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ABSTRACT 
 
 The Local Scale Model (LSM) of Shephard (1994) is a state-space model of 
volatility clustering similar in effect to IGARCH, but with an unobserved volatility that 
realistically evolves independently of the observed errors, instead of being mechanically 
determined by them.  It has one fewer parameter to estimate than IGARCH, and a closed 
form likelihood, despite the unobservability of the volatility.  Although the errors are 
assumed to be Gaussian conditional on the unobserved stochastic variance, they are 
Student t when conditioned on experience, with degrees of freedom that grow to a finite 
bound. 
 
 The present paper improves on the Shephard (1994) model by assigning equal 
variance to the innovations to the volatility.  The implied volatility gain at first declines 
sharply as in the Local Level Model, rather than being constant throughout as in 
traditional IGARCH.   
 
 The improved model is fit to monthly stock returns by Maximum Likelihood.  
The parameter estimates imply 7.76 steady-state degrees of freedom.  A short-lived 
“Great Moderation” is evident during the mid-1990’s, but expires by 1998.  Otherwise 
the period since 1970 was generally more volatile than the 1950s and 60s, though less so 
than the 1930s and 40s.  The LSM volatility responds more nimbly to the data than does 
an IGARCH model.   
 
 Although the Student t densities generated by the Gaussian-based LSM account 
for much of the conditional leptokurtosis in the data, further refinements will be required 
to adequately model the pronounced negative skewness and/or residual leptokurtosis in 
stock returns.   
 
 



  

 
1.  Introduction and summary 
 
 The Local Scale Model (LSM) of Shephard (1994) is a model of volatility 
clustering that treats the volatility as an unobserved state variable that evolves 
stochastically with shocks that are realistically independent of the observed errors 
themselves, rather than being observed and mechanically determined by them as in 
ARCH (Engle 1982) or GARCH (Bollerslev 1986).  The result is an IGARCH-like 
recursion for the parameters governing the volatility, but with one fewer parameter than 
is required by IGARCH.  The LSM permits the likelihood to be computed exactly in 
terms of standard densities, without the tedious numerical integrations that are ordinarily 
required by non-Gaussian state-space models.  The LSM does for stochastic volatility 
what Adaptive Learning (Evans and Honkapohja 2001, McCulloch 2005) does for 
stochastic regression coefficients.   
 
 The present paper improves upon the Shephard (1994) model by assigning equal 
variance to the innovations to the unobserved volatility.  This results in a volatility gain 
that at first declines sharply with the number of observations as in the classical Local 
Level Model and in Adaptive Least Squares (McCulloch 2005), rather than being 
constant throughout as in traditional IGARCH models (McCulloch 1985a, Engle and 
Bollerslev 1986), or declining more slowly as in the Shephard (1994) model. 
 
 The paper also goes beyond Shephard (1994), by fitting the model to empirical 
data, specifically monthly excess stock returns for 1926-2003.  Although the excess 
returns are assumed to be Gaussian conditional on the unobserved stochastic variance, 
they are in fact Student t when conditioned on investor experience.  The estimated 
variance of the volatility innovations implies degrees of freedom (DOF) that are bounded 
above by 7.76.  
 
 The estimated volatility reacts more nimbly to the observed return shocks than 
does a conventional IGARCH(1,1) model.  A short-lived “Great Moderation” in stock 
market volatility is apparent during the mid-1990’s, but expires by 1998.  Otherwise the 
period since 1970 was generally more volatile than the 1950s or 1970s, but far less so 
than the 1930s.   
 
 Unlike a conventional IGARCH model, the LSM accounts for considerable 
leptokurtosis after conditioning on experience.  However, it does nothing to account for 
pronounced negative skewness in the conditional stock returns.  The symmetric 
Gaussian-based model can be formally rejected using the Neyman Smooth Test for 
goodness-of-fit.  Suggestions are offered for further refinements of the model to account 
for skewness and/or residual leptokurtosis.     
 
 Section 2 below reviews the Shephard LSM and modifies it to make the 
innovations to the volatility homoskedastic.  Section 3 compares the improved LSM to 
related models of volatility clustering.  Section 4 provides an application to monthly 
stock returns.  Section 5 tests the transformed residuals for uniformity using the Neyman 
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smooth test, and finds that this can be easily rejected.  Section 6 considers a WLS 
estimator of the mean.  Section 7 concludes.  The Appendix reviews key properties of the 
gamma and beta probability distributions.   
 
