## Lecture 3

- The Price Level
- Real vs. Nominal Quantities
- The Quantity Theory of Money

## Lecture 3

- The Price Level
- Real vs. Nominal Quantities
- The Quantity Theory of Money

Paper (Fiat) money valuable only because it will buy stuff.

How is its purchasing power measured and determined?

# The Price Level

#### CPI-U Consumer Price Index for All Urban Consumers Base year 1982-4 = 100 1967 = 1008/11 226.5 678.6 8/10 218.3 654.0 8/09 215.8 646.5 1982-4 100.0 299.5(33.4)100.0 1967

- CPI computed monthly by Bureau of Labor Statistics (BLS) in US Dept. of Labor (stats.bls.gov)
- Is final on release, has 1 month computation lag.



Linear Scale

CPI-U 1982-84 = 100

Growth rates hard to visualize with linear scale Logarithmic scale better for this purpose.





(through 2008)

With logarithmic scale, slope indicates growth rate. CPI grew faster 1968-82 than before or after. Inflation = rate of growth of price level.

 $P_t = Price level in year t$  $P_{t-1} = Price level in year t-1$ 

$$\pi = \frac{\Delta P}{P} = \frac{P_t - P_{t-1}}{P_{t-1}}$$
 = annual inflation rate

 $\Delta$  (Delta) indicates change in variable.

Deflation = negative inflation = rate of decline of price level. Less common than inflation.

8/10 - 8/11 (1982-4 = 100):  

$$\pi = \frac{226.5 - 218.3}{218.3} = .038 = 3.8\% \text{ annual inflation}$$
8/09 - 8/10:

$$\pi = \frac{218.3 - 215.8}{215.8} = .012 = 1.2\%$$
 annual inflation

Same  $\pi$  with any Base Year (within rounding error):

8/10 - 8/11 (1967 = 100):  

$$\pi = \frac{678.6 - 654.0}{654.0} = .038 = 3.8\% \text{ annual inflation}$$
8/09 - 8/10:

$$\pi = \frac{654.0 - 646.5}{646.5} = .012 = 1.2\%$$
 annual inflation

#### Month-to-month $\pi$ is mostly noise, rounding error:



CPI-U Inflation month-to-month, annualized

Year

Year-over-year inflation is more meaningful, shows considerable persistence from yr to yr:



Inflation was in double digits, 1973-74, 1979-81.

- Why?
- Could this ever recur?

Inflation was negative, 2008-9.

- Is this a big problem?
- Is it likely to continue?

## GARFIELD 1978



### GARFIELD 1978



Boskin Congressional Commission Report, 1996 Says CPI-U overstated "true" inflation by about 1.1%/yr (0.8 – 1.6%)

- 0.6% due to new products, eg
  - computers
  - cell phones
  - DVD players
- 0.4% due to substitution away from goods whose prices have increased.
  - eg gas  $\uparrow \rightarrow$  less driving, better fuel economy
- 0.1% due to shopping locations
  - eg Wal-Mart

Some improvements made, but Fed now prefers PCE Deflator to CPI-U

## Other Price Indices (Commerce Dept.)

- GDP Deflator
  - Gross Domestic Product
  - Base Year = 2005 currently
    - was 2000, 1996, 1987, etc.
  - Quarterly, revised after first release.
- PCE Deflator
  - Personal Consumption Expenditures
  - Base Year same as GDP Deflator
  - Monthly, revised after first release
- Producer Price Indices (PPIs)
  - Wholesale Prices
  - Base Year = 1982 currently
  - Monthly, released before CPI, but noisy.

#### GDP, PCE Deflators very similar to one another. Both tell similar story to CPI-U



YEAR

• CPI-U inflation averages **0.40%/yr more** than PCE inflation, otherwise similar, since 1983 CPI upgrade.

• Final CPI-U available on first release, **PCE must wait months** or years for final version.



