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ABSTRACT 
 
 Adaptive Least Squares (ALS), a refinement of the Constant Gain Recursive 
Least Squares (CG-RLS) algorithm proposed by Ljung (1992) and Sargent (1993, 1999), 
is a parsimonious method of estimating linear regressions with time-varying coefficients 
and of proxying agents’ time-evolving expectations.  By holding the noise-to-signal ratio 
constant rather than the Kalman gain as in CG-RLS, the ALS filter nests the univariate 
Local Level Model (LLM), with its optimally declining but bounded gain, and permits 
the hyperparameters to be estimated by Maximum Likelihood from the time series itself.  
The algorithm is easily initialized with an uninformative prior on the regression 
coefficients.   The ALS filter, which uses only past and current data, emulates agents’ 
empirical expectations at each point in time.  The ALS smoother, that also uses future 
data, is developed as well.  A global test for coefficient significance at every point in time 
is developed, based on the smoother coefficients.  
 
 The ALS filter algorithm is illustrated with a univariate time series model of PCE 
inflation through Nov. 2023.  The global coefficient test soundly rejects the LLM in favor 
of an AR(1) model, but AR(1) could not be rejected in favor of higher order AR models.   
The estimated noise-to-signal ratio implies an asymptotic gain of 1/21.8 mo-1.  Although 
the annualized one-month-ahead forecast from Nov. 2023 was 1.33%, the estimated 
"entrenched" or long-run inflation rate then was 3.30%, down considerably from its post-
1980s high of 5.73% in March 2022.  
 
 Simulations are used to quantify the uncertainty in the model's implied forecasts, 
which is considerable.  The Jarque-Bera statistic rejects i.i.d. normality in the inflation 
model.   
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I.  Introduction 
 
 Adaptive Least Squares, a refinement of the Constant Gain Recursive Least 
Squares (CG-RLS) proposed by Ljung (1992) and Sargent (1993, pp. 120-2), provides a 
method of estimating time-varying relationships that is more rigorous than rolling 
regression, yet is far more parsimonious than an unrestricted Time Varying Parameters 
(TVP) model.  ALS and the more general concept of Adaptive Learning (AL) provide a 
means of proxying agents’ expectations that incorporates learning, in a way that is far 
more realistic than the severe informational requirements of fully Equilibrium, or 
“Rational,” Expectations.  Sargent (1999), Bullard and Mitra (2002), Bullard and Duffy 
(2003), Evans and Honkapohja (2001, 2004), Orphanides and Williams (2003), Preston 
(2004), and Milani (2005) and are just a few of the many applications of the AL concept.   
 
 An early, but very restrictive, special case of RLS was Cagan’s (1956) “Adaptive 
Expectations” (AE) model, in which mt, the time t expectation of the future of a time 
series yt (in Cagan’s case inflation), was assumed to obey an equation of the form  
          (1)  
In Cagan’s original formulation, the gain coefficient g was assumed to be an arbitrary 
subjective constant to be inferred indirectly from agents’ expectationally motivated 
behavior, viz. their demand for money balances.   
 
 Shortly after Cagan’s original paper, Muth (1960) and Kalman (1960) 
independently demonstrated that (1) in fact gives the long-run behavior of the optimal 
signal-extraction forecast of future yt, but only provided the process is generated by the 
Local Level Model (LLM), i.e. if yt is the sum of an unobserved Gaussian random walk 
plus independent Gaussian white noise, and provided the long-run gain coefficient is 
computed as a certain function of the empirical noise/signal ratio.  The gain coefficient is 
therefore not an arbitrary subjective learning parameter akin to a demand elasticity, but 
rather should take on a specific value determined by the behavior of the process in 
question. 
 
 Although Muth (1960) developed only the constant long-run gain coefficient, 
Kalman’s more rigorous treatment (1960; see also Harvey 1989, p. 107 and Appendix 
A.1 below) demonstrated that in finite samples with a constant ratio of noise to signal, the 
optimal gain is not constant, but in fact declines rapidly at the beginning of the sample.  
Kalman’s approach also allows the noise/signal ratio and therefore the gain coefficients 
and their limiting value to be estimated by Maximum Likelihood (ML).   
 
 The Kalman Filter solution of the elementary LLM has been generalized to solve 
a Time Varying Parameter (TVP) model in which all the coefficients of a linear 
regression relation are allowed to change randomly over time, as exposited, for example, 
by Ljung and Söderström (1983) or Harvey (1989, Ch. 3).  Ljung (1992) and Sargent 
(1993, 1999, Ch. 8) have proposed a parsimonious restriction on the covariance matrix of 
the random coefficient changes that leads, by this Extended Kalman Filter (EKF), to CG-
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RLS.  However, because their gain is constant throughout, their model does not nest the 
rigorous declining-gain solution of the LLM when it is restricted to a simple time-varying 
intercept term with no time-varying slope coefficients.   
 
 The present study introduces a new specification of the TVP covariance matrix 
that does nest the rigorous LLM with its declining, yet bounded, gain, by imposing a 
constant ratio of noise to signal, appropriately defined.  The resulting Adaptive Least 
Squares (ALS) algorithm may be easily initialized with a diffuse prior on the regression 
coefficients that makes no presupposition of their values.  The noise variance and the 
noise/signal ratio may then be rigorously estimated by Maximum Likelihood (ML), rather 
than simply postulated or estimated by ad hoc means as in the previous literature.   
 
 The ALS algorithm is used to estimate a univariate autoregressive (AR) model of  
monthly Personal Consumption Expenditures inflation.  The proposed global significance 
test soundly rejects the LLM in favor of one with AR(1) transients.  Howeer, AR(1) 
could not be rejected in favor of higher-order AR models.  The ML-estimated noise-to-
signal ratio of 21.2 mo. implies an asymptotic gain of 1/21.8 mo-1.  Although the 
annualized one-month-ahead forecast from Nov. 2023 was 1.33%, the estimated 
"entrenched" or long-run inflation rate then was 3.30%, down considerably from its post-
1980s high of 5.73% in March 2022.  
   
 Section II below reviews and restates the rigorous Kalman solution of the LLM, 
in terms of the key concept of Effective Sample Size.  This motivates Section III, which 
states the ALS model in the context of the general TVP and EKF model.  Section IV 
relates the ALS model to the previous TVP and RLS literature.  Section V develops a test 
for the hypothesis that one of the regression coefficients is globally zero.  Section VI 
applies the ALS filter algorithm to US PCE inflation data, while Section VII uses 
simulations to quantify the uncertainty of these inflation forecasts.  Section VIII 
concludes with mention of potential future applications and extensions.  The Appendix 
provides mathematical details, and corrects an error in a critical equation in the 
pioneering work of Ljung (1992) and Sargent (1999).  
 
II.  The Local Level Model 
 
 Before presenting Adaptive Least Squares, we first review and restate the Kalman 
solution of the elementary Local Level Model (LLM) in terms of the useful concept of 
Effective Sample Size.     
 
 In the LLM, an observed process yt is the sum of an unobserved Gaussian random 
walk µt plus independent Gaussian white noise:  

  
𝑦! = 𝜇! + 𝜀! ,									𝜀!~NID(0, 𝜎"#),						𝑡 = 1,…𝑁	
𝜇! = 𝜇!$% + 𝜂! ,				𝜂!~NID40, 𝜎&#5.																										

      (2) 

The signal/noise variance ratio is defined to be  
  ,  22 / eh ssr =
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so that the two "hyperparameters" se2 and r completely determine the system.  Let the 
vector yt = (y1, ... yt)′ represent the observations up to and including yt. 
 
 As reviewed in Appendix A.1, the classic Kalman Filter solution of the LLM may 
be expressed as follows: 
  𝜇!|𝐲!~N(𝑚! , 𝜎!#).          (3) 
with 
  𝑚! = 𝑚!$% + 𝛾!(𝑦! −𝑚!$%),        (4)  
  𝜎!# = 𝛾!𝜎"#.            (5) 
The Kalman Gain g t is the reciprocal of the Effective Sample Size Nt, determined by  
  𝑁! = (1 + 𝜌𝑁!$%)$%𝑁!$% + 1,        (6) 
with the uninformative initialization 
  N0 = 0.            (7) 
The time t expectation of µt’ and therefore of yt' for all t' > t is then mt.  The precision, or 
reciprocal variance, of this estimate is directly proportional to Nt:  
  s!	$# = 𝑁!/𝜎"#. 
 
 In the limiting case r = 0, so that µt = µ, a constant, the effective sample size Nt 
equals the true sample size t.  When r > 0, the effective sample size still behaves much 
like t initially, but is strictly less than t for t > 1, and is bounded above by its long-run 
value  
  𝑁() = lim

!↑+
𝑁! = 1/2	 +	B1/4 + 1/𝜌,       (8) 

which is the unique positive root of the quadratic equation  
  𝜌𝑁()# − 𝜌𝑁() − 1 = 0 
that determines the fixed points of (6).  The Cagan/Muth constant gain AE formula (1) is 
therefore valid only in this limit, with the limiting long run gain gLR = 1/NLR.  The gain in 
fact should be g t = 1/Nt.   
 
 The predictive error decomposition gives the distribution of the one-period-ahead 
forecasts:   
  𝑦!	|	𝒚!$%	~	N(𝑚!$%, 𝜎!$%# + r𝜎e# + 𝜎e#).          (9) 
The product of these densities for t = 2, ... N gives the joint probability of y2, ... yN 
conditional on y1 as a function of and r, and therefore the likelihood of and r 

conditioned on y1, ..., yN.  The noise variance  may be concentrated out of the log 
likelihood function, so that a numerical search is required only over the single parameter 
r.  
 