2.  The Local Scale Model 
 
 Shephard (1994) models a time series yt as being Gaussian, conditional on a 
known mean μ and an unobserved time-varying precision, or reciprocal variance, θt:   
  )/1,(~| ttt Ny θμθ .1       (1) 
Conditional on last period’s experience Yt-1 = {y1, ... yt-1}, last period’s precision is 
assumed to have a gamma distribution, with count parameter at-1 and intensity bt-1 (see 
appendix): 
  ),(~| 1111 −−−− tttt baGYθ .   
The precision is assumed to evolve over time with beta-distributed multiplicative shocks 
ηt.  Generalizing Shephard’s notation somewhat so as to permit an important 
modification,2 I set  
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 Exploiting the equivalence (see appendix) of a gamma RV with count parameter a 
to a scaled χ2 RV with d = 2a degrees of freedom (DOF), and setting  

                                                 
1  As noted below, the model can easily be generalized to replace the fixed mean μ with a linear 
combination of exogenous regressors.   
2  Note that whereas Shephard’s “ηt” is the beta-distributed shock itself,  I have incorporated the scale 
factor kt (Shephard’s exp(rt)) into it.  My ta′  is equivalent to Shephard’s at|t-1.   
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  ttttt abEv ′′== − //1 1θ  
and  
  tt ad ′= 2 , 
it follows that conditional on past experience Yt-1, the new observation yt has a scaled and 
shifted Student t distribution with dt DOF:  
  μ+− )(~| 1 tttt dTvYy .      (3) 
Equations (2) then imply the following GARCH-like recursion for vt:  
  2

11 −− += ttttt vv εγλ ,        (4) 
where  

  
tt

t
t dk

d 1−=λ ,   
tt

t dk
1

=γ .      (5) 

Note that there is no constant term in (4), and that λt + γt is not necessarily unity.   
 
 Shephard (1994) notes that in order to prevent the precision θt from converging in 
probability to either 0 or +∞, it is necessary to set  
  0log)/log( 1 ==− ttt EE ηθθ .      (6) 
He observes that this in turn requires (see appendix)  
  )()(log 1 ttt aak ′Ψ−Ψ= − , 
or equivalently,  
  ( )( ) ( )( )2/2/1exp 1 ttt ddk Ψ−+Ψ= − ,     (7) 
where Ψ(a) is the digamma function, defined by  

  )(ln)( a
da
da Γ=Ψ .3       (8)   

 
 The variance of the volatility shocks log ηt is in general given (see appendix) by  
  )()(logvar 111 −Ψ−′Ψ= ttt aaη ,      (9) 
where Ψ1(a) is the trigamma function, defined by  

  )(ln)()( 2

2

1 a
da
da

da
da Γ=Ψ=Ψ .     (10) 

Shephard (1994) assumes that ta′  is some fixed constant ω < 1 times at-1.  However, this 
specification implies that the variance of log ηt is not constant, but rather declines sharply 
initially under the uninformative prior specified below.  The present paper instead adopts 
the more appropriate assumption, in the spirit of the Local Level Model for the mean (see 
e.g. McCulloch 2005), that these shocks are homoskedastic,4 with some constant variance 
ϕ.  This in turn requires  
  ( )ϕ+ΨΨ=′ −

− )( 11
1

1 tt aa ,       
or terms of the predictive DOF dt,  

                                                 
3  The DIGAMMA function is supported by GAUSS, as is the TRIGAMMA function employed below. 
4  On the spelling of heteroskedasticity, see McCulloch (1985b). 
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  ( )ϕ++ΨΨ= −
− )2/)1((2 11

1
1 tt dd .5     (11) 

 
 The familiar Local Level Model (see, e.g., McCulloch 2003) in fact goes one step 
further than homoskedastic shocks to the unobserved mean of the process, by assuming 
that they are actually identically distributed.  However, in the present model this is not 
feasible since at, and therefore the parameters of the requisite beta distribution, change 
over time.  Making the shocks homoskedastic as in (11) is the next best thing to making 
them identical. 
 
 Shephard (1994, p. 187) appropriately suggests that the Local Scale Model be 
initialized by specifying that 2/11 =a .  This is equivalent to setting 01 =′a , which in turn 
implies 01 =′b  and therefore 2/2

11 ε=b  for any choice of v1.  Equivalently, we may 
simply set  
  0,0 11 == vd         (12) 
in the recursions (4), (7), (11).  Since the gamma count parameter, or equivalently the χ2 
DOF, measures the precision of the estimate of the volatility, initializing it to zero is 
equivalent to starting with no information at all.6 
 
 If ϕ = 0, dt = t-1 under the uninformative prior (12) , and indeed dt behaves much 
like t-1 for small values of t even when ϕ > 0.  For sample size n, dn can thus be thought 
of as the effective average size of individual variance regimes.   As t becomes large, dt 
will approach a constant value d∞ determined by the unique fixed point of (11):   
  ϕ++Ψ=Ψ ∞∞ )2/)1(()2/( 11 dd .      (13) 
It can be shown graphically, if not analytically, that for small values of ϕ,  
  1/2 +≈∞ ϕd . 
 
 The solid line in Figure 1 below shows the first 20 values of dt, using ϕ = .03744, 
the value estimated for monthly stock returns in section 4 below, in conjunction with (11) 
and (12).  Initially, d(t) behaves much like t-1, shown as the dot-dash line, but then levels 
off as it quickly approaches its asymptotic value d∞ = 7.759, represented by long dashes.   
 

