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Abstract. A method of estimating the spectral representation of a generalized bivariate stable
distribution is presented, based on a series of maximum likelihood (ML) estimates of the stable
parameters of univariate projections of the data. The corresponding stable spectral density is obtained
by solving a quadratic program. The proposed method avoids the often arduous task of computing the
multivariate stable density, relying instead on the standard univariate stable density. The paper applies
this projection procedure, under the simplifying assumption of symmetry, to simulated data as well
as to foreign exchange return data, with favorable results. Kanter projection coefficients governing
conditional expectations are computed from the estimated spectral density. For the simulated data
these compare well to their known true values.
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1. Introduction

Economic and financial data often arise as the aggregation of a vast number of
more or less independent, unobserved factors. According to the Generalized Cen-
tral Limit Theorem (e.g., Zolotarev, 1986), if the sum of a large number of i.i.d.
random variables has a limiting distribution after appropriate shifting and scaling,
the limiting distribution must be a member of thestable class. The normal or
Gaussian distribution is the most familiar member of this class and is frequently
used in econometric and financial models. However, the errors in such models are
often too leptokurtic to be consistent with normality. In such cases, the heavier-
tailed non-Gaussian stable distributions are the natural extension of the popular
normality assumption.

The theory of univariate estimation of stable parameters is well worked out –
see McCulloch (1996a) for extended references. However, multivariate stable para-
meter estimation remains in its infancy. Mittnik and Rachev (1993, pp. 365–366)
suggest a method of estimating the characteristic exponent and spectral representa-
tion of a generalized bivariate stable distribution, but employ only a small subset
of the data, drawn from the extreme tails. This method has been implemented
by Cheng and Rachev (1996). The present paper proposes an alternative method,
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based on likelihood maximization, that uses the entire data set in a series of uni-
variate projections. This method avoids the often arduous task of computing the
MV stable density (see Nolan and Rajput, 1993), relying instead on the standard
univariate stable density.

The projection procedure is applied here, in the simplifying case of symmetry,
to simulated data and to actual financial data on German mark and Japanese yen
returns. Kanter projection coefficients governing conditional expectations are com-
puted from the estimated stable density. In the case of the simulated data, these
estimates compare well to their known true values.

2. Bivariate Stable Distributions

A scalar random variableX has a stable distribution with characteristic exponent
α ∈ (0,2], skewness parameterβ ∈ [−1,1], scale parameterc > 0, and location
parameterδ ∈ R if and only if its log characteristic function may be written

logE exp(iXt) = iδt + ψαβ(ct),
where

ψαβ(t) =


−|t|α

[
1− iβsign(t) tan

πα

2

]
, α 6= 1,

−|t|
[
1+ iβ 2

π
sign(t) log |t|

]
, α = 1,

(1)

is the standard (c = 1, δ = 0) univariate stable log c.f. (see McCulloch, 1996b).
The Gaussian distribution arises forα = 2, in which case the variance is 2c2 andβ
loses its effect. In non-Gaussian stable cases, the tails are thicker, and the variance
is infinite. The univariate stable cumulative distribution functions and probability
density functions may be computed by means of proper integral representations
given by Zolotarev (1986; see also Nolan, 1998).

A vector random variablex = (x1, x2)
′ has a bivariate stable distribution, with

α 6= 1, if its log characteristic function may be written as

logE exp(ix′t) = i δ′t +
∫ 2π

0
ψα1(s′θ t)d0(θ), (2)

wheresθ = (cosθ, sinθ)′ is the point of the unit circle at angleθ , δ is a 2-vector of
location parameters, and0(θ) is a non-decreasing, left-continuous function which
may be normalized to 0 at any convenient angle, commonly, but not necessarily,
0 (cf. Hardin, Samorodnitsky and Taqqu, 1991, p. 585; Mittnik and Rachev, 1993,
pp. 355–356; Wu and Cambanis, 1991, p. 86; McCulloch, 1996a, pp. 397–401).
Equation (2) is called the spectral representation of the bivariate stable distribution.
0(θ) is known as the spectral measure, and d0(θ) is the spectral density.1 These
are ‘spectral’ in the sense of being defined on the unit circle, but are unrelated to
the ‘spectrum’ of frequency-domain time series analysis.
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Such a stable random vectorx may be constructed from a maximally positively
skewed(β = 1) α-stable Lévy motionz(θ), whose iid increments dz(θ) have zero
drift and scale(dθ)1/α, by

x =
∫ 2π

0
sθ
(d0(θ))1/αdz(θ)