 Although it is convenient mathematically to develop the LLM in terms of the 
signal/noise variance ratio r, this ratio has the unnatural units [time-2], and often is a very 
small number.  It is more natural to report empirical results in terms of the equivalent 
Noise/Signal standard deviation Ratio,  
  NSR = se  / sh  = r -1/2. 

2
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The NSR has the natural units [time], and equals the number of time units it takes for the 
variance of the average of NSR et shocks to equal that of the sum of NSR ht shocks.  In 
other words, it is the typical length of time it takes for changes in the level of the state 
variable to begin to be empirically detectable.  Furthermore, (8) implies that NLR is only 
slightly larger than NSR: 
  NSR + .5 < NLR < NSR + 1. 
 
 Figure 1 plots Nt versus t, using NSR = 21.3, the empirical value obtained in 
Section VI below for monthly PCE inflation with an ALS/AR(1) specification.  Nt is 
virtually indistinguishable from t until t = 8, but then it grows more slowly and is 
virtually indistinguishable from its asymptotic value of NLR = 21.8 after t = 70. 
 

 
Figure 1 

Effective sample size Nt with NSR = 21.3 mo., NLR = 21.8 mo. 
 
 
 Equation (4) implies that each mt is a linear combination of current and past 
values of yt 
  𝑚! = ∑ 𝜑!,-𝑦-!

-.%              (10) 
with weights 𝜑!,- that diminish as the distance into the past increases, according to the 
recursion 
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  𝜑!,! = 𝛾!, 
  𝜑!,- = 𝜑!,-/%

(%$1!"#)1!
1!"#

,						𝑠 < 𝑡. 

For large t and s, as each gs approaches gLR, this implies that the weights decay 
approximately geometrically with distance into the past, according to  
  𝜑!,- ≈ 𝛾()(1 − 𝛾())!$-, 
as recognized in the title, “Optimal Properties of Exponentially Weighted Forecasts,” of 
Muth (1960).  The average lag implied by these limiting weights, as measured from the 
first forecast date t+1, is NLR = 1/g LR.    
  
    It happens that (10) is equivalent to the Weighted Least Squares (WLS) estimate 
of mt as if the random variables  
  𝑣!,- = 𝑦- −𝑚! =	𝜀- − ∑ 𝜂3!

3.-/% ,				𝑠 ≤ 𝑡  
were serially uncorrelated across s and had variances that grew with t- s in proportion to 
1/j t,s, and therefore approximately geometrically when t and s are both large.  However, 
that in fact is not their structure in the LLM.  In fact, the LLM (2) implies that their 
variances increase arithmetically with t- s: 
  var4𝑣!,-5 = 𝜎"# + (𝑡 − 𝑠)𝜎&# 
and that they are positively correlated across s: 
  cov4𝑣!,-, 𝑣!,-45 = 4𝑡 − max(𝑠, 𝑠′)5𝜎&#,			𝑠 < 𝑡		or	𝑠4 < 𝑡. 
Equation (10) is therefore justified because it is the Generalized Least Squares (GLS) or 
Aitken’s formula solution to the LLM problem, and not because it also happens to solve 
an unrelated, and observationally non-equivalent, WLS problem.  The Kalman Filter is 
simply a recursive, computationally efficient way to solve the LLM problem without the 
massive matrix operations that GLS would require.   
 
III.  Adaptive Least Squares 
 
 The simplistic LLM allows the observed dependent variable yt to depend only on 
a (time-varying) mean.  A much more general and useful framework is the Time-Varying 
Parameter (TVP) linear regression model, 
  𝑦! = 𝐱!𝛃! + 𝜀! ,				𝜀!~NID(0, 𝜎"#),										        (11)  
  𝛃! = 𝛃!$% + 𝛈! , 𝛈!~NID(𝟎5×%, 𝐐!),        (12) 
in which xt is a 1´k row vector1 of explanatory variables, bt is a k´1 column vector of 
time-varying coefficients b j,t, and ht is a k´1 column vector of permanent coefficient 
changes h j,t that are independent of the observation errors e t.  Let yt be the t´1 vector of 
dependent variables observed up to and including time t, and Xt be the t´k matrix of 
ideally exogenous explanatory variables up to and including time t.  Qt is the possibly 
time-dependent k´k covariance matrix of the transition errors ht.  We assume that the first 
column of Xt is a vector of units, so that the first element of bt is the intercept.  When k = 
1, the TVP model therefore reduces to the LLM when the single element of Qt and 

 
1 We let xt be a row vector rather than a column vector, since xt is the t-th row of the regressor matrix XN.   
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therefore the noise/signal ratio is constant.  For simplicity, we assume here that Xk is of 
full rank, although this restriction can be worked around.   
 
 As reviewed in Appendix A.2 below, system (11)-(12) may be solved by means 
of the well-known Extended Kalman Filter (EKF), which provides a recursive Bayesian 
rule giving the posterior filter distribution  
  𝛃!|𝐲!~N(𝐛! , 𝐏!)         (13) 
for a k´1 mean vector bt and a k´k covariance matrix Pt.  The system may easily be 
initialized with an uninformative diffuse prior on the regression coefficients that makes 
no presupposition of their values.  However, the full-blown TVP model (11)-(12) is much 
too general for most econometric purposes, since if even if Qt is made time-invariant, it 
still introduces k(k+1)/2 ill-conditioned and incidental time-variation hyperparameters to 
be estimated, in addition to the observation variance se2.     
 

Ljung (1992) and Sargent (1999, p. 117) ingeniously postulate that Qt is directly 
proportional to Pt-1.  This assumption, which leads to Generalized Recursive Least 
Squares (G-RLS), allows every component of ht to be stochastic, yet effectively reduces 
Qt to a single unknown parameter, while still being invariant in its implications to 
changes in the basis of the regressors.  It also has the benefit of greatly simplifying the 
filter computations, by eliminating two k´k matrix inversions at each step.  Nevertheless, 
the constant of proportionality that Ljung and Sargent propose must be modified in order 
for G-RLS to nest the elementary LLM when k = 1, as required, and to allow the 
likelihood to be computed.   

 
The one element of the signal shock ht that contributes directly to yt, on a one-for-

one basis and whose variance is therefore potentially comparable to se2, is its first 
element, corresponding to the regression intercept term.  However, the magnitude of this 
component, and therefore the implied variance of the first component of ht, is sensitive to 
the arbitrary manner in which the time t-1 variable regressors have been centered.  In 
order to eliminate this ambiguity, we consider time-specific alternative bases in which the 
variable regressors have all been recentered in such a way that the covariance matrix of 
the transformed time t-1 coefficients and therefore the covariance matrix of the similarly 
transformed time t transition errors are block-diagonal, and then assume, just as in the 
LLM, that the variance of the transformed intercept coefficient is some scalar constant r 
times the noise variance 𝜎"#.  In Appendix A.2 below, it is shown that this assumption 
implies that  
  Qt = r Nt-1 Pt-1,          (14) 
where Nt is computed from r exactly as in (6) and (7) in the LLM. 
 
 The resulting "Adaptive Least Squares" (ALS) filter may then be written as  
  ,           (15) 

,           (16) 
where 

ttt zWb 1-=
12 -= tt WP es
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  𝐳! = (1 + 𝜌𝑁!$%)$%𝐳!$% + 𝐱!4𝑦!,         (17) 
  𝐖! = (1 + 𝜌𝑁!$%)$%𝐖!$% + 𝐱!4𝐱!,        (18) 
and Nt is computed as in (6) and (7).  When there is no prior information about the 
coefficients at time 0, the algorithm is initialized with  
  ,  .         (19) 
Note that in the fixed coefficient case r = 0, zt becomes , Wt becomes , and 

(15) becomes the familiar expanding-window OLS formula . 
 
 Having thus initialized and updated the ALS filter, the predictive error 
decomposition becomes 
  𝑦!|𝐲!$%~N(𝐱!𝐛!$%, 𝜎"#𝑠!#),					𝑡 > 𝑘,        (20) 
where 
  𝑠!# = (1 + 𝜌𝑁!$%)𝐱!𝐖!$%

$% 𝐱!4 + 1.   
The log likelihood is then  
 L(𝜌, 𝜎"#|𝐲7) = ∑ log p(𝑦!|𝐲!$%)7

!.5/%  
           = − 7$5

#
log(2𝜋𝜎"#) − ∑ log 𝑠! −

%
#8$%

7
!.5/% ∑ 𝑢!#7

!.5/% ,     (21) 
where the scale-adjusted residuals, 
  𝑢! = 𝑒!/𝑠!           (22) 
equal the actual predictive errors,  
  𝑒! = 𝑦! − 𝐱!𝐛!$%, 
adjusted by their time-varying standard deviations st.  Since Wt is of rank t for t £ k, the 
predictive density and therefore the likelihood contribution may only be computed for t > 
k.  
 
 Under the maintained assumptions, and given the two hyperparameters, these 
adjusted residuals are homoskedastic with variance , even though the predictive errors 
themselves will in general be heteroskedastic.  As in the LLM, the observation variance 

 may be concentrated out of the log likelihood function in such a way that for any 

value of r, the likelihood is maximized with  estimated in closed form by  

  𝜎d"# =
%

9$5
∑ 𝑢!#7
!.5/%           (23) 

A numerical search over the remaining hyperparameter r then provides its ML estimate.  
 