                                                 
5  If the inverse trigamma function required by (11) is not supported by the software at hand (e.g. GAUSS), 
it can easily be evaluated by means of a binary search.   
6  Taking the limit of the gamma density for θ1|Y0 as 1a′  falls to 0 while holding 111 / bav ′′=  constant yields 
an uninformative improper prior density for θ1 that is proportional to 1/θ1.   
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Figure 1 

 
 Under Shephard’s specification that 1−=′ tt aa ω  for some constant ω < 1, the 
predictive DOF obey )1( 1 += −tt dd ω  and will eventually approach the asymptotic value 

)1/( ωω −=∞d .  The present ϕ thus replaces Shephard’s ω as the key parameter 
determining the asymptotic learning rate of the process.  The short dashed line in Figure 1 
depicts how dt behaves under Shephard’s specification, using ω = 0.8858 so as to obtain 
the same asymptotic d∞.  It may be seen that under Shephard’s heteroskedastic 
specification for the innovations to the log variance, dt grows more slowly than t-1 
initially, and approaches its asymptotic value much more slowly.  The Shephard model 
thus takes longer to obtain a good fix on the volatility than does the improved model.   
 
 Figure 2 below shows the gain γt and attrition λt from the GARCH-like recursion 
for vt in (4) and (5), using the uninformative prior (12) and the same ϕ as Figure 1.  It 
may be seen that the gain behaves approximately like 1/(t-1) initially, and that the sum of 
the coefficients is slightly less than unity. 
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Figure 2 

 
 The dashed line in Figure 2 shows the gain under the Shephard specification.  
Because this specification attributes a very high variance to the initial volatility shocks, 
the y2 predictive DOF d2 is already substantially less than unity.  The gain then rises 
above that in the improved specification, since the higher initial volatility shock variance 
implies that earlier experience becomes obsolete faster.   
 
 For any values of the two hyperparameters μ and ϕ, the log-likelihood implied by 
the modified LSM model (4), (5), (7), (11), (12) becomes  

  L(μ, ϕ) = ( )( )∑
=

n

t
tttd vvt

t
2

2/12/1 //log ε  

where  

  ( )
( ) 2/)1(2 /1)2/(

2/)1()( +
+Γ

+Γ
= dd

dxdd
dxt
π

 

is the standard Student t density with d DOF.7  This may be maximized numerically to 
obtain Maximum Likelihood (ML) estimates of μ and ϕ when, as is ordinarily the case, 
these are not really known, as has been assumed to this point.  Since the Student t density 

                                                 
7  logΓ(a) may be computed to adequate precision in GAUSS as LN(GAMMA(a)) for a < 7, and as 
LNFACT(a-1) for a ≥ 7.  Neither function is adequate over the entire required range, however.   
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is symmetric, the two parameter estimates are asymptotically orthogonal, and hence the 
variance of the ML estimate of the mean may be estimated simply as  

  =)ˆ( MLse μ ( 2

2

μ∂
∂ L(μ, ϕ))-1/2.   

 
3.  Related Models 
 
 In the pioneering ARCH(p) model of Engle (1982), it was assumed that  
  ),(~| 2

1 ttt NYy σμ− , 
where  

  ∑
=

−+=
p

j
jtjt

1

22 εγδσ . 

In this model, the shocks that drive the variance are the squares of the observation errors 
themselves, rather than being independent as in the LSM.  This assumption is contrived, 
but is very conveniently computationally.  Because it implies that the variance is actually 
observed for t > p, the joint probability of yp+1, ... yn can be written down in closed form 
as a product of normal densities without the tedious numerical integrals that would 
ordinarily be necessary if the variance were more realistically treated as an unobserved 
state variable (see, e.g., Harvey 1989, pp. 162-4; Bidarkota and McCulloch 1998).  This 
computational convenience accounts for the overwhelming success of ARCH and 
ARCH-like models.   
 
 It was quickly recognized (McCulloch 1985a, Bollerslev 1986) that a high degree 
of persistence can be obtained with far fewer parameters than ARCH, simply by adding 
one or more lags of the variance itself to a small number of ARCH terms.  In the popular 
GARCH(1,1) model,  
  2

1
2

1
2

−− ++= ttt γελσδσ ,8      (14) 
the unconditional variance 
  )1/(E 2 γλδε −−=t  
is finite when λ + γ < 1.9      
 

                                                 
8  Bollerslev (1986) in fact considered a GARCH(p,q) model with p lags of the squared errors and q of the 
variance, but p = q = 1 is ordinarily adequate.   
9  In GARCH (1,1), the joint probability of y1, ... yn unfortunately depends on the unobserved initial 
variance 2

1σ .  In principle, if the process is strictly stationary, as it is even for λ + γ = 1, the unconditional 

likelihood could be found by first finding the unconditional distribution of 2
1σ  by iterating numerically on 

(14), and then taking the expectation of the conditional likelihood under this distribution.  However, the 
effect of the unobserved initial variance quickly dies out, so that practitioners invariably resort instead to 
simpler expedients such as using pre-sample values (McCulloch 1985; Bollerslev 1986, p. 315, n. 4), using 
the full-sample variance (Engle and Bollerslev 1986), treating 2