(dθ)1/α
+ δ (3)

(cf. Modarres and Nolan, 1992). This awkward-looking integrand has the following
interpretation: If0′(θ) exists,θ contributes(0′(θ))1/αdz(θ) to the integral. If0
instead jumps by10 at θ , θ contributes an atomsθ (10)1/αZθ to the integral,
whereZθ = (dθ)−1/αdz(θ) is univariateα-stable withβ = 1, c = 1, andδ = 0.

M. Kanter (as reported by Hardin et al., 1991) has shown that if d0(θ) is
symmetrical andα > 1, the projection ofx2 onx1 ,

E(x2 | x1) = κ2,1x1 ,

for example, is determined by the projection coefficient

κ2,1 = 1

cα(x1)

∫ 2π

0
sinθ(cosθ)〈α−1〉d0(θ), (4)

where

cα(x1) =
∫ 2π

0
| cosθ |αd0(θ),

x〈α〉 = sign(x)|x|α.
Gamrowski and Rachev (1994) shows that, for stock returns, this Kanter projection
coefficient may be interpreted as the ‘beta’ of the Capital Asset Pricing Model
(CAPM) that in turn governs the relative returns of the stocks (see also McCulloch,
1996a). Hardin et al. (1991) – see also Samorodnitsky and Taqqu (1994) – demon-
strates that if d0(θ) is not symmetrical,E(x2 | x1) is non-linear inx1 but is still a
simple function involving thisκ2,1 and other functionals of d0. The stable spectral
density therefore has important practical implications.

3. Estimation by the Projection Method

For eachω ∈ [0, π), consider the projection

y(ω) = s′ωx = s′ω δ +
∫ 2π

0
cos(θ − ω)(d0(θ))

1/αdz(θ)

(dθ)1/α
. (5)

This has scalec(ω), where

cα(ω) =
∫ 2π

0
| cos(θ − ω)|αd0(θ). (6)
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By breaking the integral in (5) in half atω + π/2 andω − π/2 (d0 is cyclic by
definition),y(ω) may be decomposed into the sum of its location parameter plus
two maximally skewed zero-location stable variables, one withβ = 1 and scale
C(ω), and the other withβ = −1 and scaleC(ω + π), where

Cα(ω) =
∫ ω+π/2

ω−π/2
cos(θ − ω)αd0(θ), ω ∈ [0,2π), (7)

so that

cα(ω) = Cα(ω)+ Cα(ω + π). (8)

The skewness ofy(ω) is then given by

β(ω) = Cα(ω)− Cα(ω + π)
cα(ω)

, (9)

whence

C(ω) = c(ω)
(

1+ β(ω)
2

)1/α

(10)

and

C(ω + π) = c(ω)
(

1− β(ω)
2

)1/α

. (11)

Now let xi = (x1i , x2i )
′, i = 1, . . . , n, be a set of iid observations on the

vectorx. The componentsx1 andx2 of x are each univariate stable with a common
α. The parametersα, β1, c1, andδ1 of x1 may therefore be estimated consistently
by univariate maximum likelihood (ML) from then observations onx1 using the
methods of McCulloch (1998a) or Nolan (1998). Similarly,α, β2, c2, andδ2 may
be consistently estimated from then observations onx2. These two estimates of the
commonα do not ordinarily agree precisely. However, if the two log likelihoods are
pooledby averaging, and the resulting average maximized subject to the restriction
that the two have a common exponent, an even more efficient common estimate of
α may be obtained. This is not a true full information ML estimate unlessx1 and
x2 are independent, but it shares the consistency of univariate ML and is far more
efficient than the Mittnik and Rachev tail estimator ofα when the true distribution
is stable.

