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 Econ 640

J.H. McCulloch

Fall 2008
Stable Distributions


In Economics and Finance, we often observe quantities (such as GDP) and prices (such as commodity prices or asset prices) that represent the accumulation of a vast number of more or less independent unobserved random contributions (such as individual decisions and/or bits of information, aggregated in cross section and/or time).  The Generalized Central Limit Theorem (below) states that if the sum of a large number of independent and identically distributed random variables has a limiting distribution shape, the limiting distribution must be a member of the stable class.  The normal or Gaussian distribution is a member of this class, and therefore is a natural candidate for modeling regression residuals and asset returns.  However, actual regression residuals and asset returns are ordinarily too leptokurtic, or heavy-tailed, to be Gaussian.  In such a case, the non-Gaussian stable distributions become the natural model choice instead.


A location-scale family S of distributions is defined to be stable, in the sense of having stable shape under summation, if and only if for any two independently distributed random variables X1 ~ S1(x) ( S and X2 ~ S2(x) ( S, their sum X3 = X1 + X2 has a distribution S3(x) that has the same shape as S1(x) and S2(x), and therefore is also a member of S.  A stable distribution is one that is a member of such a family.


By the definition of a location-scale family, there must exist location parameters (1, (2, and (3 and nonnegative scale parameters c1, c2, and c3 such that 
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for Zi ~ S(z), where S(z) is the standard c.d.f. of family S.  We use ( and c for the location and scale parameters here, rather than ( and ( as in Casella and Berger (2nd, ed, pp. 116-21), since the latter symbols are often used for the mean and standard deviation, but we don’t necessarily know that these exist.


We know already that the normal (or Gaussian) distributions are stable, since the sum of two independent normals is again normal, with (3 = (1 + (2, where (i = E(Xi), and  c32 = c12+ c22, for any choice of a scale parameter proportional to the standard deviation.  On p. 216 of Casella and Berger (2nd ed), it is shown that the infinite-variance Cauchy distributions are also stable under summation, with c3 = c1 + c2.  


FACTS:  


1.  The set of all standard stable distributions is a 2-parameter family, S(,((z), where the characteristic exponent ( ( (0, 2] determines the thickness of the tails, and the skewness parameter (( [-1, 1] governs the skewness of the distribution.  The set of all stable distributions is therefore a 4-parameter family, so that if Z is standard stable with c.d.f. S(,((z), X = ( + cZ is stable with c.d.f 



S(x; (, (, c, () = S(,(((x-()/c).

In this case, we may write X ~ S((, (, c, ().  The standard and general stable densities may be written s(,((z) = S(,(((z) and s(x; (, (, c, () = S((x; (, (, c, ().


2.  If ( = 2, S(,((z) is Gaussian or normal, with mean zero.  Furthermore, ( loses its effect, so that we may write S2,((z) more simply as S2(z).  For no good reason other than to simplify the characteristic function (see below), this standard stable distribution is customarily taken to have variance 2 rather than 1, so that S2(z) = N(z/(2), where N(z) is the standard (mean zero, unit variance) normal c.d.f., and var(X) = (2 = 2c2 in the non-standard ( = 2 cases.


3.  If ( < 2, distribution has such heavier tails than the normal that the variance is infinite.  In fact, the c.d.f. has power tails, like a Pareto distribution, with power (.  For this reason, the non-normal stable distributions are sometimes called “Paretian Stable.”  


4.  If ( > 1, the mean of Z exists and is 0, so that the mean of X also exists, and is (.  


5.  For ( = 1 and ( = 0, S1,0(z) is the standard Cauchy c.d.f.


6.  If ( ( 1, the distribution has such heavy tails that even its mean is undefined.  Nevertheless, ( remains the median in the symmetric cases ( = 1.


7.  The skewness parameter ( equals the limit, as we move further and further out into the tails, of the ratio of the difference of the tail probabilities to their sum:
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If ( = 0, the standard density is symmetrical about 0 so that S(,0(z) = 1-S(,0(-z).


8.  The location parameter and scale parameters of the sum X3 above are ordinarily given by 
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(The only exceptions are the “afocal” cases ( = 1 and ( ( 0, in which case the location parameter has an additional peculiar shift term that goes beyond the scope of this note.  See McCulloch 1996b.)