1σ  as an additional parameter to be 
estimated by ML (Hamilton and Susmel 1994, Bidarkota and McCulloch 1998), backcasting using an 
arbitrary geometric decay factor (EViews 4.0 2000, p. 385), or backcasting from the end of the sample 
using the GARCH coefficients themselves (McCulloch 2005).  The LSM does not require such expedients.   
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 In the spirit of Adaptive Expectations and the Local Level Model, McCulloch 
(1985a) and Engle and Bollerslev (1986) imposed the further restriction λ + γ = 1, in 
what came to be known as the Integrated GARCH, or IGARCH model.  It was at first 
believed that the additional restriction δ = 0 would then be required, in order to prevent 
convergence in probability to infinity.  The original, unaugmented IGARCH(1,1) model 
was thus  
  2

1
2

1
2 )1( −− +−= ttt γεσγσ .10      (15) 

However, Nelson (1990) soon pointed out that with no intercept, (15) implies that 
variance and therefore the errors themselves must in fact converge in probability to 0.  
This occurs because under this specification, the variance is a martingale.  Since the 
variance of 2

tσ  increases without bound, yet 2
tσ  is bounded below by zero, this requires 

that virtually all the density must eventually converge to near 0.  In order to prevent 2
tσ  

from invariably collapsing on 0 or exploding to infinity, its log must be a martingale.  
This in turn requires, by Jensen’s inequality, that 2

tσ  itself must be a supermartingale, i.e. 
λ + γ must exceed unity by some small amount.  Since it is difficult to compute the 
boundary, most practitioners since 1990 have instead simply added a positive constant to 
(15):   
  2

1
2

1
2 )1( −− +−+= ttt γεσγδσ       (16) 

This augmented IGARCH(1,1) process is strictly stationary for positive δ, despite the 
infinite expectation of 2

tσ , and is bounded below by δ.   
 
 The Local Scale Model eliminates the artificial assumption of ARCH and 
GARCH, that the disturbances to the time-changing variance are just the squares of the 
observation errors themselves and therefore that the variance is actually observed (in the 
ARCH case) or virtually observed (in the GARCH case), and replaces it with the much 
more natural assumption that the variance is unobserved, and evolves with shocks that are 
independent of the observation errors.  This does not generate tedious numerical 
integrals, because Shephard’s (1994) special assumption that the precision shocks are 
beta of a certain form implies that conditional on experience, the precision always has a 
closed form gamma distribution.  The LSM is also more parsimonious than the 
augmented IGARCH model (16), in that it has only one parameter to estimate, rather than 
two.  Since the underlying process is not strictly stationary, the variance is permitted to 
wander and remain arbitrarily high or low, and is not bounded below by δ > 0. 
 
 As a consequence of its realistically modeling the variance as an unobserved state 
variable to be inferred by signal extraction techniques, the LSM makes it clear that 
conditional on experience, the errors in fact have a Student t distribution with DOF 

                                                 
10  McCulloch (1985) called essentially this model “Adaptive Conditional Heteroskedasticity” (ACH, to be 
pronounced as ach! in German), but Bollerslev’s (1986) “IGARCH” caught on instead.  Since McCulloch 
(1985) generalized the conditional errors to be symmetric stable, which have infinite variance except in the 
Gaussian special case, the variance in (15) was replaced by the stable scale parameter ct and the squared 
error by the absolute error, which has a finite mean when the stable characteristic exponent α exceeds 
unity.  In retrospect, the squared scale and squared errors could just as easily have been retained from 
ARCH despite the infinite expectation of the latter in the non-Gaussian cases.    
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bounded by d∞, rather than a Gaussian distribution as in ARCH or GARCH.  As 
Weitzman (2006) points out, this has very dramatic implications for the arithmetic equity 
premium, when the model is applied to logarithmic returns.  The power tails of the 
conditionally Student t distribution of the log returns make the arithmetic equity premium 
infinite, requiring a re-evaluation of what we mean by an equity premium.11 
 
 In the modified LSM of Section 2, vt = 1/Eθt follows the GARCH-like recursion 
(4) with no intercept term, and with time-varying coefficients λt and γt that sum to 
slightly less than unity, as illustrated in Figure 2 above.  However, this process does not 
collapse on zero, as does (15), since the LSM errors are in fact conditionally Student t, 
whereas the IGARCH errors are conditionally Gaussian.  The heavy tails of the Student t 
errors provide the extra kick to keep the process alive.  The conditional variance of the 
LSM errors is not vt itself, but rather is infinite for dt ≤ 2, and  
  )2/()1/()|/1E()|E( 11

2 −=−′′=== −− tttttttttt ddvabYYh θε   (17) 
for dt > 2 (see appendix).  This conditional variance obeys the recursion  
  2

1
*

1 −− += ttttt hh εγλ , 
where  
  )2/(* −= tttt ddγγ . 
The coefficients tλ  and *

tγ  (not plotted) in fact sum to more than unity. 
 