Next, center thexi by subtracting the pooled ML estimate ofδ. Setθj = ωj =
2πj/m, j = 0, . . . , m − 1, for some large integerm divisible by 4. Forj =
0, . . . , m/2− 1, calculateyi(ωj ) from the centeredxi as in (5) above, and then
use these to estimateβ(ωj ) andc(ωj ) by univariate ML, constrainingα to be the
pooled univariate estimate, andδ to be0.2 Next estimateC(ωj), j = 0, . . . , m−1
using (10) and (11).
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Equation (7) states thatCα(ω) is a moving average of d0(θ). This moving
average may be numerically approximated by

γj = Cα(ωj) ≈
j+m/4∑
h=j−m/4

cos(ωj − θh)α1h , (12)

where

1h = 0(θh + π/m)− 0(θh − π/m). (13)

Now (12) is a system ofm equations inm unknowns of the formγ ≈ A1 that
may in principle be solved for1 ≈ A−1γ so long asα < 2 andA is non-singular.3

However, this calculation may be quite ill-conditioned, so that sampling error may
cause some of the1h estimates to be negative. This can be prevented by solving
the following quadratic program instead:4 Find

1 ≥ 0

such that

(γ − A1)′(γ − A1) = min .

Having thus estimated1 from γ , 0(θj + π/m)may be estimated by summing
the1h from 0 to j . The offset ofπ/m in (13) is desirable, because the axes are
often prime candidates for atoms. With this offset, such atoms will tend to show up
uniquely in10,1m/4,1m/2, and13m/4, rather than being split in two.

Because the matrixA does not depend on the data,m is not limited by the
sample sizen, and ordinarily may be set as high as desired withoutA becom-
ing singular. However, in the Gaussian caseα = 2, two atoms are sufficient to
generate the joint distribution, and these may be selected in an infinite number
of ways. In this caseA is singular and0 is not identified. This is not in itself
a problem, since then we have only a bivariate normal distribution to estimate.
However, it does suggest that even the quadratic programming estimates of the
1h will behave increasingly erratically asα ↑ 2 with any fixedm and sample
sizen. In such a case, it may be desirable to impose some prior smoothness or
discreteness restrictions on the spectral measure, such as the elliptical restriction
considered by Press (1982: 158; casem = 1), the ‘diagonal model’ considered by
Fama (1965), or the state-space model of Oh (1994) or Bidarkota and McCulloch
(1998). Marine Carrasco has suggested that smoothness could be introduced into
the above quadratic program by addingλ1′1 to the minimand for some selected
positive value of a smoothing parameterλ. A similar effect, with perhaps even
more smoothness, would be achieved by adding

λ

m∑
h=1

(1h −1h−1)
2.
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However, the present paper employs the pure quadratic programming method,
having neither of these smoothing factors, with satisfactory results.

4. The Projection Method in the Symmetric Case

The general projection method described above requires univariate ML estimation
of α and ofc(θ). Although the general stable density can be calculated by means
of the proper integral representations of Zolotarev (1986), computation is greatly
accelerated if a numerical approximation is used in its place. McCulloch (1998b)
provides a fast numerical approximation to the symmetric stable density that is the
basis of the univariate symmetric stable ML program of McCulloch (1998a).5 I
therefore restrict the implementation of the projection method in this paper to the
symmetric case.