 If the model is well-specified and r equal to its true value, the adjusted residuals 
ut must be iid N(0, 𝜎"#).  Since the hyperparameter r and is consistently estimated by ML, 
routine large-sample specification tests such as the Jarque-Bera test for i.i.d. normality 
may therefore be applied to these residuals, as noted by Durbin and Koopman (2001, Ch. 
5).   
 
 ALS may be written in terms of the Kalman gain gt = 1/Nt by defining 𝐳e! = 𝐳!/𝑁! 
and 𝐖f! = 𝐖!/𝑁!.  Equations (17) and (18) then become   
  𝐳e! = (1 − 𝛾!)	𝐳e!$% + 𝛾!	𝐱!4𝑦!,  

kk´= 0W0 10 ´= k0z

ttyX¢ ttXX¢

( ) ttttt yXXXb ¢¢= -1
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  𝐖f! = (1 − 𝛾!)	𝐖f!$% + 𝛾!	𝐱!4𝐱!.          (24) 
This formulation provides the intuition that the updated average moment vector and 
matrix are equal to a weighted average of their received values and the new data, with the 
Kalman gain serving as the weight on the new data.  It also shows that as in the LLM, the 
ALS estimate of bt happens to be equivalent to the WLS solution to a problem in which 
the weights on observation s decay geometrically with t – s for large t and s, but again the 
structure of the errors is observably different than that assumed by WLS.      
 
  ALS may also be written without zt in the error-correction form 
  𝐛! = 𝐛!$% +𝐖!

$%𝐱!4(𝑦! − 𝐱!𝐛!$%),  t > k,         (25) 
with Wt updated as in (18) or (24).  This is essentially the form of RLS preferred by 
Evans and Honkapohja (2001, Eq. (2.9)), where their Rt is like our 𝐖f!, but computed 
with a constant gain.  This form provides the intuition that the forecasting errors drive the 
revisions of the coefficient vector, but unfortunately it does not work for t £ k, since bt-1 
is undefined then.  It is also not obvious how to initialize it with a diffuse prior.    
 
 If one is estimating an autoregression by ALS, it is important to remember that, as 
in OLS, the inverse AR roots are biased away from unity.  In the usual fixed-coefficients 
OLS environment, this bias disappears in large samples, but this consistency is absent in 
the ALS case, because the effective sample size never rises above NLR.2  
 
 The Kalman Filter (𝐛! , 𝐏!), presented above, provides the posterior distribution of 
the coefficient vector conditional on the past and current history of the data up to time t.  
This is the appropriate question to ask if one is interested in simulating empirical 
expectations as of time t.  However, if one instead wanted to retrospectively estimate the 
time-varying regression coefficients at a given point in time t, conditional on both prior 
and subsequent experience up to time N > t, the Kalman Smoother  
  𝛃!|𝐲7~N(𝐛!:, 𝐏!:)        (26) 
(also known as the 2-sided filter) becomes the appropriate tool.  This is straightforward, 
but is somewhat more complicated.  The pertinent smoother equations for both the 
general TVP case and the special ALS case are given in Appendix A.3.  The ALS 
smoother, like the ALS filter, is unidentified for t < k.  At t = N, the two are equivalent.  
 
IV.  Relation of ALS to other TVP approaches 
 
 There have been numerous attempts to make the general TVP model (11)-(12) 
more tractable through restrictions on the signal variance Qt.  Early on, Cooley and 
Prescott (1973) were able to reduce Qt to a single parameter, but only by permitting only 
the intercept to change, so that only the (1, 1) element of Qt = Q is non-zero.  Their 
model does nest the LLM, and is invariant to recenterings of the regressors, but is 
unnecessarily restrictive. 

 
2  McCulloch (2016) corrects for this finite sample autoregressive bias in the fixed coefficient case by 
replacing OLS with a Moment Ratio Estimator. The ALS estimator could perhaps be modified in a similar 
manner, but the present paper makes no attempt to do this. 
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Sims (1988) and Kim and Nelson (2004) use (11) with a time-invariant 

covariance matrix Q, but assume that Q is diagonal in order to keep the problem 
tractable.  This assumption still introduces k hyperparameters, yet is not particularly 
natural, since if a slope coefficient in a regression were to change, we would ordinarily 
expect to see compensating changes in the intercept and the slopes of correlated 
regressors, ceteris paribus.  Furthermore, a change of basis for the regressors should 
leave the story told by a regression unchanged, yet this will not be the case under this 
assumption, since the implications of a zero correlation between the regressors will 
depend upon the arbitrary choice of basis.  Like the Cooley-Prescott model, this 
diagonality assumption does nest the LLM, but is unnecessarily restrictive.   

 
 McGough (2003) uses a diagonal covariance matrix that is a (time-varying) 
constant times the identity matrix.  Although this model is adequate for the theoretical 
point he was making, it is empirically unsatisfactory, since it forces all the coefficients to 
have the same transition variance (at each point in time), even though their units depend 
upon the often arbitrary units in which the regressors happen to be measured. 
 
 As noted above, Ljung (1992) and Sargent (1999) observe that if Qt is restricted 
to be proportional to Pt-1, not only are there far fewer parameters to estimate, but the filter 
also simplifies greatly. 3  They then set  

  ,          (26) 

resulting in Constant Gain Recursive Least Squares (CG-RLS) which is similar to ALS, 
but with constant gain g.  Cp. also Sargent (1993, eq. (10)) and Evans and Honkapohja 
(2001, eq. (2.9).  However, this CG-RLS does not nest the rigorous declining-gain 
Kalman solution of the LLM that justifies (1) as an asymptotic approximation, and that 
permits ML estimation of the noise/signal parameter that determines the long run gain 
itself.  Furthermore, it is not obvious how to initialize CG-RLS with a diffuse prior. 
 
 Sargent (1999, Ch. 8) goes on to recommend initializing CG-RLS with the 
unconditional expected values of the coefficient vector and covariance matrix.  However, 
by his maintained assumption, the coefficients are nonstationary, and therefore have an 
undefined unconditional mean, and infinite unconditional variances.  Although full 
sample OLS coefficients can be computed from XN and yN, they are in no sense “prior” 
information or “unconditional” values for t < N.  Ljung (1992, p. 100) unhelpfully 
instructs his reader to initialize the covariance matrix with an unspecified P0.   
 
 In Sargent’s empirical Chapter 9, he provides estimates of two quarterly 
macroeconomic models with CG-RLS.  However, rather than estimate his constant gain 

 
3 This insight is valid despite the error in Ljung (1992) and Sargent (1999) discussed in Appendix A.4.  The 
approximation invoked by Ljung (1992, p. 100) is in fact unnecessary.   
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from his data, he arbitrarily sets it to 0.015, which corresponds to a long-run effective 
sample size of 66.67 quarters, or 16.67 years.   
 
 Unfortunately, there is an error in the Kalman Filter as presented by Ljung (1992) 
and Sargent (1999), leading them to conclude that their CG-RLS is only an approximate 
implication of it under their assumption  (26), when in fact it is exact.  This error is 
explained and corrected in the Appendix.   
 
 Stock and Watson (1996) and Sargent and Williams (2003) assume, in place of 
either (14) or (26), that  
  𝐐! = 𝐐 = 𝜌𝜎𝜺𝟐(𝔼𝐱𝒕4𝐱𝒕)$𝟏.          (27) 
If the relevant expectation exists, this is equivalent in an expectational sense to (14), since 
then  
  𝔼𝐖! = 𝑁!𝔼𝐱!4𝐱!.   
However, it is not necessarily true that the required moments do exist, and even if they 
did, it would impose a great informational burden on agents to require them to know what 
they were.  Equation (14), on the other hand, does not even require these moments to be 
finite, and only requires that agents observe Xt, and yt, and know r.4  Assumption (27) 
does nest the LLM, since then the required expectation is just a unit scalar.  For k > 1, 
however, it only approximates ALS.  It also lacks the computational simplicity of ALS or 
CG-RLS, since it requires the more general EKF described in Appendix A.2.   
 
 Stock and Watson (1996) calibrate the coefficient r in (27) (their l2) for several 
macroeconomic time series and relationships by minimizing the sum of squared 
forecasting errors.  This will give results similar to ours, but is by no means equivalent, 
even apart from the often subtle difference between our (14) and their (27).  For one 
thing, the initial errors have much larger variance than the later errors, simply because the 
coefficient vector is still highly uncertain.  Equation (20) correctly takes this into account 
and enables the full permissible sample (N-k observations) to be incorporated into the log 
likelihood.  Stock and Watson, on the other hand, only roughly take this factor into 
account, by discarding their first 60 monthly observations a priori.  This is wasteful if the 
signal/noise ratio is large, and inadequate if the signal/noise ratio is small.  Furthermore, 
it is obvious from (20), which is similar to the formula for the conditional distribution 
that would result from (27), that even asymptotically the squared forecasting errors et2 are 
greater in expectation than  by an amount that depends on r, so that minimizing their 

sum of squares will give a biased estimate of .  In addition, even after the warm-up 
period they are not homoskedastic, and hence they should not be given equal weight.  
 
 Orphanides and Williams (2004) calibrate their CG-RLS gain coefficient both by 
minimizing a sum of squared forecast errors as in Stock and Watson (1996), and by 
matching simulated forecasts of inflation, unemployment, and the fed funds rate as 
closely as possible to the mean forecasts of the Survey of Professional Forecasters.  