 Uhlig (1997) discusses how a Shephard-like LSM could be applied to the 
estimation of vector autoregressions, using the multivariate Wishart distribution to 
generalize the gamma.  However, Uhlig considers only the long-run case when the 
predictive count parameter ta′  and therefore kt have reached their limiting values ∞′a  
(Uhlig’s ν ) and k∞ (1/λ in Uhlig’s notation).  He notes (p. 61), following Shephard 
(1994), that the process will tend a.s. to 0 or ∞ unless k∞ is governed by (6), but then, 
without explanation, sets his )1/( += ννλ  instead, which, as he notes, is not even the 
condition for a martingale in θt.  Rather than estimating his ν  from the data, he instructs 
the reader (p. 71) to set it to 20 for quarterly data and to 60 for monthly data.  He 
provides no empirical application of his method.   
 
 Hamilton and Susmel (HS 1994, p. 310) reject continuous-state GARCH-like 
models of stock returns in favor of discrete-state Markov-switching models of volatility 
clustering, and even in favor of a naive constant-variance model, on the erroneous 
grounds that if the variance has been correctly modeled, the model should minimize the 
mean squared deviation of the squared errors from the modeled variance.   
 
 For a Gaussian distribution, the log likelihood is affine and decreasing in the 
squared deviation about the mean, and hence the average squared deviation of the errors 
about the mean themselves can be taken as an equivalent loss function for evaluating the 
                                                 
11  McCulloch (2003) demonstrates than in the case of log-stable returns, which can have a similar upper 
power tail and infinite arithmetic equity premium, the risk-neutral measure is not a simple location shift of 
the frequency measure as in the Gaussian case, but actually has a different shape, and finite expectation.  A 
similar change of shape may occur in the log-Student case.   
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mean estimate.  However, even if the errors are Gaussian, the squared errors have a 
scaled 2

1χ  distribution, which is far from Gaussian.  Likewise, if (as in HS’s best 
GARCH-like model) the scaled errors are Student t with ν  DOF, the squared errors have 
a scaled F(1,ν ) distribution, which again is far from Gaussian.  The sum of squared 
deviations of the squared errors from the modeled variance is therefore an entirely 
inappropriate loss function.   
 
 In fact, the correctly computed forecasting loss function under each model 
postulated by HS is simply the negative of the log likelihood.  As can be seen from their 
Table 1, the GARCH and t-GARCH-L models greatly outperform the constant variance 
model by this correct criterion, even using the Schwartz penalty for number of 
parameters.  In fact, by SIC, the t-GARCH-L model is the best one tabulated.  There is 
therefore no reason to reject an elegantly continuous-state GARCH-type model in favor 
of HS’s cumbersome discrete-state switching models on the basis of this criterion.    
 
 Shephard (1994) provides no empirical application of the LSM.  The following 
section fills this void by applying the improved LSM to U.S. stock returns.  
 
4.  Application to Stock Returns 
 
 Figure 3 plots monthly continuously compounded CRSP Value-Weighed stock 
returns, including distributions, in excess of the Fama 1-month Treasury bill rate, as 
obtained from Wharton Research Data Services, for Jan. 1926 – Dec. 2003 (936 
observations).  For this purpose, the arithmetic CRSP returns were converted to log 
returns.  The T-bill rates, which have already been converted to continuous compounding 
with a 365-day year, were divided by 1200 to give monthly log returns.  They were then 
lagged one month relative to the stock returns, since the Fama T-bill rate for e.g. Jan. 
1926 is the rate on a bill purchased at the end of January, whose payoff at the end of 
February is already known, whereas the CRSP stock return for the same date is the return 
on stocks purchased at the end of Dec. 1925, whose payoff is not known until the end of 
January.  Bid and asked yields were averaged, with a few missing asked yields 
constructed from the average of the spreads for adjacent months.  Missing asked yields 
for 1/35 – 3/36 were set to 0, the actual asked quote for 3/34 – 12/34 and 4/36 – 11/36.  A 
few negative average yields were left as quoted.12 

                                                 
12  The only important negative yield was Nov. 1930, the month of the failure of the Bank of United States, 
when T-bills, which were evidently regarded as safer than interbank deposits, yielded -1.074 % per annum 
(bid) and -1.188% (asked).  Slightly negative average yields in the late 30’s were all within transactions 
costs of 0.   
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Figure 3 

 
 The mean excess return is .005105/month (s.e. = .001777), i.e. 6.126%/year (s.e. 
= 2.132).  However, this OLS estimate is inefficient and its standard error invalid, given 
the obvious presence of conditional heteroskedasticity.   
 
 The ML estimates of the improved LSM parameters and implied values are given 
in Table 1 below.  Since the null hypothesis of homoskedasticity (ϕ = 0) is on the 
boundary of the parameter space, the Likelihood Ratio (LR) statistic does not necessarily 
have its customary χ1

2 distribution.  Nevertheless, this large statistic presumably provides 
strong evidence against the null.   
 

