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Mean-Scale Indifference Curves 

 

 For gambles with small variance, a second order Taylor’s series expansion 

enables us to approximately quantify the risk premium on a risky prospect in terms of its 

variance.  For gambles with large variance, however, it is conceivable that two gambles 

with the same mean and variance might not have exactly the same expected utility. 

  Figure 1, for example, shows two distributions with mean 0 and unit variance.  

The first is a Gaussian distribution N(0,1), while the second is uniform U( 3,3− ).  It 

can easily be shown that a uniform distribution U(a,b) has mean (a+b)/2 and variance  

(a-b)2/12, so that the second distribution indeed has 0 mean and unit variance.   

Figure 1 
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An expected utility function over wealth can easily be found for which these two 

prospects would yield different expected utility.   

 However, if all gambles are drawn from the same location-scale family of 

distributions, the location and scale will completely describe the distribution of any given 

gamble, and so expected utility (if it exists) will be an exact function of location and 

scale, or equivalently of mean and standard deviation if the mean and variance exist.  

This insight and the following theorems are due to James Tobin, in his article “Liquidity 

Preference as Behavior towards Risk,” which appeared in the Review of Economic 

Studies in 1958. 

 Let random future real wealth W be determined by  

  W = μ + σZ,  

where Z is a standardized random variable with standardized density fZ(z).  Then μ and σ 

completely determine the distribution of W.  If Z has finite mean, we may w.l.g. (without 

loss of generality) set EZ = 0 so that EW = μ.  If Z has finite variance, we may w.l.g. set 

Var(Z) = 1, so that s.d.(W) = σ.  It is OK if Z has infinite variance (e.g. for stable 

distributions and some Student t distributions), however, in which case σ is just a scale 

parameter that cannot be interpreted as a standard deviation.   

 Expected utility (if it exists) may now be expressed in terms of an indirect utility 

function V(μ, σ): 
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Theorem 1 (Tobin 1958):  As long as utility is increasing (i.e. U′(w) > 0) and all 

gambles are drawn from a common location-scale family, more mean is better than less, 

holding risk constant. 

Proof:  Assuming we may pass the differentiation operator inside integral sign (cp. Thm 

2.4.2 in Casella and Berger), 
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(The little box means QED, also written ///.) 

 It follows from Theorem 1 that if we place the location μ on the vertical axis and 

the scale σ on the horizontal axis, and plot out “Indifference Curves” that show 

combinations of μ and σ for which V(μ, σ) takes on a constant value, these indifference 

curves will pass from left to right without doubling back on themselves.  Furthermore, 

higher curves (in the μ direction) will represent higher expected utility.   

 If we now add the assumption of risk aversion (so that the expected utility 

function is concave), Jensen’s inequality tells us that some risk will be worse than no 

risk, holding the mean constant.  The following theorem tells us even more: 

Theorem 2 (Tobin 1958):  As long as utility is concave (i.e. U′′(w) < 0) and all gambles 

are drawn from a common location-scale family with finite mean, more risk is always 

worse than less risk, holding mean constant.   

Proof:  Since Z has finite mean, we may w.l.g. set EZ = 0.  The trick of the proof is to 

break the required integrals in half at z = EZ = 0, and to consider the two halves 

separately.  Again assuming we may pass the differentiation operator inside the integral,   
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Furthermore, since EZ = 0 and U′(μ) is just a scalar, E(ZU′(μ)) = 0.  Therefore,  
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By Diminishing Marginal Utility (U′′(w) < 0), U′(μ) > U′(μ + σz) in integrals B and D, 

where z > 0.  It follows that D > B > 0.  Furthermore, U′(μ) < U′(μ + σz) in integrals A 

and C, where z < 0.  However, since z < 0 in these integrals, 0 > zU′(μ) > zU′′(μ + σz), 

so that 0 > C > A.  It follows that  

 0/),( =+<+=∂∂ DCBAV σσμ . 

           /// 

 Theorems 1 and 2 together tell us that our μ-σ indifference curves slope upward, 

but still don’t tell us how they may curve.   

Theorem 3 (Tobin 1958 “The non-existence of plungers”):  If U(w) is strictly concave, 

then for any mean-scale family of distributions, the mean is a strictly convex function of 

scale along expected utility indifference curves.   

Proof:  Consider any two points on a common expected utility indifference curve: 
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for any θ ∈ (0, 1).  (See Figure 2 below.)  Then for any real number z,  

 ))(1()( 2211 zzz σμθσμθσμ θθ +−++=+ ,  

whence, by the strict concavity of U(w),  
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It follows that  
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 Along the V0 expected utility indifference curve, the mean is a function μ(σ) of 

scale, defined implicitly by  

  V(μ(σ), σ)= V0.   

Since V(μθ, σθ) > V0 = V(μ(σθ), σθ), Theorem 1 requires that μθ > μ(σθ), and hence that 

μ(σ) is indeed a convex function.   

           QED 

 Note that this convexity of the indifference curves holds only if risk is measured 

in terms of standard deviation (or scale) σ, and not in terms of variance σ2.  In terms of 

variance, the indifference curves are still upward sloping, but may have either (or 

alternating) curvature. 
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Quadratic Utility 

 An alternative approach Tobin proposed for having expected utility be a well-

defined function of mean and variance was to assume that utility is quadratic: 

  U(w) = w – aw2, a > 0. 

This function implies that for any finite variance distribution for W, regardless of shape, 

expected utility is a function solely of the mean and variance of W: 

 EU(W) = EW – aE(W2) 

   = EW – a(σW
2 + (EW)2) 

   = μW - a σW
2 - a μW

2

 One immediately apparent drawback of this function is that utility hits a peak at w 

= 1/(2a), after which it declines.  However, if most of the probability density is in the 

region w < 1/(2a), this in itself is not necessarily a big problem. 

 A more serious problem with quadratic utility is that it implies increasing absolute 

risk aversion when w < 1/(2a).  This in turn implies that risky assets are actually inferior:   

As people get wealthier, they will not just hold constant quantities of risky assets as with 

CARA exponential utility.  Rather they will actually hold fewer risky assets the more 

wealthy they become.  This implausible property makes quadratic utility highly 

unsatisfactory for most purposes. 




