1981-1990 (6 cores) and 1991-2000 

(4 cores) are also shown in red. 
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Fig. 16. 
LCZ6 temperature reconstruction for 1001-1990, with 50% and 95% Confidence 

Intervals, in blue.  LCZ4 temperature reconstruction for 1991-2000, with 50% and 95% 
Confidence Intervals, in red.  Line segments connecting 1981-1990 (6 cores) and 1991-

2000 (4 cores) are also in red. 
 

 The partial decade 2001-2009 was the warmest in the instrumental record used, at 

+0.64°C relative to 1961-90 = 0.  It may be seen from Fig. 16 that temperatures 

throughout the period 1001-1850 could have been at least 1.2°C warmer than 1961-90, or 

at least 1.7°C colder.  The Medieval Warm Period (MWP), or even the Little Ice Age 

(LIA) for that matter, therefore could well have been even warmer than the most recent 

decade, so far as this reconstruction goes.  (Since 2001-2009 was not used in the 

calibration, it is not shown in Fig. 12.)   
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An even better Thompson δ18Oice series to calibrate should have been the 7-core 

index of Thompson et al. (2006).  This index adds a seventh, Himalayan core, 

Puruogangri, and extends back 2000 years, where three of the cores still have data.  By 

all rights, it should supersede the 6-core, 1000 year index of Thompson et al. (2003).  

Unfortunately, however, the supporting data sets that accompany that paper only tabulate 

the seven cores back 400 years, as five-year averages, so that the different subsets of the 

seven cores that are active in different periods cannot be separately calibrated, as they 

must be.  Furthermore, the decadally averaged Z-score indices in Data Set 3 do not match 

the averages of the illustrative five-year average Z-score indices for either region that are 

tabulated in Data Set 2, so that there is no linear relationship between the archived 2000-

year composite Z-score index and the illustrative 400-year δ18Oice data on which it is 

supposed to be based, as documented by McCulloch (2009a, 2009b).  Three e-mails to 

Lonnie Thompson and most of his co-authors asking for the complete data and 

clarification of this inconsistency received no reply.  The present study therefore focuses 

instead on the 1000-year 6-core δ18Oice index of Thompson et al. (2003), which is at least 

approximately replicable, in terms of its fully tabulated decadal component series.   

 

V.  Further Calibration Issues 

 This concluding section discusses a number of further calibration issues:  i) the 

classical joint sampling confidence intervals discussed by Hoadley (1970) and Brown 

(1993),  ii) efficient multiproxy calibration, iii) a more powerful sequential prior 

approach; and iv) efficient use of prior information about the sign of the calibration slope 
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coefficient.  No attempt is made at present to implement the proposed solutions to issues 

ii) – iv).   

 i)  The traditional or “classical” alternative approach to calibration CI 

construction is based on Fieller’s (1954) confidence region for the ratio of two Student t 

random variables.  This approach first considers a 100(1-γ) CI for y′  as a function of x′ , 

using the standard Student t distribution (16) for ( )2,,ˆ,ˆ,'|'p sxy Sβα .  These CIs bound 

 by a pair of hyperbolic functions of y′ x′ : 

     ( ) ( ) 2/12/1 vˆˆvˆˆ xtxyxtx cc ′+′+≤′≤′−′+ βαβα ,  

where  is the Student t 2-tailed critical value for test size γ, T( 2/1T 1
2 γ−= −

−n
ct ) ν(t) is the 

standard Student t CDF with ν degrees of freedom, and ( )x′v  is as defined in (17).  Let 

( )( )( )βββ ssTp n /ˆ12 2−−=  be the two-tailed “p-value” of the test statistic for the 

hypothesis that .  If p < γ so that the slope is significantly different from 0 at level 