 
4 The observation variance se2 is required to compute Pt, but not bt.   

2
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However, if one’s objective is to construct one’s own expert forecast of these variables, 
one should use actual experience, and not the forecasts of other, perhaps less 
sophisticated, experts, to calibrate one’s own forecasts.   
 
 Milani (2005) calibrates his CG-RLS gain parameter by optimizing the fit of an 
ancillary, fixed coefficient New Keynesian Phillips Curve equation, rather than to the 
behavior of observed inflation.  This repeats Cagan's (1956) mistake of treating the gain 
like a subjective learning parameter to be inferred from agents’ expectationally-motivated 
behavior, specifically their demand for money in his case, instead of estimating r from 
the inflation series in question using (9) and then computing the long run gain according 
to (8).   
 
 Cogley and Sargent (2005) estimate a three equation VAR(2) TVP model with 21 
coefficients.  However, rather than impose the Ljung-Sargent parsimonious RLS 
restriction, they estimate all 231 elements of the unrestricted 21´21 covariance matrix, 
subject to reflecting boundaries that prevent nonstationary autoregressive roots.  With 
fixed coefficients there might be a case for imposing such restrictions, since an explosive 
process would have long-since blown up and would never have been observed.  With 
time-varying coefficients, however, there is no reason one could not drift into such a 
situation if called for by sufficient evidence of instability, as is all too often the case with 
inflation data.  They also incorporate stochastic volatilities as additional state variables, 
and estimate the system with Monte Carlo Markov chain methods rather than the Kalman 
filter.  
 
V. Hypothesis Testing  
 
 A local test on the null hypothesis   
  𝛽!,? = 0 
for a single value of t may be performed either using the filter coefficients with test 
statistic  
  𝑧!,? = 𝑏!,?/𝑝!,?,?%/#, 
where 𝑏!,? is the j-th element of 𝐛! and 𝑝!,?,? is the (j, j) element of Pt, or else using the 
smoother coefficients with 
  𝑧!,?: = 𝑏!,?: /𝑝!,?,?: %/#  
and analogous notation.  These test statistics may be given a frequentist interpretation 
with a N(0, 1) distribution under the null, conditional on the signal and noise variances, 
since under a uniform prior for the coefficients, the filter and smoother values are 
normally distributed about 𝛽! with the estimated covariance matrix.  The present paper 
takes the consistent ML estimates of the two hyperparameters as their true values.  
In practice, their estimation errors add some uncertainty that should be investigated in 
future research.  
 
 Global linear restrictions on coefficients of the type  
  𝛽!,? = 0, 𝑡 = 𝑘,…𝑛       (28) 
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are very important, but much more difficult.  The first problem is that they require access 
to the 4-dimensional covariance array 𝐂 = 	4𝑐!#,!%,?#,?%5, where  
  	𝑐!#,!%,?#,?% = cov4𝑏!#,?#

: , 𝑏!%,?%
: 5.     (29) 

This covariance array contains the N-k+1 smoother covariance matrices 𝐏!:, but also the 
intertemporal covariances for 𝑡% ≠ 𝑡#.  Unfortunately, there appears to be no way to 
compute the required elements of C recursively as in the Kalman filter and smoother.  
Instead, C must be found within the covariance matrix of a quite large Generalized Least 
Squares (GLS) problem.  This GLS problem is specified and solved in Appendix A.4 
below.  It runs much more slowly than the ALS filter and smoother themselves, but 
fortunately is only required for occasional specification tests and not for hyperparameter 
estimation or routine forecasting. 
 
 Let CT,j be the nT x nT matrix of coefficients from C with t1 and t2 in subset T of 
the integers k ... n, and with j1 = j2 = j, where nT = o(T).  Let 𝐛𝒋,𝐓𝑺  be the 1 x nT vector of 
smoother coefficients 𝑏?,!:  with t in T.  Then, given the two hyperparameters, the global 
test statistic 
  𝐺D,E 	= 	𝐛𝒋,D𝑺 𝐂𝐓,𝒋$𝟏		𝐛?,D𝑺 ′       (30) 
has a c2 distribution with nT degrees of freedom under the null. 
 
 Simulations show that such a test has correct size under the null, as expected.  
However, when, as in ALS, the correlation of nearby observations is very close to unity, 
its power to detect non-zero values of 𝛽!,? actually declines as nT approaches its greatest 
possible value, N-k+1, as shown in Appendix A.4 below.  A good balance between 
number of observations used and independence is achieved when the observations used 
are equally spaced approximately 2×NSR apart.  Accordingly, we define  
 𝑛D = round u(7$5/%)

#7:F
v,   

 T(ℎ) = 𝑘 − 1 + round u(G$.I)(7$5/%)
9&

v , ℎ = 1,…	𝑛D, 
and set  
 T = {T(ℎ), ℎ = 1,…	𝑛D} 
in (30). 
 
     Joint local or global hypotheses on m ore than one coefficient may be tested in the 
analogous fashion using the appropriate submatrix of 𝐏! , 𝐏!J P or C.   
 
 Because the null hypothesis of no parameter change, i.e. r = 0, is on the boundary 
of the permissible parameter space r ³ 0, the usual regularity conditions for the c2 
limiting distribution of the Lagrange Multiplier (LM) and Likelihood Ratio (LR) statistics 
are not met (Moran 1971a, 1971b).  Nevertheless, Tanaka (1983) has shown that the LM 
statistic is still useful and informative in the LLM case, provided the critical values are 
appropriately adjusted.  Preliminary simulations with the LLM indicate that the 5% 
critical value is approximately 2.3, which is far less than the value of 3.84 from the chi-
squared distribution with one degree of freedom.   
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VI.  Application to US Inflation 
 
 As noted early on by Klein (1979), the time series behavior of US inflation has 
evolved over time:  In the 19th century, the price level itself appeared to be stationary.  In 
the early 20th century, the price level underwent permanent shifts, but the inflation rate 
appeared to be stationary with mean near 0.  But then in the later 20th century, the 
inflation rate itself became more and more persistent.  Writing in 1971, Sargent (1971) 
was still able to argue that inflation was clearly a stationary process, but within a few 
years, a unit root in CPI inflation could no longer be rejected.  A univariate time series 
model of the US inflation rate is therefore a natural application of the ALS method.   
 
 Figure 2 shows the chained Personal Consumption Expenditures Deflator (PCE) 
inflation rate, seasonally adjusted, computed as , for Feb. 1959 
through Nov. 2023.  A series of high-inflation months had left continuously compounded 
year-over-year PCE inflation at 6.88% in June 2022, followed by a marked decline to 
2.61% in Nov. 2023.  These swings set off a vigorous debate over whether these inflation 
rates should be regarded as "transitory" or "entrenched." 
  

 
Figure 2 

Monthly PCE inflation, seasonally adjusted, Feb. 1959 – Nov. 2023.   
Source: NIPA via FRED 

( )( )1/ln1200 -= ttt PPp
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Table 1 presents the outcome of ALS estimation of time-varying AR(p) models of 

PCE inflation for p = 0, ...4, where the AR(0) model is simply the LLM, with no time-
varying autoregressive parameters:   

𝜋! = 𝛽%,! +{𝛽?,!𝜋!/%$?

K/%

?.#

+ 𝜀! 

In each model, there are k = p+1 time-varying parameters including the intercept.  The 
sample for each model, allowing for up to 4 lags, is June 1959 – Nov. 2023, for N = 774 
months.   
 

Table 1 
ALS AR(p) model of PCE Inflation 

6/59 – 11/23, N = 774 
 

p 0 1 2 3 4 
NSR [mo.] 2.88 21.2 29.5 38.8 51.0 
   95% CI (2.13, 3.87) (14.2, 31.6) (20.7, 42.7) (27.5, 56.1) (35.5, 79.4) 
   NLR [mo.] 3.43 21.8 30.0 39.3 51.5 
   r [mo.–2] 0.120 2.21e-3 1.15e-3 6.65e-4 3.85e-4 

[(%/yr.)2] 3.04 3.72 3.69 3.67 3.72 

LR: r = 0 566.31 89.47 72.22 52.18 29.99 
G: AR(p)=0 --- 163.6 13.35 10.64 5.74 
   c2 DOF --- 18 13 10 8 
   p(G) --- 1.6e-25 0.421 0.386 0.676 
Jarque-Bera 562.1 220.2 325.3 347.4 309.2 
   p(JB) 8.8e-123 1.5e-48 2.3e-71 3.7e-76 7.3e-68 
Forecasts from 11/23:     
   1 mo. 1.53 1.33 0.98 1.93 1.84 
   1 yr. avg. 1.53 2.98 2.65 2.11 2.04 
   1 yr. marg. 1.53 3.30 3.11 2.56 2.43 
   Long Run 1.53 3.30 3.12 2.84 2.71 

 
 
The estimated noise-to-signal standard deviation ratio NSR increases sharply with 

the autoregressive order p, beginning with an absurdly low value of 2.9 months for p = 0, 
and then growing from 21.2 months for p = 1 to 51.0 months at p = 4.  Evidently, the 
LLM interprets as permanent fluctuations that can more easily be explained as transitory 
low-order AR components.  In general, the more serially correlated regressors that are 
present, the less ALS must rely on the random walk in the regression coefficients to 
explain local persistence, and the higher the NSR.  The long-run effective sample size or 
reciprocal long-run gain, NLR is, as required, slightly higher than NSR.   