When d0(θ) is symmetrical, i.e., d0(θ) = d0(θ + π), (2) becomes

logE exp(ix′t) = i δ′t +
∫ π

0
ψα0(s′θ t)d0

∗(θ),

where

ψα0(t) = −|t|α
is the standard univariate symmetric stable log characteristic function and d0∗(θ) =
2d0(θ). Such a vectorx may be generated by

x =
∫ π

0
sθ
(d0∗(θ))1/αdz(θ)

(dθ)1/α
+ δ,

where now dz(θ) is a standard symmetric(β = 0) α-stable Lévy motion. The
projection equation (5) becomes

y(ω) = s′ω δ +
∫ π

0
cos(θ − ω)(d0

∗(θ))1/αdz(θ)
(dθ)1/α

,

while the scalec(ω) of y(ω) is determined by

cα(ω) =
∫ π

0
| cos(θ − ω)|αd0∗(θ), ω ∈ [0, π).

The scalec(ωj ) may be estimated from the observed values ofyi(ωj ) by sym-
metric stable univariate ML, atωj = θj = πj/m, for j = 0, . . . , m − 1, for
some largem preferably divisible by 2. The symmetric spectral density may then
be estimated either by inverting

γ ∗j = c(ωj )α ≈
m−1∑
h=0

| cos(θh − ωj)|α1∗h

or by solving the corresponding quadratic program.
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Figure 1. Simulated bivariate symmetric stable data set, withα = 1.8, and three symmetric
atoms on the unit circle at 0◦, 45◦, and 90◦. Sample size 10 000.

Figure 1 shows a simulated bivariate distribution generated by 10 000 independ-
ent draws of a 2× 1 vectorxi,

xi = Mzi ,

where

M =
(

1
√

2/2 0
0
√

2/2 1

)
,

andzi is a 3× 1 vector of iid standard symmetric stable random variables with
α = 1.8, generated by the method Chambers, Mallows and Stuck (1976).

This example contains three symmetric atoms, in the directions 0,π/4, andπ/2
with unit mass each, or, equivalently, six maximally skewed atoms in the directions
0, π/4, π/2, π , 5π/4, 3π/2, with mass 1/2 each. This distribution in turn can be
represented either by a general spectral measure on the whole circle with steps of
1/2 at each of these six angles or by a symmetric spectral measure on the half circle
with three steps of one each.

It can be seen in Figure 1 that an approximately elliptical mass of points lies near
the center of the distribution, with strings of outliers in each of the six indicated
directions. For plotting purposes only, the observations are cropped at±20. These
points appear at the edges of the plot.
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Figure 2. Simulated Gaussian data set constructed as in Figure 1, but withα = 2.

For comparison, Figure 2 shows a joint distribution generated in exactly the
same manner, but for the Gaussian caseα = 2. This distribution is entirely
determined by its covariance matrix

6 = 2MM ′

=
(

3 1
1 3

)
.

Exactly the same bivariate normal distribution could have been generated by two
independent normal random variables using, for example,

M ∗ =
( √

3/2 0
1/
√

6 2/
√

3

)
.

In the non-Gaussian stable cases, however, this matrix would generate a distinctly
different distribution.

Pooled maximum likelihood gives an estimate ofα of 1.792, which compares
favorably to the true value of 1.800. The two estimated scales are

c1 = 1.256
c2 = 1.250,

which compares favorably to their common true value,

c1 = c2 = (1+ (
√

2/2)1.8)1/1.8 = 1.269.
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Figure 3. Estimatedc(θ) for simulated data of Figure 1.

The pooled likelihood ratio statistic for the hypothesisα = 2 is 3965.46. This
overwhelmingly rejects normality, using the Monte Carlo critical values given in
McCulloch (1997).

Figure 3 shows the estimated scalec(θj ), usingm = 180 points on the half-
circle, with the angles plotted in degrees for convenience of exposition. As we
would expect from Figure 1, the scales peak near the center of the first quadrant at
44◦ and have a minimum near the center of the second quadrant at 134◦.

Figure 4 shows the estimated discrete approximation to the symmetric spectral
density d0∗(θ) obtained by solving the quadratic program with no smoothness
priors using a GAUSS quadratic programming routine kindly provided by Robert
D. Dittmar. Each density contribution has been represented as a rectangle with
height1∗j and angular widthπ/m, centered onθj . Since we expect a mass point
near 0 with little, if any, mass in the second quadrant, the density has been plotted
from –45◦ to 134◦. The nearly equal mass contributions near 0◦, 45◦, and 90◦ show
quite clearly, with only a little noise around –18◦ and +30◦.