γ, solving the boundaries for  as a function of the observed proxy value  yields a 

quadratic equation with two real roots ξ

0ˆ =β

x′ y′

1 < ξ2 where y′ intersects the two hyperbolas, and 

the confidence region is the bounded interval (ξ1, ξ2).  But if p = γ, this interval becomes 

either (ξ1, ∞), (-∞, ξ2) or (-∞, ∞), depending on the signs of  and β̂ yy −′ , where y is the 

mean of the calibration  yi-values.  And if  p > γ, so that the slope is insignificantly 

different from 0 at level γ, either y′ twice intersects one of the hyperbolas and the 

confidence region is the discontiguous set (∞, ξ2) ∪ (ξ1, ∞), or else there are no real 

roots, in which case the confidence region is the entire real line.  Hoadley (1970) dryly 

remarks that this set “possesses inherent difficulties.” 
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Brown (1982) proposes that (ξ1, ξ2) is a “respectable interval provided the t-test of 

the hypothesis β = 0 is rejected.”  Indeed, if say  and it were known with perfect 

certainty that β has the same sign, then for any 

0ˆ >β

1ξ<′x , the probability that  could have 

been as high as its observed value would be less than or equal to γ/2, while for any 

y′

2ξ>′x , the probability that  could have been as low as its observed value would also 

be less than or equal to γ/2.  The hitch, however, is that there in fact is always probability 

p/2 that β and  have opposite signs.   

y′

β̂

The Bayesian approach, on the other hand, takes full account of the possibility 

that β and  might have opposite signs, and never gives unbounded CIs, let alone 

discontiguous confidence regions.  When p > γ, as in the LCZ6 example above, the 

Bayesian CI is simply somewhat wider than it otherwise would be, as is only natural.   

β̂

Fig. 17 compares the posterior and Fieller 50% CIs for our LCZ calibration.  

Since for LCZ6, p = .079 << .50, the Fieller 50% region is an interval and the two are 

very similar.  For the final decade, based on LCZ4, p = .0008, so that the similarity is 

even closer.  In general, the classical CI is a good approximation to the Bayesian CI when 

p << γ, so that there is only negligible chance, relative to γ, that β and  can have 

opposite signs.  Indeed, Hunter and Lamboy (1981) themselves actually advocate it as an 

approximation.   

β̂
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Fig. 17. 
Comparison of posterior (lines) and Fieller (shaded) 50% confidence intervals. 

 
 

However, when the slope is only marginally significant, or even insignificant, 

relative to the desired γ, as is often the case in paleoclimate contexts, the exact Bayesian 

interval is to be preferred.  Fig. 18 compares the posterior and Fieller 95% confidence 

regions for our LCZ calibration.  Since for LCZ6, we now have p = .079 > γ = .05, the 

Fieller region is unreasonably either the entire real line or else a pair of semiinfinite 

intervals.  For the final decade, however, p = .0008 << .05, so that the Fieller 95% region 

becomes an interval, and is a good approximation to the posterior interval.   
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Fig. 18. 

Comparison of posterior (lines) and Fieller (shaded) 95% confidence regions. 

 

ii)  When several proxies are available, and there is an a priori expectation that 

they will have the same quantitative relationship to the state variable net of a location 

shift, their average may simply be univariately calibrated to the state variable.  However, 

when, as in the case of the Thompson et al. (2003) ice core data, the individual proxies 

respond unequally to the state variable, and sometimes not at all, a multiproxy approach 

should be more efficient than arbitrarily averaging either the raw proxies themselves, or 

their Z-scores as in Thompson et al. (2003, 2006) and Kaufman et al. (2009).  Of course, 

one may not simply disregard the insignificant proxies, or those that give the “wrong” 
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sign slope, for then there will be selection bias that will invalidate conventional 

significance tests.   

Suppose there are q proxies, with yij being the i-th calibration-period observation 

on the j-th proxy, and  being the reconstruction-period observation on the j-th proxy.  

Assume first that  

jy′

 ijijjij xy εβα ++= ,        (20) 

where  and are independent across proxies.   Let ),0(~ 2
iij N σε ( )T1 ,, njjj yy K=y  and 

, so that ( T
1 ,, nxx K=x ) jα̂ , , and  are implicit in yjβ̂

22 ˆ jjs σ= j and x, and ( )jjyx yx,,|p ′′  

may be computed under a diffuse prior as in Section 2 of the text .   Then under a diffuse 

prior for ,  x′

  .     (21) ( ) (∏
=

′′∝′′′
q

j
jjqq yxyyx

1
11 ,,|p,...,,,...|p yxyyx )

If the regression errors are not independent across proxies, as preliminary 

calculations show to be the case with the Thompson et al. ice core data, then (21) is 

invalid.  However, if we have q ≤ n-2 proxies, we may obtain errors that are uncorrelated 

across proxies, and therefore independent under our Gaussian assumption, by instead 

regressing each proxy j ≥ 2 on the state variable plus proxies 1 ... j-1 during the 

calibration period i = 1, ... n, as follows:   