 

2
es
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The Likelihood Ratio (LR) statistics for the hypothesis of fixed coefficients (r  = 
0, or equivalently, NSR = r-1/2 = ¥), are all are well above 2.3, the approximate 5% 
critical value in the case of the LLM, so that we are justified in rejecting fixed 
coefficients.  The strength of the case against fixed coefficients declines with the 
autoregressive order, but remains very strong even at p = 4. 

 
The global test statistic G for the null that the AR(p) coefficient in the AR(p) 

model is 0 for all t is distributed c2 with the indicated degrees of freedom DOF under the 
null with the maintained assumptions.  For this purpose, the two hyperparameters were 
estimated under the alternative hypothesis and treated as known.  The results for p = 1 
overwhelmingly reject that the AR(1) coefficient is globally 0 in the AR(1) model, which 
is to say that it overwhelmingly rejects the LLM.   However, we cannot reject that the 
AR(2) coefficient is globally 0 in the AR(2) model, or that the AR(3) coefficient is 
globally 0 in the AR(3) model, or that the AR(4) coefficient is globally 0 in the AR(4) 
model.  We therefore accept the AR(1) model as being the most parsimonious model 
consistent with long-run experience. 

 
Figure 3 shows the ALS filter estimates of the two coefficients in the preferred 

AR(1) model.  Since the initial effective sample size Nt is very small, it is to be expected 
that the first several months will have very erratic point estimates, as well as very large 
standard deviations.  These first several estimates may therefore safely be disregarded.  
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Figure 3 

AR(1) model coefficients 
 
 Figure 4 plots the filter AR(1) coefficients from Figure 3 (heavy blue line), along 
with the smoother estimates (heavy red line) and the 95% credible intervals (CIs, thin 
lines) for each  The CI for the filter is naturally very wide in the early years because of 
the small effective sample size there, and so is truncated in the graph.  It may be seen that 
the filter coefficient is locally significantly different from zero throughout 1974-88, 2009-
16, and again since 2020.  However, it is essentially zero before 1965 and throughout 
2020, so that there has been substantial change in the persistence of inflation.  Although 
the filter point estimate never quite reaches unity, its 95% CI either includes or almost 
includes this value throughout 1967-87 and during 2021, indicating near-unit-root 
transitory behavior there, on top of the unit root already implied by the TVP model itself.  
(As noted by above, ALS estimates of AR models are prone to the same small-sample 
bias away from a unit root as are OLS estimates, per Dickey and Fuller (1979), with the 
added problem that the effective sample size is bounded above by NLR.  The present 
paper makes no attempt to correct for this bias.) 
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Figure 4 
Filter (blue) and smoother (red) estimates of the AR(1) coefficient in the AR(1) 

model, with 95% credible intervals (thin lines).  Vertical axis truncated to [-1, 2]. 
 
 

The filter estimates shown in Figures 3 and 4 are those that might have been used 
by a contemporary observer to forecast inflation.  However, the smoother estimates, 
shown in red for the AR(1) coefficient, give more accurate retrospective estimates of the 
state variables conditional on the entire data set.  At the last observation, where t = N, the 
filter and smoother necessarily coincide, as do their confidence intervals.    

 
Figure 5 below shows the smoother z-statistic for the hypothesis that the AR(1) 

coefficient is zero (red line), derived from the point estimate and standard error used to 
construct the red line in Figure 4.  Each is distributed N(0, 1) under the null, conditional 
on the model and the two estimated hyperparameters.  However, they are highly serially 
correlated, so that a c2 test for global significance must take these correlations into 
account.  Although a test based on all N-k+1 identified observations on the smoother has 
correct size under the null hypothesis, the serial correlation severely reduces the power of 
the test when all observations are used.  Accordingly, as explained above, the time period 
after the first k -1  observations was divided into DOF = 18 subperiods, each of length 
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approximately 2×NSR = 42.4 months, and only the midpoints of each of these subperiods 
(indicaatd by blue dots in the figure) were used.  The resulting c2 statistic, as reported in 
Table 1, was 163.6, which overwhelmingly rejects the hypothesis that the coefficient is 
globally 0, despite periods like 1989–2005 when it cannot be locally rejected.  

 

 
 

Figure 5 
Smoother z-statistics for the AR(1) coefficient (red line), 

with subset used for the global G-statistic (blue dots). 
 
 
 

Even though AR(2) effects have not been globally statistically significant in the 
past, they may become so in the future under the Fed's Aug. 27, 2020 announcement that 
it would henceforth deliberately attempt to overshoot (or undershoot) its long-run 
inflation goal of 2.00% if it has fallen short (or exceeded) that goal in the recent past, 
albeit not by so much as to make the price level trend-stationary as under a Wicksell rule 
(Powell 2020).  The significance of the AR(2) coefficient should therefore be periodically 
reviewed in the future.   
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 For each time t, the model can be used to predict annualized monthly inflation 1, 
2, or h months into the future, and these marginal inflation predictions can be averaged to 
obtain an average inflation forecast for horizon h.  These forecasts simulate the 
expectations of agents whose information set consists only of their experience of past 
inflation.  Some agents may take a broader set of variables into account, and a limited 
number of such variables such as unemployment or nominal rates could easily be 
included in an ALS vector autoregression (ALS-VAR), but the present paper focusses on 
the univariate case.  It is an empirical matter whether such additional variables would 
actually be globally significant.   
 
 Figure 6 plots the marginal and average ALS/AR(1) inflation forecasts for the last 
month in our observation set, Nov. 2023, when the economy happened to have just 
experienced an unusually low monthly inflation observation.  The last annualized 
observation, taken directly into account by the AR(1) forecasts, is plotted as a green star, 
at –0.86%.  The red line gives the marginal inflation forecasts, which start at 1.33% for h 
= 1 month, but then quickly ascend and stabilize at an asymptotic value of 3.29%.  The 
marginal forecasts are within 0.01% of this value by h = 9 months.   
 
  The blue line gives the average inflation forecasts, which begin at the same 1.33% 
at 1 month, and then ascend more slowly toward the same asymptotic value of 3.29.  The 
1-year average inflation forecast is still only 2.98%.  With the simplistic LLM, by way of 
contrast, the forecast of inflation as given in Table 1 for p = 0 is 1.53% at all horizons. 
 



  20  

 
Figure 6 

Marginal (red) and average (blue) predicted inflation, Nov. 2023.  Green star is 
observed Nov. 2023 annualized inflation. 

 
 
 The asymptotic, long-run expected inflation rate implied by an AR(p) process at 
time t may be obtained directly, without recursively forecasting monthly inflation, as  

  𝜋()(𝑡) = |
𝛽%,!/41 − ∑ 𝛽?,!5

?.# 5,			if	stationary,
sgn4𝛽%,!5 ∙ ∞																	otherwise.				

 

This may be estimated, in the stationary case, by 
  𝜋d()(𝑡) = 𝑏%,!/41 − ∑ 𝑏?,!5

?.# 5.     (31) 
Since this value abstracts from the transitory AR components, it corresponds best to what 
is popularly meant by "entrenched inflationary expectations," and would be the 
appropriate univariate experience-based "inflation" variable to include in a Taylor-type 
rule.  It is graphed for our AR(1) estimates in Figure 7 below as the blue line, along with 
the one month ahead forecast as the red line.  In the simplistic Cagan Adaptive 
Expectations model (1) and its LLM rationalization (2), short-run and long-run inflation 
forecasts are necessarily one and the same thing.  It may be seen from Figure 7 that with 
the much richer ALS model, there are often substantial differences between the two.  
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Figure 7 

One-month (red) and long-run (blue) predicted PCE inflation 
 
 
 Long-run “entrenched” inflation was only 1.49% in Aug. 2020, when the FOMC 
announced its new policy of briefly permitting a little more than 2% PCE inflation in 
order to speed the growth of entrenched expectations up to its 2% target (Powell 2020).  
Entrenched inflation reached this target value already in March 2021, but then continued 
to rise, exceeding 4.00% throughout Dec. 2021 – March 2023, and briefly reaching 
5.72% in March 2022.  This more than accomplished the FOMC's new policy.  
 

 
VII.  Forecast uncertainty 
 
 The uncertainty of forecasts made with an ALS/AR(p) model from time t = N 
forward has at least five components:   
 
 1.  Future "noise" errors 𝜀! , 𝑡 > 𝑁.  Although these affect the accuracy of 
forecasts, they have mean zero, and therefore to not enter the forecasts themselves, and 
do not affect the accuracy of our estimates of the forecasts per se.   
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 2.  Initial parameter uncertainty, as reflected in Pn. 
 
 3.  Future parameter drift, as reflected in Qt, t > N. 
 
 4.  Hyperparameter uncertainty with respect to NSR and 𝜎"#.   
 
 5.  Model uncertainty, in this case with respect to its assumption of a low-order 
AR process, with independent and normal errors.  The Jarque-Bera JB statistics in Table 
1 have an asymptotically 𝜒# distribution with 2 degrees of freedom under the null of i.i.d. 
normality.  The p-values in the last row of Table 1 overwhelmingly reject this hypothesis, 
indicating conditional non-normality and/or conditional heteroskedasticity of the errors.  
Furthermore, a low-order AR process may not adequately approximate a "long-memory" 
(fractionally integrated) error structure, even if the innovations are Gaussian.     
 