Figure 5 shows the estimate of the symmetric spectral measure0∗(θ), computed
as the accumulation of the density of Figure 4. There are, as expected, approxim-
ately unit steps at the three expected angles. In order to see these steps more clearly,
the measure is accumulated from –45◦, rather than 0◦.

The precise shape of the bivariate spectral density is of little practical con-
sequence. However, the projection coefficients determined by the spectral density,
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Figure 4. Estimated symmetric spectral density1∗(θ) for simulated data of Figure 1.

Figure 5. Estimated symmetric spectral measure0∗(θ) for simulated data of Figure 1.
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Figure 6. Monthly changes in the log DM/$ and Yen/$ exchange rates, April 1973–April
1998. Sample sizen = 301.

as given by (4), are of greater operational significance. For the simulated data of
Figure 1, the true values of the two Kanter projection coefficients are

κ21 = κ12 = (
√

2/2)1.8

1+ (√2/2)1.8
= 0.3255,

while the estimated values computed from the estimated spectral density of
Figure 4 are

κ̂21 = 0.3499
κ̂12 = 0.3501

The ability of multivariate stable distribution estimation methods to estimate such
projection coefficients correctly is an important criterion by which to judge their
relative merits.

5. Application to Foreign Exchange Returns

Figure 6 shows actual data onn = 301 pairs of monthly changes in the natural
logarithms of the DM/$ and Yen/$ exchange rates, during the floating exchange
rate period, April 1973–April 1998.6 There is a central cluster of points with clearly
positive correlation, plus a number of outliers reminiscent of Figure 1. The distri-
bution shows some signs of positive skewness but is approximately symmetrical.
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Figure 7. Estimatedc(θ) for foreign exchange return data of Figure 6.

Univariate symmetric stable ML estimates ofα are similar, 1.852 and 1.888, re-
spectively, and normality may be rejected at the 0.01 and 0.05 levels, respectively,
using the Monte Carlo critical values of the Likelihood Ratio statistic tabulated in
McCulloch (1997), Table 4b. The LR statistics are 5.652 and 2.896, respectively.

A simple purchasing-power-parity model of foreign exchange rates would sug-
gest three strong country-specific mass points: At 0◦ for Germany, at 90◦ for Japan,
and at 45◦ for the U.S., since the dollar is an equal component of both these ex-
change rates. There might perhaps also be additional mass at other angles in the
first quadrant, reflecting pairwise herd instincts of central bankers (see McCulloch,
1996a).

Pooled ML gives an estimated commonα of 1.866. The pooled LR statistic
for normality is 4.24, which exceeds the 0.02 Monte Carlo critical value. Figure 7
shows the estimated scale of the projected data, again usingm = 180 points on the
half-circle, with the DM returns at 0◦ and the Yen returns at 90◦. Again, there is a
clear maximum in the first quadrant at 44◦ and a minimum in the second quadrant
at 135◦.

Figure 8 shows the estimated symmetric spectral density. Here, there are two
clear spikes near 13◦ and 68◦, curiously offset from the axes. Figure 9 accumulates
the spectral density of Figure 8 into an estimate of the spectral measure. The total
mass lying in a group of adjacents bins is subject to much less sampling error than
the mass in an individual bin.
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Figure 8. Estimated symmetrical spectral density1∗(θ) for foreign exchange data of
Figure 6.

Figure 9. Estimated symmetrical spectral measure0∗(θ) for foreign exchange data of
Figure 6.
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The Kanter projection coefficients computed from the spectral density of
Figure 8 are

κ̂Yen,DM = 0.613
κ̂DM,Yen= 0.633.

These are somewhat higher than the corresponding OLS regression coefficients
obtained from the same data, namely 0.561 (s.e.= 0.046) and 0.599 (s.e.= 0.049),
respectively. If the true distribution is stable, the Kanter coefficients are the more
efficient measures of the conditional expectation coefficients.