 . ij

j

h
ihjhijjij yxy εγβα ∑

−

=

+++=
1

1

The calibration OLS estimates of these parameters are implicit in the partial calibration 

data y1 ... yj and x.  Using the reconstruction values of the proxies, define the orthogonal 

innovation of proxy j and its estimate by  
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   ,
1

1

* ∑
−
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for j ≥ 2 and .  Then 1
*
1

*
1 ˆ yyy == ( )jjyx yyx ,...,,ˆ|p 1

*′  may be computed as in (11), 

simply by adding the appropriate terms to (6) – (10).  Equation (21) above then 

generalizes to  

  .   (22) ( ) (∏
=

′∝′′′
q

j
jjqq yxyyx

1
1

*
11 ,...,,ˆ|p,...,,,...|p yyxyyx )

Equation (21) or (22) may be evaluated numerically either by calculating the R2T 

densities directly as in Hunter and Lamboy (1981) or by finite differences from the CDF, 

and then numerically integrating the product of posterior densities to normalize and 

obtain CIs.  A transformation such as Student t with 2q-1 degrees of freedom may be 

useful in order to capture the entire tails.   

 When the proxies are significantly correlated with the state variable even after 

conditioning on the preceding proxies, and if they tell a consistent story about the 

reconstruction state variable, the multiproxy posterior distribution (22) will tend to be 

much tighter about its mode than the single-proxy reconstructions would be.  But when 

the proxies are significant yet tell an inconsistent story about x′ , the multiproxy posterior 

density will tend to be more spread out, or even multimodal.  CIs computed from this 

distribution will then tend to be wide enough to include all, or at least most, of the 

individual modes.  

 As long as all the proxies have the same coverage across observations, the order 

in which they are arranged should make no difference for the multiproxy posterior 
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distribution.  However, if they have different coverage, as is the case for the calibration 

period with two of the Thompson et al. (2003) proxies, and as is the case during the 

2000-year reconstruction period for several of the proxies in Thompson et al. (2006), it is 

important to arrange them in decreasing order of coverage, so that all the required 

conditioning proxies are available at each step.  If a proxy has more coverage in the 

reconstruction period than the others but less in the calibration period, or vice versa, it 

may unfortunately be necessary to give up some data points. 

 In the multiproxy case, the point estimate of x′  may be taken as the posterior 

median, since if the proxies are inconsistent there may be multiple posterior modes.  The 

GLS estimator suggested by Brown (1982: eq. 2.16), which generalizes the single-proxy 

classical estimator in equation (4), is far simpler to compute.  However, it may be 

problematic because it is essentially a weighted average of single proxy estimates, each 

of which has Cauchy-like heavy tails with undefined mean.  The Law of Large Numbers 

therefore does not ensure that the distribution of the average will be more compact than 

the distributions of the contributing values.   

 When the proxies do not have independent simple regression errors and q ≥ n-1, 

as is for example the case with the Kaufman et al. (2009) data, (22) becomes invalid, 

since eventually zero and even negative degrees of freedom will be encountered.  In this 

case, it may be appropriate to reduce the dimensionality of the proxy data set by careful 

use of Principal Components Analysis (Preisendorfer 1988, Mann et al. 1999, McIntyre 

and McKitrick 2005).  Such an approach may also be preferred even when q < n-2, if n/q 

is not large.   



42 

 iii).  Section II above treats the problem of inferring a single reconstruction value 

for an observation that has no sequential relationship to the calibration data.  In a time 

series or other sequential context, however, there may be valuable information from what 

is known or has been inferred about the adjacent observations.   

 In particular, let us suppose that the calibration state observations xt, now with a 

subscript t = 1, ... n to indicate time, follow a random walk so that  

  ttt xx η+= −1 ,        (23) 

where tη  ~ iid N(0, ) and are independent of the regression errors.  The random walk 

“signal” variance may be estimated from the calibration data by  

2τ
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Suppose we have a time series of calibration proxy values yt, t = 1, ... n, as well as 

an adjoining time series of reconstruction proxy values ty′ , t = 1, ... T, with  

etc., as is ordinarily the case in paleoclimate temperature reconstructions.  We wish to 

infer the T state values , t = 1, ... T, which also follow the random walk (23), with 

 etc.  Let x  and  represent the corresponding vectors of reconstruction 

values. 