 In Figures 8 through 11 below, we investigate the second and third of these 
sources of forecast uncertainty by means of Monte Carlo simulations.  Figure 8 illustrates 
the average inflation forecasts from Nov. 2023 that would have been made with the 
AR(1) model, using 20 draws from the N(bN, PN) posterior distribution in place of bN 
itself, and no further coefficient drift.  Each simulation is initialized with the observed 
annualized monthly inflation for Nov. 2023, represented by the green star at –0.86%. The 
heavier blue line is the point forecast from Figure 6.  Each of these draws happens to be 
stationary.  
 
    



  23  

 
 

Figure 8 
Simulated predicted average PCE inflation from Nov. 2023, AR(1) model with no 

coefficient drift, first 20 replications.  Blue line is point estimate from Figure 7.  
Green star is observed Nov. 2023 annualized inflation. 

 
 
 The thin red lines in Figure 9 plot the posterior median and 50% and 95% credible 
intervals for predicted average inflation in the AR(1) model with no coefficient drift, 
using 1000 such simulations, starting with the 20 of Figure 8.  Again, the heavier blue 
line is the point estimate from Figure 6.  The posterior median coincides with this point 
estimate so closely that it is almost entirely hidden beneath it.  The 50% CI is converging 
to approximately (2.7, 3.8), while the 95% CI is approximately (1.0, 5.1) at the 10-year 
horizon and is continuing to grow, so that there is considerable uncertainty in the 10-year 
forecast, even assuming away parameter drift and hyperparameter and model uncertainty.  
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Figure 9 
50% and 95% credible intervals for predicted average PCE inflation, AR(1) model 

with no drift, 1000 replications, Nov. 2023 
 
 

 Although bN is precisely N(bN, PN), given the model, the estimated 
hyperparameters, and setting aside the AR bias, the forecast uncertainty beyond t = N+1 
is no longer Gaussian due to the nonlinearity of the dependence on the initial state 
variable.  Thus the CIs in Figure 9 are increasingly leptokurtic and skewed as the horizon 
increases.  At any finite horizon, this distribution is proper, with all quantiles finite, even 
if not all parameter draws are in the stationary region.  However, the limiting distribution, 
computed from (31), will be improper, since there is always some posterior probability 
that the coefficients are non-stationary and therefore mass at ± ¥ in the limiting 
distribution. 
 
 The thinner blue lines in Figure 10 add the effect of coefficient drift to the 20 
illustrative simulations of Figure 8, which are now represented by thin dashed red lines 
for reference.  For this purpose, QN+1, based on PN, was used as the signal covariance 
matrix for all t > N.  These simulations therefore abstract from the continuing changes in 
Qt+1 via Pt implied by the ALS model.  Even though all 20 simulations started off in the 
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stationary region, several of them now drift into the nonstationary zone, with geometric 
explosions.   
 

 
 

Figure 10 
Simulated predicted average inflation, AR(1) model with drift (thin blue lines) and 

without drift (dashed red lines), first 20 replications. 
 
 
 The thinner solid blue lines in Figure 11 plot the posterior median, as well as the 
50% and 95% credible intervals for predicted average inflation, with coefficient drift, 
using 1000 such replications.  The thinner red dashed lines are the CIs without drift from 
Figure 9, for comparison.  The darker blue line is the point forecast, and once again the 
posterior median is virtually indistinguishable from it.  The 50% CI at 10 years is (2.1, 
4.2) and still growing, and the 95% CI is already completely off scale within 8 years.   
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Figure 11 
50% and 95% credible intervals for predicted average inflation, AR(1) model with 

drift (blue lines) and without drift (red dashed lines), 1000 replications. 
 
 
 Given the noise-to-signal ratio, the estimate of the noise variance 𝜎d"# in (23) is 
governed by a chi-squared distribution with N-k = 772 degrees of freedom, and therefore 
is not a major source of uncertainty.  However, Figure 12 plots the log likelihood, already 
maximized over the noise variance, versus the noise-to-signal standard deviation ratio 
NSR on a log scale.  The vertical green bar is positioned at the ML estimate of 21.3.  The 
horizontal red line is 1.92 units below the maximized likelihood, where the likelihood 
ratio (LR) statistic, twice the change in log likelihood, is just 3.84, the 5% critical value 
of the chi-square distribution with one degree of freedom.  The LR-based 95% 
confidence interval for NSR is therefore a very considerable (14.2, 31.6).  The present 
paper makes no attempt to quantify the effect of this uncertainty on the already large 
forecast uncertainty manifested in Figure 11 above.5 
 

 
5  Despite the quadratic appearance of Figure 12, the log likelihood is bounded below at NSR = 0 and ¥.  
The likelihood itself therefore integrates to ¥ over log(NSR) in (-¥, ¥).  This would present a problem for a 
fully Bayesian analysis with a uniform prior on log(NSR).   
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Figure 12 
Log likelihood versus Noise/Signal standard deviation ratio NSR in AR(1) model 

(log scale). 
 
 
   Figure 13 below shows the standardized scale-adjusted residuals 𝑢!/𝜎d" for the 
preferred AR(1) model.  Under the assumptions of the model and given the two 
hyperparameters, these should be i.i.d. N(0, 1), but the Jarque-Bera JB statistics in Table 
1 soundly reject this hypothesis.  There is some visual evidence of volatility clustering, 
but the several outliers in excess of 3 that appear without warning suggest that 
conditional non-normality is a larger problem than conditional heteroskedasticity.   
 
 



  28  

 
 

Figure 13 
Scaled and standardized errors ut in AR(1) model 

 
 
VIII.  Potential extensions and future applications. 
 
 A Vector Autoregression such as that run by Cogley and Sargent (2005) could 
easily be implemented by ALS with a common NSR for the entire system, simply by 
maximizing the sum of the log likelihoods across equations after orthogonalization of 
their residuals.  The equation residuals may be orthogonalized by including, say, the 
residuals of the first equation as an additional regressor in the second equation, then the 
residuals of the first two equations in the third equation, and so on.  This would 
essentially have the same effect as a Cholesky decomposition of the errors, but with 
coefficients that time-vary by the same rule that governs the lag coefficients. 
Alternatively, each equation could be given its own NSR.   
 
 In any ALS equation, care should be taken that the number of regressors be less 
than the long-run effective sample size NLR, lest the regression coefficients be effectively 
unidentified.  This is particularly of concern in a VAR, since the number of regressors 
increases with both the number of lags and the number of variables.   
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 Clarida, Galí and Gertler (2000), Orphanides and Williams (2003), Kim and 
Nelson (2004), and others have found time variation in the “Taylor Rule” monetary 
policy response function.  McCulloch (2007) makes a preliminary application of ALS to 
this problem, using the ALS filter to simulate real-time expectations of inflation and the 
unemployment gap, and then the ALS smoother to estimate the effective Taylor Rule in 
retrospect.   
 
 The Jarque-Bera JB statistics in Table 1 overwhelmingly reject the null of i.i.d. 
normality of the scaled forecasting errors, and therefore of the underlying noise and 
signal errors.  Bidarkota and McCulloch (1998) estimate a Local Level Model of US 
inflation using heavy-tailed stable distributions in place of the Gaussian assumtion of the 
Kalman Filter, as well as a GARCH model of volatility clustering, but the numerical 
integrals required would quickly become intractable in the general TVP case.  McCulloch 
(2021) develops a particle filter for the LLM with heavy-tailed stable errors.  It is 
anticipated that such a particle filter can be generalized to an ALS model with stable 
errors and a constant noise/signal scale ratio.   
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Appendix A 
 

A.1.  The Local Level Model 
 
 The Local Level Model (2) implies 
  , 
so that the distribution of µ1 given y1 and an uninformative prior may be written 
  𝜇%|	𝑦%	~	N(𝑚%, 𝜎%#),  
where  

    

 
 Assume, as we now know to be the case for t = 2, that the distribution of the state 
variable µt-1 given the observations yt-1 = (y1, ... yt-1)′ up to and including yt-1, is likewise 
normal, with parameters 
  𝜇!$%	|	𝐲!$%	~	N(𝑚!$%, 𝜎!$%# ).   
It follows that  
  𝜇!	|	𝐲!$%	~	N4𝑚!$%, 𝜎!$%# + 𝜎&#5 = 	N(𝑚!$%, 𝜎!$%# + 𝜌𝜎"#).  (32) 
We also know that 
  𝑦!	|	𝜇!	~	N(𝜇! , 𝜎"#).  
Using Bayes’ Rule as in Eqn. (3.7.24a) of Harvey (1989, p. 163), and completing the 
square with the appropriate constant term, we then have  

      (33) 

so that (3) is valid with  

           (34) 

and  
  .           (35) 

Defining 𝑁! = 𝜎"#/𝜎!#, (34) becomes (4) and (35) becomes (6), which may be initialized 
either with N0 = 0 or N1 = 1. 
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A.2.  The TVP, Generalized RLS, and ALS Filters 
 

The general TVP system (11) may similarly be solved recursively by means of the 
well-known Extended Kalman Filter (EKF).  Assume that we have found a rule according 
to which  

 𝛃!$%	|	𝐲!$%	~	N(𝐛!$%, 𝐏!$%)         (36) 
for some k´k covariance matrix Pt-1 that may depend on Xt-1, but not yt-1 or et-1.  Then by 
Harvey (1989, pp. 105-6), or equivalently, Ljung and Söderström (1983, p. 420), and 
simplifying to the univariate random walk case (11) of interest,  
  𝛃!	|	𝐲!	~	N(𝐛! , 𝐏!), 
where  
  ,       (37) 

  ,       (38) 

            (39) 
 
 The textbook EKF  equations (37) and (38) above may be rearranged to eliminate 
ft and to look more like Recursive LS (RLS), as follows:  Post-multiply (38) by  and 
combine with (39) to obtain  

   

so that (37) becomes  
  ,        (40)  
and (38) becomes  
  .    