Table 1 
 

     μ 
    (se) 

     0.008662/mo.  = 10.39%/yr. 
    (0.001320)          (1.58) 

     ϕ      0.03744 
     ϕ1/2      0.1935 
     dn      7.756 
     d∞      7.759 
     LR (ϕ=0)  300.033 

 



 12 

 
 Figure 4 shows the demeaned excess returns, along with the local scale 2/1

tv .  It 
may be seen that the LSM scale adapts quickly to lulls in market volatility such as 
occurred in the mid-1930s, -1960s, and -1990s.  Although there was a brief “Great 
Moderation” during the mid-1990s, it expires by 1998.  Otherwise, the period since 1970 
has generally been more volatile than the 1950s and 60s, though less volatile than the 
1930s and early 40s.   
 

 
Figure 4 

 
 Hamilton and Susmel (1994, pp. 314-6) criticize GARCH-type models for 
overpredicting the squared errors during the weeks immediately following the 10/87 
crash.  Figure 4 above exhibits a similar phenomenon in the monthly returns.  Again their 
criticism is irrelevant, however, since no forecasting model can be expected to predict 
every episode correctly.  Models should be judged by their overall fit, and not on the 
basis of single episodes.  Obviously there are many instances in which the LSM 
comparably conversely underpredicts the squared errors.13 
 

                                                 
13  This is not to say that the fit could not be improved by adequately modeling the conditional skewness 
and/or residual leptokurtosis in the data, as discussed below.  Such a refinement goes beyond the scope of 
the present paper.   
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 For comparison, the data was also fit to the GARCH(1,1) model (14) and 
augmented IGARCH(1,1) model (15), as indicated in Table 2 below.  Since the null of 
homoskedasticity (λ = γ = 0) is again on the boundary of the parameter space, the LR for 
this hypothesis once again does not necessarily have a χ2 distribution.  Nevertheless, the 
large value almost surely justifies rejecting the null.  Even though the GARCH 
parameters fall short of the IGARCH boundary λ + γ = 1, they are very close to it and this 
restriction cannot be rejected by the LR statistic in the last line.    
 

Table 2 
        GARCH(1,1)      IGARCH(1,1) 
  μ        0.006622      0.006568 
  δ        7.01e-5      4.58e-5 
  λ        0.8679      0.8694 
  γ        0.1121      0.1306 
  λ + γ        0.9800      1.0000  
  LR (λ = γ = 0)    258.364  
  LR (λ + γ = 1)       2.390 

 
 Figure 5 below compares the LSM local standard deviation 2/1

th  as computed 
from (17) to the IGARCH local standard deviation.  Although they have the same general 
pattern after the initial startup, it may be seen that the LSM adjusts more sensitively to 
periods of high and low variance than does IGARCH.   
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Figure 5 

 
5.  Analysis of residuals 
 
 Figure 6 depicts the scale-adjusted errors 2/1/ˆˆ

ttt vεξ = .  Even though the errors 
are assumed to be Gaussian conditional on the unobserved precision θt, the LSM implies 
that they are Student t with dt DOF when conditioned on experience to date.  Figure 1 
above shows the first 20 values of the predictive DOF dt, along with (t-1) itself.  For the 
first 3 or 4 observations, dt follows (t-1) closely, but then it quickly approaches its 
limiting value of 7.759.   
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Figure 6 

 
 It is obvious from Figure 6 that there is considerable downward skewness to the 
scale-adjusted errors that is inconsistent with the intrinsically symmetrical Student t 
distribution (3) implied by the underlying Gaussian model (1).  This downward skewness 
is almost as pronounced in the arithmetic returns, and hence is not simply due to the 
present study’s focus on logarithmic returns.   
 
 Unfortunately, the standard test for symmetry based on the skewness statistic is 
inappropriate here, since the null hypothesis of that test is that the errors are iid Gaussian 
(and therefore symmetrical), while in fact the adjusted forecast errors should be Student t 
under the assumed model.  Furthermore the errors are not even iid Student, since their 
DOF are not constant, at least not for the first several periods.    
 
 Nevertheless, if the LSM correctly characterizes the data, the transformed errors 

( )tdt t
Tu ξ̂ˆ =  should be iid U(0,1), where ( )dT  represents the Student t cumulative 

distribution function with d DOF.14  Figure 7 gives the histogram of the transformed 
errors, using 10 equally spaced bins, along with a horizontal line at 93.7, the expected 
                                                 
14  Strictly speaking, this is only true if the two hyperparameters μ and ϕ are known.  If they have been 
estimated, the transformed residuals will tend to look even more uniform than they should.  See Percy 
(2006) and discussion below.   
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frequency per bin.  It may be seen that too many errors accumulate in the first bin, and 
too little in the last bin, with compensating deviations from uniformity in the 3rd, 4th, 
8th, and 9th bins.   

 

 
Figure 7 

 
 The classic Pearson χ2 test uses frequency counts such as those in Figure 7 to test 
that the deviation from uniformity is not just sampling error.  However, the Pearson test’s 
alternative hypothesis is that the density is constant in each bin, and then changes 
abruptly to a completely unrelated value (aside from an adding-up constraint) in the 
adjacent bins.   
 