The standard symmetric stable density functions for ( = 1.0, 1.5, and 2.0 are illustrated below:  
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Proof of Facts 1-8 require use of the characteristic function of the distribution.  The characteristic function, computed as the Fourier transform of the density, is somewhat similar to the moment generating function, but is in general complex-valued, and goes beyond the scope of this handout.


Fact 8 implies that if a random sample X1, … Xn is iid S(x; (, (, c, (),  their sum Yn ordinarily has distribution 
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and the sample mean has the distribution 
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(Again, the only exception is that there is an additional shift term in the location parameter of the sample sum and mean in the afocal cases ( = 1, ( (0.  See McCulloch 1996b.)  In the finite population mean cases ( > 1, the scale of the sample mean tends toward 0 as n goes to infinity, which immediately implies that the Weak Law of Large Numbers holds for ( > 1, i.e. 
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,  ( > 1.

For ( = 1, the scale of the sample mean does not depend on n, and hence the WLLN stops working.  For ( < 1, the scale of the sample mean increases with n, and the WLLN actually works in reverse:  the distribution of the sample mean explodes about the focal value (, instead of collapsing on it.  


Although it’s harder to show, the Strong Law of Large Numbers holds as well in the finite mean cases ( > 1:
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Recall that the Classical Central Limit Theorem (CLT) states that if X1, … Xn are iid with a common distribution F(x) that has population mean ( and variance (2 < (, the distribution Gn(z) of the standardized sums 
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 becomes N(0,1) as the sample size n becomes large, i.e. 
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where the normalizing locations and scales are taken as (n = n( and (n = n1/2(.  


The Generalized Central Limit Theorem extends the Classical CLT by relaxing the assumption of a finite variance.  It states that if X1, … Xn are iid with a common distribution F(x), and a sequence of location parameters {(n} and of scaling parameters {cn}can be found such that the distribution Gn(z) of the standardized sums 
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 has a non-degenerate limiting distribution G(z), then G(z) must be a stable distribution.  


Heuristic proof:  If the standardized sums of all the Xi’s have the limiting distribution G(z), then the standardized sums of all the even Xi’s must have the same limiting distribution, as must the standardized sums of all the odd Xi’s.  But if when we add the odd sums to the corresponding even sums to obtain the full sums back again, we still have G(z) in the limit after adjusting location and scale, then G(z) must have been shape-stable under summation.  


In the Generalized CLT, the scale parameters cn may be chosen to be cn1/( and the location parameters (n may ordinarily be taken as n(, for some constants c and (, in such a way that the limiting distribution G(z) is in fact the standard stable distribution S(,((z).  (In the exceptional afocal cases mentioned above, (n has an additional term that doesn’t concern us here.)


If distribution F(x) leads, in the Generalized CLT, to the limiting distribution S(,((z), F(x) is said to be in the Domain of Attraction of S(,((z).  Furthermore, by stability, every stable distribution is in its own Domain of Attraction (DOA).  Thus, the Generalized CLT can be rephrased to state that stable distributions, and only stable distributions, have Domains of Attraction.  The Classical CLT states that any finite variance distribution lies in the Gaussian DOA.  A Pareto distribution with power ( < 2 has infinite variance, and lies in the DOA of S(,1(z).


Stable distributions are most concisely defined in terms of their characteristic functions, defined as the Fourier transform of the density.  The density may then be computed from the characteristic function by taking its inverse Fourier transform.  Both these operations go beyond the scope of this handout.  Vladimir M. Zolotarev (1986) has found an equivalent real-valued, proper integral representation of the stable p.d.f. and c.d.f. that is not so arcane, and which, despite being quite cumbersome, can be numerically integrated to crunch out values as desired.  


My website, at 

http://www.econ.ohio-state.edu/jhm/jhm.html

has a GAUSS program SYMSTB that quickly computes an approximation to the symmetric stable density and c.d.f. to precision that is adequate for maximum likelihood estimation.  My GAUSS program SMSTRG, also linked there, will estimate a linear regression with symmetric stable residuals by maximum likelihood.  My website also has a link to John Nolan’s program STABLE.EXE, that computes the general stable density and c.d.f. for you, and will also estimate the four stable parameters for you by maximum likelihood.  


Economic and financial data usually give estimates of ( in the range 1.7 – 1.9, with significant deviation from normality, even after adjustment for GARCH-type volatility clustering.  Stock prices typically show some negative skewness, while foreign exchange rates sometimes show time-varying skewness.  
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