Then multiply the last equation on the left by  and on the right by  and 
rearrange to obtain  
  .        (41) 
 
 The rearranged TVP filter (40), (41) may be placed in the even more convenient 
“information” or precision form, mentioned but not developed by Harvey (1989, p. 108), 
in terms of the scaled precision matrix  

,  
and the scaled signal covariance matrix 

 ,  
as follows:     
   ,        (42) 

  ,         (43) 
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whence bt and Pt may be recovered by (15) and (16).  Bullard (1992) uses a similar 
approach.  Note that the observation error variance  cannot be estimated until after the 
filter has been run, so that it must in any event be factored out of Pt and Qt in order to run 
the filter. 
 
 In the absence of prior information about b0, the above information form filter 
may easily be initialized with a diffuse prior by taking the limit of P0 as all its 
eigenvalues go to infinity, or equivalently, by letting all the eigenvalues of the initial 
precision matrix  go to zero, which in turn implies 
   
as in (19).  For any choice of b0,  then implies  
  .          
It is not so obvious how to impose a diffuse prior on either (37) – (39) or (40) – (41), 
however.  
 
 With this diffuse prior, Wt is ordinarily of rank t for t < k, and hence bt and Pt 
may not be computed by (15) and (16) until t ³ k.  Note that in the fixed coefficient case 

, zt becomes , Wt becomes , and (15) then becomes the familiar 
OLS formula, so that our diffuse prior is therefore implicit in OLS.  (If any of the 
regressors is discrete, there is a chance that Xt and therefore Wt may still be singular for 
some t ³ k, but we have assumed here that this is never the case.) 
 
 Ljung (1992) and Sargent (193, 1999) observe that if Qt is restricted to be 
proportional to Pt-1, not only are there far fewer parameters to estimate, but the filter also 
simplifies greatly.  If we set  

Qt = kt Pt-1         (44) 
for some constant kt, then Vt = kt Wt-1-1, and (42) and (43) become following Generalized 
version of Recursive Least Squares (G-RLS): 
  𝐳! =

%
%/5'

𝐳!$% + 𝐱′!𝐲!,      (45) 

  𝐖! =
%

%/5'
𝐖!$% + 𝐱′!𝐱!.      (46) 

Thus, the G-RLS class of restrictions reduce the matrix inversions in (42) and (43) to a 
single scalar inversion.    
 
 In order for G-RLS to nest the LLM, we need to choose kt in such a way that the 
variance of the noise is in fixed proportion, in an appropriate sense, to that of the signal 
impacting the intercept term b1,t.  As in OLS, however, the magnitude and uncertainty of 
the intercept term will depend on the arbitrary manner in which the variable regressors 
x2,t … xk,t have been centered.  In order to eliminate this arbitrariness, and at the same 
time to eliminate the effect of the slope coefficients on the intercept, we must center the 
variable regressors for each t in such a way that the covariance matrix of the transformed 
coefficients is block-diagonal on its first row and column.  To this end, we define  
  𝐱!L = 𝐱!𝐀!,       
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for  

𝐀! = � 1 𝐩!,%,#𝐏!,#,#$%

𝟎5$%´% 𝐈5$%
� , 

where 

  𝐏! = �
𝑝!,%,% 𝐩!,%,#
𝐩!,#,% 𝐏!,#,#�, 

so that the transformed coefficients are  
  𝐛!L = 𝐀!$%𝐛!,  
with block-diagonal covariance matrix  

  𝐏!L = Cov(𝐛!L) = 𝐀!$%𝐏!𝐀!$%′ = �
𝐩!,%,#𝐏!,#,#$% 𝐩!,#,% 𝟎%×5$%

𝟎5$%×% 𝐏!,#,#
�. 

Setting 

  𝐖! = 𝜎"#𝐏!$% = �
𝑤!,%,% 𝐰!,%,#
𝐰!,#,% 𝐖!,#,#

�, 

and applying the block matrix inversion formula to Pt, we have  

  𝐏!L = �
𝜎"#𝑤!,%,% 𝟎%×5$%
𝟎5$%×% 𝐏!,#,#

�. 

 
Now if Qt = kt Pt-1, we will also have 𝐐!L 	= 	 𝑘!𝐏!$%L , where 𝐐!L = 𝐀!$%$% 𝐐!𝐀!$%$% ′ 

is the covariance matrix of the appropriately transformed time t transition errors 𝛈!L =
A𝒕$𝟏$𝟏 𝛈!L.  Therefore if, as in the LLM, the variance of the shock to the orthogonalized 
intercept is a constant r times the noise variance, 
  𝑞!,%,%L = 𝜌𝜎"#, 
it follows that  
  𝑘! = r𝑤!$%,%,%L = 	𝜌𝑤!$%,%,% , 
whence (46) implies that wt,1,1 obeys the same recursion as the LLM’s effective sample 
size Nt in (6).  Furthermore, the diffuse prior (19) implies w0,1,1 = 0, just as N0 = 0 in the 
LLM.  Setting wt,1,1 = Nt, we obtain the ALS updating equations (17) and (18) with kt = 
rNt-1, as claimed in (14) in the text. 
 
A.3.  The TVP and ALS Smoother 
 
 In order to obtain “smoother,” or “two-sided filter,” estimates of the coefficients, 
conditional on the entire data set, we first run the Information Filter backwards from the 
end of the data set, so as to obtain estimates  of bt conditional on yt, ... yN and no other 

information, with variances .  In the general TVP case, this backward filter may be 
computed by: 
    

   

   ,        (47) 

  ,         (48) 
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  𝐛!∗ = 𝐖!
∗$%𝐳!∗,					𝑡 ≤ 𝑁 − 𝑘,         (49) 

 . 𝐏!∗ = 𝜎"#𝐖!
∗$%,				𝑡 ≤ 𝑁 − 𝑘.         (50) 

The backward filter  obtained in this manner estimates bt+1, conditional on yt+1, ... yN, 

with variance , but it also provides an estimate of bt, conditional on the same values, 

with the somewhat larger variance .  Since  as an 
estimate of bt is independent of the filter estimate bt, the two estimates may be averaged 
in proportion to their respective precision matrices to form the smoother estimate  of 
bt, conditional on the entire sample, as follows:   
   

             (51) 
where 
  ,        (52) 

  .        (53) 
This smoother estimate has variance 
  .          (54) 

Note that it is not necessary to actually compute the backward filter ,  itself, 

however, since  and  suffice to obtain the smoother and its variance using (51) – 
(54).  The smoother and its variance may therefore be computed even for t > N–k, even 
though the backward filter is not defined there.   
 
 In order to compute the smoother, it is necessary to save zt and Wt for all t on the 
forward filter pass.  However, since the smoother is not needed to compute the likelihood 
and estimate the two hyperparameters, there is no point in computing it except on a final 
pass.   
 
 To obtain the smoother in the ALS case, we must set  
  𝐕!/% = 𝜌𝑁!𝐖!

$% 
in (47) - (54), in order to be consistent with the forward filter.  If desired, the term 
(𝐈 + 𝜌𝑁!𝐖!/%

∗ 𝐖!
$%)$% may then be replaced by 𝐖𝒕(𝐖𝒕 + 𝜌𝑁!𝐖!/%

∗ )$% to avoid having 
to invert Wt.  In the general TVP case, where the transition covariance matrix Qt is non-
singular for all t, we may compute the smoother clear back to t = 1.  In the ALS case, 
however, , which may be written, using the above substitution, as 𝐖𝒕(𝐈 +
(𝐖! + 𝜌𝑁!𝐖!/%

∗ )$𝟏𝐖𝒕/𝟏
∗ ),⬚is proportional to Wt and therefore singular for t < k.  The 

ALS smoother, like its filter, is therefore defined only for t ³ k.  Unfortunately, the 
serendipitous cancellation that occurs in the filter equations is no longer present, so that 
the ALS smoother will run somewhat slower than the ALS filter.   
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A.4  The Global Test of Significance 
 
 The (N-k) x (N-k) x k x k intertemporal covariance matrix C defined in (29) may 
be found as part of a large Generalized Least Squares (GLS) problem that solves directly 
for the smoother coefficients without using the Kalman recursions:   
 
 For t = 1, ..., k-1, the bt are unidentified under the ALS specification.  
Nevertheless, the ancillary variables  
  𝜁! = 𝐱!𝛽!  
are identified, with observation equation   
  𝑦! = 𝜁! + 𝜀!.         (55) 
Set 𝛇 = (𝜁%, … , 𝜁5)′.   
 