 The Neyman (1936) Smooth Test for uniformity instead poses as its alternative 
that the density is a polynomial of degree k.  This alternative hypothesis allows the 
density to change continually, without the arbitrary discontinuities of the Pearson 
alternative hypothesis.  Percy (2006) has found that the Neyman Smooth Test does 
indeed have much more power than the Pearson test, for discriminating among heavy-
tailed probability distributions.   
 
 When the hyperparameters of the model are known, the Lagrange Multiplier (LM) 
version of the Neyman test statistic is 
  sIs' 1−=LM , 
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where ),,( 1 ′= kss Ks  is the score vector (the gradient of the log-likelihood), and 
( )jjI ′=I  is the information matrix (the expected Hessian of the log-likelihood), both 

evaluated under the null of uniformity.15  For a typical sample of size n, these are 
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Under the null of uniformity, the LM statistic is asymptotically 2
)(kχ  when the parameters 

are known.  (In the present application, the first predictive density is missing, so that the 
sum is taken from t = 2 to n, and n replaced by n-1 in the above.)   
 
 Although it is not obvious what particular value of k would be ideal, we are 
concerned with potential skewness in the underlying errors, yet have already removed the 
mean and scale from the data, and therefore want to consider k ≥ 3.  The Neyman LM 
statistic is given in Table 3 for k = 3, ... 10, along with the corresponding 2

)(kχ  p-values.  
In every case, the null of uniformity (and therefore the underlying symmetric model) can 
be rejected at well under the .001 level.  The p-values are in fact surprisingly insensitive 
to the tabulated values of k.16   
 

                                                 
15  Neyman in fact used a Likelihood Ratio (LR) form of the test, which required him to use an 
exponentiated polynomial perturbation to uniformity as his alternative to preclude negative density 
estimates, and then to perform a potentially ill-conditioned estimate of his model under the alternative.  The 
LM form investigated by Percy (2006) is much easier to use, since it only requires estimation under the 
null, and can employ a simple polynomial perturbation.    
16  The LM statistics for k = 1 and 2 were 0.423 and 0.463, resp., with p-values of 0.515 and 0.793, resp.  
However, since the mean and scale have been estimated from the data and removed from the errors, it 
would be very surprising if either of these registered significance, no matter how bad the fit.   
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Table 3 
Neyman Smooth Test for Goodness of Fit 

 
 k   LM      p 
 3 21.91 .00007 
 4 22.47 .00016 
 5 25.83 .00010 
 6 25.92 .00023 
 7 26.77 .00037 
 8 27.36 .00061 
 9 30.92 .00031 
10 31.07 .00057 

 
 Because the two hyperparameters μ and ϕ are in fact not known, but have been 
estimated from the data, 2χ  critical values will tend to underreject the null, as noted by 
Percy (2006).  The true rejection of the model is therefore even stronger than suggested 
by Table 1.  The present paper makes no attempt to apply the correction for estimated 
parameters, as implemented by Percy (2006).   
 
 Correctly modeling the highly skewed stock market returns would require 
replacing the intrinsically Gaussian assumption (1) with a distribution such as the skew-
stable class (McCulloch 1998) that generalizes the Central Limit considerations that 
motivate the typical Gaussian assumption, yet permits skewness and/or intrinsic 
leptokurtosis.  Such a generalization would be desirable, but goes far beyond the scope of 
the present paper.   
 
 A far simpler approximate solution would be to replace (3) with the ad hoc 
assumption that conditional on experience, returns are themselves either of the Pearson 
Type IV class (Heinrich 2004), or else of the Bauwens and Laurent (2002) type, with 
scale and DOF determined as if the Gaussian model were somehow valid.  These 
distributions generalize the Student t class to include a skewness parameter that is 
effective even with infinite DOF.  Such an approach could give empirically useful results 
without any deep reworking of the model, but again would go far beyond the scope of the 
present study.   
 
6.  Robust WLS Estimation of the Mean 
 
 The Best Linear Unbiased Estimate (BLUE) of the mean, if not the best global 
estimate, is given by Weighted Least Squares (WLS),  
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using weights determined by (17).17  Since ht = ∞ for dt ≤ 2, the first 3 or more values of 
yt are completely ignored by WLS.  Although ML is asymptotically efficient under the 
assumed model, WLS may be more robust to deviations from the posited model, such as 
skewness. 
  
 The WLS estimate of the mean and its standard error, using the weights (17) 
implied by the LSM, are given in Table 4 below.  Althugh the ML and WLS standard 
errors are quite similar, the WLS estimate of the mean is dramatically smaller than the 
ML estimate, by 3.78%/yr, a difference of more than 2 standard errors.   
 

Table 4 
WLS Estimate of mean excess return 

 
WLSμ̂  

(se) 
 0.005506/mo. = 6.607 %/yr. 
(0.001351)         (1.621) 

 
 If the model were true, or even approximately true, we would ordinarily prefer the 
ML estimate of the mean to the WLS estimate.  However, in the present instance, since 
we know that there is substantial downward skewness to the returns not captured by the 
model, the WLS estimate may actually be preferable.  WLS may therefore be giving us a 
more robust estimate of the true mean than the mis-specified ML in the present instance.   
 