11 yyT =′ +

tx′

11 xxT =′ + ′ y′

The random walk implies that the distribution of the state variable k periods 

before x1 or k periods after xn, conditional on the calibration data, has a normal 

distribution with mean x1 or xn and variance kτ2, and that the unconditional distribution 

has infinite variance.  It therefore motivates the improper diffuse prior assumption of 

Section II for an isolated reconstruction date that is so far from the calibration data that 
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the calibration values become uninformative.  However, when the reconstruction date is 

either close to the calibration data or surrounded by other reconstruction dates, 

conditioning on this information can greatly improve the precision of the reconstruction.   

 Conditional on the true parameter values, the reconstruction proxy values, and the 

calibration state vector, the posterior distributions of the tx′  are Gaussian, with means and 

variances determined by a simple Kalman smoother (e.g. Harvey 1989, McCulloch 

2005).  This meshes the information in a forward Kalman filter that starts at t = 1 with a 

diffuse prior as in Section II, with the information in a reverse Kalman filter that starts at 

t = T with a prior that is governed by x1, and works backwards.  Then the true parameters 

may be integrated out to find the distributions of the tx′  conditional on the parameter 

estimates.   

 To simplify the notation, the following development of the Kalman filter and 

smoother is implicitly conditional on the true parameter values α, β, σ2, and τ2, until 

otherwise indicated.  

The forward Kalman filter is initialized with a diffuse prior as in section II, so that 

as in (7),  
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with  

  . 22
1111 /,/1,/ βσββ =−=′= vdyc

Now suppose that for any t = 2, ... T, the mean of filter density for t-1 is likewise affine in 

α:   

  ( ) ( )111111 ,~,...|p −−−−− +′′′ ttttt vdcNyyx α . 
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Then (23) implies that the predictive density for time t is 

  ( ) ( )2
11111 ,~,...|p τα ++′′′ −−−− ttttt vdcNyyx . 

Bayes’ Rule then implies that the filter density for t itself is also affine in α: 
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 The reverse Kalman filter works by backward induction, beginning with time T, 

using a prior based on the observed value of 11 +′= Txx  and (23):   

  ( ) ( ) ( )2
11 ,~|p|p τxNxxx TT ′=′ x  

Bayes’ Rule then implies that the reverse filter for t = T is again affine in α: 
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Reasoning analogous to that for the forward filter then implies that the reverse filter is 

likewise affine in α for all t: 
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 Finally, merging together the independent information in ( )tt yyx ′′′ ,...|p 1  and 

( ) ( )2*
1

*
1

*
11 ,~,,...|p τα ++′′′ ++++ tttTtt vdcNyyx x  yields the Kalman smoother  
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   (24)  

 Smoother point estimates tx′ˆ  analogous to the classical pointwise estimator (4) 

may be found by evaluating the mean αtt DC +  using the parameter estimates in place of 

the parameters themselves.   

 In order obtain valid confidence intervals, it remains to integrate out the unknown 

parameters.  Unfortunately, this is no longer determined by the R2N distribution, even 

conditional on the two variances, since β now enters in a complicated way into Ct, Dt, and 

Vt.  However, the dependence on the intercept α is still simple, since it only appears in 

the affine expression for the mean.  Equation (9) implies  

  ( ) ( )( ) ( )( ),1,ˆ/ˆN~,,,ˆ,ˆ,|p 222
αααβββαβ σρββατσβαβα sss −−+S  

where .  Therefore( ) 2/1/ ββαααβαβρ sss= 11

                                                 
}11  Note that the information set { βα ,  is equivalent to { }βαβα ˆ,ˆ,, , since once we know both α and β, α̂  

and  add no information.  Therefore the information set β̂ { }βα ,  may be taken to implicitly include { }βα ˆ,ˆ . 
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 The remaining three parameters, β, σ2, and τ2, must be integrated out numerically 

to obtain ( )22 ˆ,,,ˆ,ˆ,,|p τβα sxt Sxy′′ , using  

( ) ( ) ( ) ( )222222222 ˆ|p|p,,ˆ|pˆ,,,ˆ|,,p ττσσββτβτσβ ββββ ssss =  

and a uniform prior on log(τ2).  These integrals may be performed using ternary 

integration, as described in Appendix II.  Although this is a triple integral, it is probably 

adequate to use ternary integration with only a modest number of points over each 

parameter, e.g. m = 10 for β and m = 4 for the two variances, making a total of 160 

combinations to evaluate.   (In fact, the sequential structure of the state variable means 

that the proxy data contain some indirect information about  and  that is not 

contained directly in s

2σ 2τ

2 or .  However, the gain from exploiting this indirect 

information is likely to be small.)   