The fact that we do not find atoms at the three expected primary angles is curi-
ous and deserves further research. Daily data with a greatly enlarged sample size
would perhaps shed further light on this. However, daily foreign-exchange-rate data
typically exhibit pronounced GARCH-like volatility-clustering effects that violate
the i.i.d. assumption of our procedure. Correcting for such effects goes beyond the
scope of the present paper.7

All estimation calculations for the simulated data (n = 10 000) required 1110
seconds on a Pentium 100 processor using GAUSS 3.2.12 and the symmetric stable
numerical density approximation of McCulloch (1997c). Pooled maximum likeli-
hood estimation of the univariate scales, locations, and common exponent required
190 seconds using the Nelder-Mead polytope (downhill simplex) method. Estimat-
ing the 180 scales of the projected data required 875 seconds using a golden ratio
hill-climbing procedure. The quadratic program required another 45 seconds. The
first step should be roughly proportional to the sample size, and the second tom

times the sample size. The third step is independent of the sample size but should
increase withm. All calculations for the foreign-exchange-rate data (n = 301)
required 49 seconds. These times could easily be improved using more efficient
maximization routines. The computational burden is minor with the sample sizes
and resolution employed in these examples.

6. Multivariate Stable Distributions

The bivariate method described in Section 3 above may be straightforwardly ex-
tended to thed-dimensional multivariate case by approximating the stable spectral
measure defined on the unit sphere ind-space by a discrete measure in which
a large but finite number of points on the unit sphere represent a small adjacent
region (Modarres and Nolan, 1992). This may be implemented most efficiently by
repeated geodesic triangulation, or, with little loss of efficiency and a great gain
in simplicity, by rectangular patches in polar coordinates with approximately equal
angular height and width. In either case, the number of unknowns is proportional to
md−1, where 2π/m is the average angular distance between points. This quickly be-
comes unmanageable without special restrictions or programming considerations.
The cased > 2 is not attempted here.
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7. Conclusion

The projection method developed here, when coupled with the quadratic program-
ming approach, provides a useful tool for the estimation of the spectral measure
of bivariate non-Gaussian random variables and, in particular, of financial asset
returns. The estimated spectral density is remarkably sharp and accurate with
large simulated samples and produces good estimates of the Kanter projection
coefficients that govern conditional expectations. It provides an informative charac-
terization of the joint distribution of real-world data, as illustrated here with foreign
exchange rate return data.

Notes

1 In the ‘afocal’ cases withα = 1 andβ 6= 0, the location parameter is not additive, and the
formulas (2) and (3) require modification. See McCulloch (1996b). These cases go beyond the scope
of the present paper.

2 Becausec(ω) andβ(ω) are continuous, the estimates for eachj are good initial values forj+1.
3 The matrixA is cyclic, as isA−1, i.e., each row is an image of the row above, offset by one,

and wrapped. The inverse may therefore be stored as its first row, thus alleviating storage constraints
with largem. The same inverse works for every problem involving the sameα andm.

4 This quadratic program projection method was first proposed by the author in an earlier draft of
the present paper, and first implemented by John Nolan and Anna Panorska in an early draft of Nolan,
Panorska and McCulloch (1996). The latter paper compares it to a characteristic function-based
procedure, as well as to the Mittnik and Rachev procedure.

5 Program STABLE.EXE (Nolan, 1998) now computes the general stable density and does uni-
variate stable ML by a spline numerical approximation. However, this program is not yet available
in a form compatible with GAUSS.

6 Data source is the June 1998 International Financial Statistics CD-ROM, published by the Inter-
national Monetary Fund. Month-end values for March 1973–April 1998 were obtained from series
134..AE.ZF... and 158..B..Z... (the April 1973 returns use the March 1973 exchange rates in their
computation).

7 McCulloch (1985) models bond returns with a univariate GARCH-stable process.
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