 For t = k, ..., N, we have the standard observation equation  
  𝑦! = 𝐱!𝛽! + 𝜀!.       [11]  
 
 For t = 1, ..., k-1, the transition equation (12) relates the ancillary variable 𝜁! to 𝛽5 
via  
  𝐱!𝛽5 = 𝜁! + 𝛿!,       (56) 
where 
  𝛿! =	𝐱! ∑ 𝛈-5

𝒔.!/%  , 
so that for t’ ³ t, 
  cov(𝛿! , 𝛿!4) = 𝜎"#	𝐱!4∑ 𝐕!5

-.!(/% 5	𝐱!4′ 
                     = 𝜎"#	𝜉!,!4 . 
Set 𝛅 = (𝛿%, … , 𝛿5$%)’.  Define the (k-1) x (k-1) matrix 𝚵 = 4𝜉!,!45, imposing symmetry.  
(In the empirical examples given in the text, it was found that the off-diagonal elements 
of 𝚵 were all on the order of e-18, or within computational error of zero, but this was not 
imposed.)   
 
 For t = k+1, ..., N, we have the standard transition equation   
   𝛃! = 𝛃!$% + 𝛈! , 𝛈!~NID(𝟎5×%, 𝝈𝜺𝟐𝐕!) .    [12] 
 
 The above N+k-1+k(N-k) equations in 2k-1+k(N-k) unknowns may be stacked 
into the matrix equation 
  𝛟 = 𝚿𝛉 + 𝛖 ,  
where 

  𝛟 = �
𝐲7																					
𝟎5$%/5(7$5)×%� 
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𝚿 =

⎝

⎜
⎜
⎜
⎜
⎜
⎛

𝟎(5$%)×P5(7$5/%)Q									 𝐈5$%																			
𝐱5 								 ⋯ 							𝟎5×5
⋮ ⋱ ⋮

𝟎5×5 				 ⋯ 						𝐱7		
𝟎(7$5/%)×(5$%)

−𝐗𝒌$𝟏 𝟎(5$%)×(5(7$5)) I5$%																			
I5					 −I5 ⋯ 𝟎5×5
⋮ ⋱ ⋱ ⋮

𝟎5×5 ⋯ I5 −I5 				
𝟎5(7$5)×(5$%)		

⎠

⎟
⎟
⎟
⎟
⎟
⎞

 , 

𝛉 = ©

𝛃5
⋮
𝛃7
𝛇

ª ,   

𝛖 =

⎝

⎜
⎛

𝛆
𝛅

𝛈5/𝟏
⋮
𝛈𝑵 ⎠

⎟
⎞

. 

The covariance matrix of the error vector is 
Cov(𝛖) = 𝜎"#𝛀 , 

where   

𝛀 =

⎝

⎜
⎛

𝐈7													 𝟎7×5$%								 𝟎7×5(7$5)														
𝟎5$%×7					 𝚵																			 𝟎5$%×5(7$5)											

𝟎5(7$5)×7 𝟎5(7$5)×5$%
𝐕5/% ⋯ 			𝟎5×5
⋮ ⋱ ⋮

𝟎5×5 ⋯ 𝐕7 ⎠

⎟
⎞

. 

 
 The GLS estimator of the coefficient vector is then  
  𝛉 = (𝚿′𝛀$%𝚿)$%𝚿′𝛀$%𝛟 , 
with covariance matrix 
  𝚪 = Cov4𝛉5 = 𝜎"#(𝚿′𝛀$%𝚿)$%. 
The elements of C required for the global significance tests may easily be extracted from 
𝚪.  These include redundant values of the smoother covariance matrices 𝐏!:. It was found 
that these differ from the values already obtained recursively by at most 2.2e-13.  
Likewise, the redundant values of the smoother coefficients 𝐛!: contained in 𝛉 differ from 
the recursive values by at most 1.9e-12.   
 
 In order to investigate the power of the global test of significance proposed in 
Section V in the text, 1000 autocorrelated sequences <xi> of length 1000 were generated 
with autocovariance structure 

cov4𝑥T , 𝑥?5 = 0.5(|T$?|/#V)#.* 
and mean µ.  The factor of 20 implies that at lag 20, which may be thought of as the 
“bandwidth” of the process, the autocorrelation will be 0.5.  This is similar to what would 
be expected of the estimation errors in an ALS model with NSR = 20.  The power of 1.5 
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makes the simulated process have smoothness similar to that of the ALS smoother, while 
retaining full rank in the covariance matrix.  Each sample was subdivided into 𝑛D =
1000/Δ𝑡 intervals of size Δ𝑡 for Δ𝑡 = 1, 2, 5, 10, ... 1000, and a subset T of the full 
sample was selected using the approximate midpoints of these intervals, so that the 𝜒# 
test for µ = 0 using subset T has 𝑛D	= 1000, 500, 200, 100, ..., 1 degrees of freedom.  
 
  When µ = 0, the test was found to have the correct size, and power equal to its 
size, regardless of Δ𝑡.  However, when µ = 1 as shown in Figure 14, the power is highest 
for step size Δ𝑡 = 50, with 20 and 100 close behind. (Power = 0.719, 0.613 and 0.544 for 
test size 0.05, resp.)  For test sizes below 0.33, using the full sample (Δ𝑡 = 1, 𝑛D =
1000) is actually worse than using only one, centrally located smoother value 
(Δ𝑡 = 1000, 𝑛D = 1).  (Power = 0.142 and 0.182 for test size 0.05, resp.)  
   

 
Figure 14 

Power as a function of test size for the global test of significance,  
with bandwidth = 20 and true mean = 1. 

    
  In the absence of serial correlation, it is of course optimal to use as many degrees 
of freedom as possible in global significance tests.  However, when there is serial 
correlation and the true mean is non-zero, the transformation that whitens the 
observations simultaneously moves the mean of the series closer to zero, making the non-
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zero mean harder to detect. For example, the mean of the transformed data is 0.148 in the 
above example when the full sample is used, even though the mean of the raw data is 1.0.  
There therefore is a tradeoff between degrees of freedom and independence.  A sampling 
interval approximately twice the bandwidth, and therefore approximately twice the NSR, 
is therefore recommended for global significance tests.  
 
A.5.  The error in Ljung (1992) and Sargent (1999) 
 
 As mentioned in the text, there is an error in the Kalman Filter as presented in 
Sargent’s (1999) equation (94).  This error led Sargent to wrongly assert that RLS is only 
an approximate implication of his basic assumption that Qt is directly proportional to Pt-1, 
when in fact it is an exact implication.  To correct this error, Pt-1 in Sargent’s (94b) and in 
the term after the minus sign in (94c) should be replaced with Pt-1 + R1t in Sargent’s 
notation, i.e. by Pt-1 + Qt in ours and Harvey’s.    
  
 The same error appears in the source Sargent cites, namely Ljung (1992), 
equations (36) – (39).  Nevertheless, Ljung’s own source, Ljung and Söderström (LS, 
1983) is correct.   
 
 LS consider a more general case of the KF than is used here or in Sargent or 
Ljung, one which permits the coefficient vector to follow a stationary matrix AR(1) 
process with a driving process, rather than just a random walk as in (11) of the present 
paper.  Harvey treats a similarly general case.  In this more general case, it is expedient to 
introduce, as Harvey does, a notation like bt|t-1 to indicate the expectation of bt 
conditional on yt-1, and Pt|t-1 for its covariance matrix, in addition to bt, bt-1, Pt, and Pt-1.   
 
 In terms of the Harvey conditional subscripts, but our symbols otherwise, Ljung 
and Söderström’s (1.C.14) – (1.C.16) on p. 420 become, in the special case of interest,  
       (57) 

       (58) 

  .   (59) 
Since in the random walk case, bt+1|t becomes our bt and Pt|t-1 becomes our Pt-1 + Qt, and 
(57) – (59) are equivalent to (37) – (39) above, which in turn derive from Harvey’s 
(3.2.3a) – (3.2.3c).  Thus, Harvey and LS are in agreement.    
 
 However, LS do not use Harvey’s conditional subscript notation, but instead refer 
to the expectation of their time t coefficient vector “xt,” conditional on information up to 
and including t-1 (i.e. bt|t-1 above), simply as “ ,” and to its covariance matrix (Pt|t-1 
above) simply as “P(t),” etc.  The source of the error in Ljung (1992) and thence Sargent 
(1999) is that when Ljung simplified (1.C.14) – (1.C.16) in LS to the random walk case, 
he redefined “ ” to be the expectation of the time t coefficient vector conditional on 
information up to and including time t, i.e. our bt, and “P(t)” to be its covariance matrix, 
i.e. our Pt.  In making this notational revision, however, he simply replaced “P(t)” in his 
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former notation, at all but one point, with “P(t-1)”, instead of with Pt|t-1 = Pt-1 + Qt, i.e. 
“P(t-1) + R1(t)” in terms of his new notation, as he should have.6   
 
 In order to correct equations (36) – (39) in Ljung (1992), therefore, “P(t-1)” in 
his (38) and in the expression after the minus sign in his (39) should be replaced with 
“P(t-1) + R1(t).”  Corresponding replacements should be made in Sargent’s (1999) 
equation (94), as noted above.   
 
 In correspondence, Lennart Ljung has kindly indicated that he in fact intended the 
“P(t-1)” of his 1992 book to be Pt|t-1, despite the apparently contrary definition given in 
his text which led Sargent (1999) to interpret it as Pt-1|t-1.  However, he points out that 
even with this interpretation there is an error, since then the R1(t) in the first part of (39) 
on his p. 99 should not be present.   
  

 
6 Note that whereas Ljung (1992) associates subscript t with the change in the coefficient vector between 
times t-1 and t, this subscript is t-1 in LS.  Although LS do not explicitly date the covariance R1 of this 
change, if they had, the “R1(t)” of Ljung (1992) would therefore have been “R1(t-1)” in the LS notation.   
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