2τ̂

 The resulting sequential reconstruction will, by construction, equal the observed 

state data during the calibration period.  In order to make this trivial relationship clear, 

the calibration portion should be plotted with a different color or symbol than the 

nontrivial portion.  At the end of the reconstruction period, the reconstruction will be 

centered nearly on x1, with a very tight distribution.  Moving back into the reconstruction 

period, however, the point estimates will begin to look like a smoothed version of the 

pointwise reconstruction, with smooth CIs that gradually widen.  However, because the 

information in adjacent proxy values is being taken into account, the CIs will never 

become as wide as those for the pointwise reconstruction.  Simply smoothing the 

pointwise CIs is therefore not equivalent to computing a CI for the smoothed 
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reconstruction.  Furthermore, since the Kalman smoother point estimate is already 

optimally smoothed according to the empirical signal/noise ratio, there is no need for any 

ad hoc further smoothing of the point estimate.   

 In order to illustrate how informative the proxy data is by itself (conditional on 

the calibration regression but otherwise not using the calibration state values), the 

reconstruction may also be constructed using a diffuse prior for nTx +′  in the reverse filter.  

This will resemble a smoothed version of the pointwise reconstruction clear up to the end 

of the calibration period as in Figure 19 above, since the pointwise reconstruction takes 

no account of the time series relationship between the calibration values and the 

reconstruction values.    

 Tingley and Huybers (TH 2009) propose a similar sequential Bayesian estimator, 

with the addition features of being multiproxy and spatially disaggregated, as well as 

explicitly treating the instrumental data as containing measurement error.  However, TH 

assume that the state variable follows a potentially stationary AR(1) process with 

unknown AR parameter.  Although this model nests the random walk (23), its likelihood 

is 0 when the AR process has a unit root, so that it will only give posterior density to 

stationary values, with the result that the reconstruction will be unnecessarily tied to the 

mean of the calibration state variables.   

 Also, rather than exploiting the Kalman filter/smoother to integrate out the state 

variables and one of the hyperparameters as in (25) above, thereby leaving only three  

hyperparameters to integrate out deterministically, TH perform the entire normalizing 

integration randomly using a Gibbs sampler.  There are some problems for which Monte 
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Carlo integration is the only practical solution, but it would only add unnecessary 

sampling error to the calculation the simple cases discussed here.   

 iv.  If the slope coefficient is known a priori to be nonnegative, (7) and (11) in the 

pointwise single-proxy case of Section II may simply be evaluated with the restricted 

R2N formula (27) or restricted R2T formula (29) in Appendix I in place of the 

unrestricted formula (26) or (28).   The pointwise multiproxy case of Section V.ii above 

is similar.   

 In the single proxy sequential case of section V.iii, β must already be integrated 

out numerically in (25), so that all that is necessary, when the slope is assumed to be 

nonnegative, is to replace its Gaussian distribution (conditional on σ2) with the 

conditional counterpart.    

 

Data and Matlab programs for this project are online via http://www.econ.ohio-

state.edu/jhm/AGW/Thompson6/

http://www.econ.ohio-state.edu/jhm/AGW/Thompson6/
http://www.econ.ohio-state.edu/jhm/AGW/Thompson6/
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APPENDIX I 

The Distribution of the Ratio of Two Normal or Student t Random Variables 

 The distribution of the ratio of two correlated normal random variables was 

developed by Fieller (1932) but is re-developed here just for fun (and somewhat more 

simply).  The formula is easily extended to the ratio of two Student t random variables. 

 Let X = Y/Z, where Y and Z have the bivariate normal distribution  

  ( ) ( )( )YZZYZY Σ,,N~, μμ ,       . ⎟⎟
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For any real x, define  
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Then the CDF of X is  

   (26) 

( )( )( ) (( )( ),,,),0,0,,),0,0
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)

)where ( ) ( )( XYYXyx Σ,,,, μμΦ  is the bivariate normal CDF with general mean vector and 

covariance matrix.  Matlab function mvncdf, based on Genz(2004), accommodates non-

zero means and non-unit variances, so that it may be applied directly to (26), without a 

location-scale transformation. 