7.  Conclusion 
 
 The Local Scale Model (LSM) of Shephard (1994) provides a computationally 
simple model of volatility clustering that is at once more realistic and more parsimonious 
than a conventional augmented IGARCH(1,1) model.  Even though the observations are 
assumed to be Gaussian conditional on the unobserved volatility, they are Student t with 
finite degrees of freedom conditional on experience.  The LSM thus accounts for much of 
the leptokurtosis in the data, without assuming a leptokurtic underlying distribution. 
 
 The present paper improves upon Shephard’s original formulation by making the 
innovations to the log of the volatility homoskedastic, as in the classic Local Level 
Model.  This modification makes more realistic and efficient use of the initial 
observations, and thereby facilitates ML estimation of the hyperparameters.   
 
 The present paper also goes beyond Shephard (1994) by providing an empirical 
application of the model, using CRSP monthly excess stock returns.  The estimated LSM 
implies that conditional on steady-state experience, returns are Student t with 7.76 DOF.  
The LSM volatility adjusts to changing the data with greater sensitivity than does a 
conventional IGARCH(1,1) model.   
 

                                                 
17  The WLS weights may be computed iteratively from the residuals about WLS estimates of the mean, 
starting with the OLS estimate, though in the illustration below they are computed about the full ML 
estimate.   
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 Even though the log returns are assumed to be Gaussian conditional on the 
unobserved true volatility, the conventional Black/Scholes option model cannot be used 
to price options, since returns are Student t conditional on investor experience.  
Furthermore, expected arithmetic returns, and therefore the conventionally measured 
equity premium, are both infinite.  A similar problem arises with log-stable asset returns, 
but may be solved by considering that the Risk-Neutral Measure for these distributions is 
not a simple location shift as in the log-Gaussian case (McCulloch 2003).  Future 
research should study the nature of the Risk-Neutral Measure for the Student t returns 
implied by the LSM. 
 
 Unfortunately, pronounced skewness in the scale-adjusted errors from the stock 
return data permits us to reject the Gaussian-based LSM, using the Neyman Smooth Test 
of goodness-of-fit.  This indicates that further refinements of the model itself are in order, 
at least for stock returns.   
 
 Although in the present paper, the observed data series was assumed to have a 
constant mean, the model could easily be generalized to incorporate a fixed linear 
combination of independent variables as the mean.  Future research should focus on the 
more difficult problem of incorporating a time-varying mean and/or regression 
coefficients as in McCulloch (2005).   
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Appendix 
 
 This appendix states and/or develops certain key properties of the gamma and 
beta distributions used in the text.   
 
 A Gamma distributed random variable (RV) G(a, b) with count parameter a and 
intensity b has density defined for x ∈ (0,∞) of  
  )(/1 aexb bxaa Γ−−  
and mean  
  babaEG /),( = ,  
where the gamma function Γ(a) is defined by  

  ∫
∞

−−=Γ
0

1)( dxexa bxa . 

When a is an integer, the gamma distribution governs the waiting time until the a-th 
event in a Poisson-driven process with intensity (frequency per unit time) b, so that a 
counts the number of Poisson-driven arrivals.  The intensity b is the reciprocal of the 
scale.  As is well known (e.g. Casella and Berger 2002, p. 627), a Gamma RV is 
equivalent to a χ2 RV with d = 2a DOF, and scaled by 1/2b: 

  2
22

1~),G( aχb
ba . 

 
 A Beta distributed RV Beta(α, β) has density defined for x ∈ [0,1] of 
  ),/B()1( 11 βαβα −− − xx , 
where the beta function B(α, β) is given by 
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Shephard (1994) exploits the well-known, if little-appreciated, fact (see e.g. Casella and 
Berger, 2002, p. 195, problem 4.24) that if X and Y are independent RVs with X ~ G(a, b) 
and ),(Beta~ aaaY ′−′ , with aa <′ , their product Z is again gamma, but with reduced 
count parameter a′ :   
  ).,G(~ baXYZ ′=  
 
 If X ~ Beta(α, β), the characteristic function of Y = log(X) is  
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It follows that  
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  )()(|)(cfE 0
1 βαα +Ψ−Ψ== =
−

tY t
dt
diY , 

where Ψ(a) is the Euler Psi or digamma function, defined in Equation (8) in the text.  
Furthermore,  

  )()(|)(cfvar 1102

2
2 βαα +Ψ−Ψ== =

−
tY t

dt
diY , 

where Ψ1(a) is the trigamma function, defined in Equation (10) in the text.   
 
 If X ~ G(a, 1) with a > 1, 1/X has mean  
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Consequently, if X ~ G(a, b) ~ G(a,1)/b, 1/X has mean 
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This exactly quantifies Jensen’s Inequality, by which E(1/X) > 1/EX for any 
nondegenerate distribution.  It follows that if X has a scaled χ2 distribution with d DOF,  
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2
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for d > 2, and infinity otherwise.   
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