 $\Rightarrow$  good estimate of final PCE  $\pi$  is CPI  $\pi$ , minus 0.40%!

- PPI inflation noisy, may differ substantially from CPI-U, PCE inflation.
- PPI for Finished Consumer goods doesn't include services or retail markups that are in CPI.



CPI-U (1982-84 = 100) vs PPI All Commodities, PPI Finished Consumer Goods (1982=100)

YEAR

## Real vs. Nominal Quantities

Nominal – Current (year t) \$

Real – Base year (year  $t_0$ ) \$

 $P_t = Price Index$ 

 $Y_t = Nominal Income (upper case)$ 

$$y_t = Y_t \cdot P_0 / P_t = Real Income (lower case)$$
  
(in year  $t_0$  \$)

To simplify, we often take  $P_0 = 1.00$ . Then,

$$y_t = Y_t / P_t$$
 or  $y = Y / P$ 

Similarly, if M<sub>t</sub> = Nominal Money Stock (upper case),

 $m_t = M_t / P_t = M / P = Real Money Stock (lower case).$ 

Most of growth in nominal income has just been inflation. Real income usually grows fairly steadily at 2 - 4% / yr.



YEAR





YEAR

# The Quantity Theory of Money (M&I Ch. 2)

- M<sup>S</sup> = Nominal M Stock
  - supplied by govt, banks
- m<sup>D</sup> = Real M Demand
  - determined by
    - real volume of transactions using M
    - average time M held
- $P^* = Equilibrium P$ -level at which S = D:  $M^S / P^* = m^D$  or  $M^S = P^* m^D$

$$\Rightarrow$$
 P\* = M<sup>S</sup> / m<sup>D</sup>

QTOM

QTOM asserts

$$P \rightarrow P^*$$
 in Long Run.

Implications of QTOM

$$P \rightarrow P^* = M^S / m^D$$

- If m<sup>D</sup> constant,  $M^{S} \uparrow \rightarrow P \uparrow, M^{S} \downarrow \rightarrow P \downarrow$
- If M<sup>S</sup> constant,  $m^{D} \uparrow \rightarrow P \downarrow, m^{D} \downarrow \rightarrow P \uparrow$
- If M<sup>S</sup>, m<sup>D</sup> ↑ or ↓ in same proportion, P constant.

## The Ripple Effect

- Placing rock in pond raises level uniformly.
- Dropping rock in pond causes splash, ripples
   but eventually level rises uniformly.
- M <sup>↑</sup> disturbs relative prices at first.
  - sellers whose P's rise before their cost of living goes up gain from  $\pi$ .
  - sellers whose P's rise after their cost of living goes up lose from  $\pi$ .
  - $\Rightarrow$  Inflation induces transfer from "last in line" to "first in line"
- This is one of 3 income transfers that may be caused by inflation. (more later)

Walras' Law  
Budget Constraints imply  
Agg D = Agg S, even at non-equil. P's.  
so 
$$D_{goods} + m^{D} = S_{goods} + M^{S} / P$$
,  
 $M^{S} / P - m^{D} = D_{goods} - S_{goods}$ , or

XS S of M = XS D for Goods (XS = excess)

Implications of Walras' Law:

$$XS S of M = XS D for Goods$$

1.  $M^{S} / P > m^{D}$  (P < P\* = M<sup>S</sup> / m<sup>D</sup>)  $\Rightarrow D_{goods} > S_{goods}$   $\Rightarrow P \uparrow on average until P = P*$ 2.  $M^{S} / P < m^{D}$  (P > P\* = M<sup>S</sup> / m<sup>D</sup>)  $\Rightarrow S_{goods} > D_{goods}$  $\Rightarrow P \downarrow on average until P = P*$ 

Either way,  $P \rightarrow P^*$  in Long Run, per QTOM

- HW 2 due Fri 5 PM.
- Next:
  - Interest rates: nominal vs. real
  - M&B 6, 8, 19 pp. 1-3,
  - M&I 4.1, 7.1