 Hinckley (1969) provides the formula for the density, but this is not required for 

the present problem of computing confidence intervals.   
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 If the denominator Z (in the present context β) is known to be nonnegative, we 

instead have  

 

( )( )( ) ( ),//,,),0,0
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    (27) 

where Φ(z) (with one scalar argument) is the standard univariate normal CDF. 

 If instead (Y, Z) have the general bivariate Student t distribution with means (μY, 

μZ), estimated covariance matrix ΣYZ, ν degrees of freedom, and CDF 

( ) ( )( YZZYzyT Σ,,,, )μμν  (see Zellner 1971, app. B.2; Genz 2004), then by the same 

reasoning,  
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standard bivariate Student t CDF ( )( )WZzw C,,Tν  (with two arguments) is equivalent to 

 in terms of the generalized Student t CDF (with three arguments).  

Although Matlab function mvtcdf, also based on Genz (2004), will rescale a covariation 

matrix to a correlation matrix, it does not at the same time rescale the arguments or 

accommodate a non-zero location vector, so that the user must perform the location-scale 

transformation as in (28).   

( )( WZzw C),0,0(,,Tν )

 If the denominator Z is known to be nonnegative, we have   
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in place of (27). 
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APPENDIX II 

Ternary Integration 

 

 The integrals required to obtain the final smoother CDF ( )22 ˆ,,,ˆ,ˆ,,|P τβα sxt Sxy′′  

from the conditionally normal smoother CDF ( )22 ,,,ˆ,,ˆ,,|P τσββα Sxy′′tx  implied by 

(25) have the form  

   ∫ , 
∞

∞−

= dxxxV )p()G(

where p(x) is a probability density function with CDF P(x).  Using the transformation s = 

P(x), so that ds = p(x)dx,  

        (30) ∫∫ == −
1

0

1

0

1 )f())(G(P dzzdszV

for .   ))(G(P)f( 1 zz −=

 Integration of (30) by trapezoids or by Simpson’s rule requires evaluating the 

integrand at the n+1 endpoints of n equally spaced intervals, and then giving positive 

weights, {.5, 1, ... 1, .5}/n or {1, 4, 2, ...4, 1}/(3n), respectively, to each of these values.  

However, if the integrand is singular at either limit of integration, neither of these 

methods will work at all.  This occurs in the present context when tt xx ˆ′=′ , σ2 = 0, and 

, since there the density integrand is infinite, and the CDF integrand is undefined.  

Even in the vicinity of , either of these methods will be ill-conditioned at σ

∞=2τ

xx ˆ′=′ 2 = 0 

and  (z = 1 and z = 0, resp.).   ∞=2τ

 Integration by rectangles instead evaluates the function at the n center points of 

these intervals, and then gives each value equal weight:   
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This is more primitive than Simpson’s Rule since it does not take the convexity or 

concavity of the integrand into account, but at least it is computable when the integrand is 

singular at one of the endpoints.  V(n) will converge to V = V(∞), but only very slowly, so 

that this method is not very satisfactory by itself.  Nevertheless, it can give very good 

results if it is extrapolated appropriately to n = ∞.   

 If n is chosen to be divisible by 3, V(n/3) will require only a subset of the points 

used by V(n), namely z2 and every third point thereafter, so that there is essentially no 

extra cost to computing it.  If n is sufficiently large, V(n) will be closer to V than is 

V(n/3), so that for some a >0, V may be obtained by extrapolation from these two values:   
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 The exact value of a is of course unknown, and in the present application varies 

with .  Nevertheless, a = 1/2 was found to work well for recovering the Student t 

density from a mixture of normal densities, and therefore presumably also for the present 

problem, which has Student t as a special case in the limit  when  and 

tx′

ˆ0→ββs 0≠β
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∞=τ 2 .  This precise value has the considerable additional virtue that wh = 0 for h = 

2(mod3), so that in fact the integrand only needs to be evaluated at the m = (2/3)n points 

sh for which the base 3 or ternary representation of h ends in either 1 or 0.  In this ternary 

integration, each of the m = (2/3)n included points receives equal weight wh = (3/2)/n = 

1/m.   

 In terms of the m included points, ternary integration may be written more 

succinctly as, 
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for even values of m.  
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