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A Reexamination of Traditional
Hypotheses about the Term Structure:
A Comment

J. HUSTON MCCULLOCH?*

ABSTRACT

An example of a continuous time economy is given whose general equilibrium term
structure of interest rates obeys the Expectations Hypothesis for continuously
compounded interest rates and returns, contradicting the 1981 claim by Cox,
Ingersoll, and Ross that such an economy is mathematically impossible. This
example does not generate exploitable arbitrage opportunities of the type Cox,
Ingersoll, and Ross claim must arise. The “Logarithmic Expectations Hypothesis,”
as we call it, it therefore an acceptable benchmark from which to measure term
premia in continuous time term structure modeling.

THE ExPECTATIONS HYPOTHESIS (EH), broadly construed, postulates that ex-
pected returns on risk-free bonds of different maturities are equal or, equiva-
lently, that appropriately calculated forward interest rates equal expected

future spot interest rates.
In comparing the expected returns on two bonds of different maturities,

however, the returns. may be compounded in any of.four natural ways: ..

continuously, to the shorter bond’s maturity, to the longer bond’s maturity, or
to the nearest available future date. It has long been understood that if the
EH holds in terms of any one of these methods, and if interest rates are
stochastic, Jensen’s inequality will in general preclude it from holding in
terms of any of the other three.

In practice, the convenience and simplicity of continuously compounded
interest rates and returns have led many researchers (e.g., Roll (1970),
McCulloch (1975), Fama (1984)) to use the first method, and therefore what
we call the Logarithmic Expectations Hypothesis or Log EH as the bench-
mark from which to measure any term premia which may be present. In a
widely cited article in this journal, however, Cox, Ingersoll, and Ross (hence-
forth Cox et al.) claim to have proven that the Log EH is “incompatible. .. with
any continuous-time rational expectations equilibrium whatsoever” (1981, p.
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777).} Although Campbell (1986) has questioned the empirical significance of
Cox et al.’s allegedly necessary deviations from the Log EH, the mathemati-
cal validity of their claim continues to be taken for granted (e.g., Longstaff
(1990)).

The Cox et al. claim is surprising, since in discrete time models it is easily
shown that the Log EH is consistent with a general equilibrium model in
which risk-averse investors maximize expected utility subject to an intertem-
poral budget constraint. One would expect continuous time formulations to
provide elegant and concise generalizations of discrete time models, and
perhaps even to eliminate bothersome intraperiod simultaneity effects, but
not to change the fundamental nature of the economy. In the real world, time
in fact passes continuously. The Cox et al. claim therefore appears to be a
valid statement about the empirical behavior of the real world that cannot be
captured by discrete time approximations.

In this paper we demonstrate, contrary to Cox et al., that in fact the Log
EH is entirely consistent with a rational expectations equilibrium in continu-
ous time. The Log EH therefore remains an internally consistent benchmark
from which to analyze the term structure of interest rates, even in a continu-
ous time framework.

Section I below establishes some preliminary notation. Section II develops
a model of a continuous time economy, and derives the rational expectations
general equilibrium term premia that obtain in it. Section III gives a specific
case of this model in which the Log EH holds for all pairs of maturities,
contrary to the assertion of Cox et al. Section IV examines the analysis of Cox
et al. and demonstrates that the Log EH example of Section III does not lead
to exploitable arbitrage opportunities. Section V concludes.

1. Notation and Elementary Relationships

Let P(¢, T') be the price at time ¢ of a zero-coupon bond that pays one dollar
(or unit of output) at future date T > t. Then

1
R(:,T) = — 77— log P(t.T) (1)

-1

is the continuously compounded yield to maturity at time ¢ on this bond. If
the partial derivative Dz P(¢, T) exists, we define the instantaneous forward
interest rate at time ¢ for future date T by

p(6,T) = —DpP(¢,T)/P(¢,T). 2)

! Our Log EH is equivalent to what Cox et al. refer to in continuous time both as the
«yield-to-Maturity EH” and the «[Jnbiased EH.” We find both these terms to be ambiguous,
however, since every version of the EH states that something is unbiased, and since a “yield”
can be compounded in a number of ways besides continuously. Furthermore, in their Appendix
(p. 796), Cox et al. confusingly assign these same two terms conflicting definitions in discrete
time.

-
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It follows that

So long as D, P(t,t) exists, R(¢,T) and p(¢,T) have a common limitas T' | ¢,
defined to be the instantaneous interest rate,
r(£) = R(4, ) = p(t, 1) (4)

Now consider two zero-coupon bonds with maturity dates 7 and T' > T.
Equating the expected continuously compounded returns on the two bonds
from time ¢ < T to either bond’s maturity date, we have what we call the
Logarithmic Expectations Hypothesis, or Log EH:

. P(t,T"
*®P(t,T)
where E,(-) = E(-|1Q,), and the representative agent’s time ¢ information set
1, is assumed to include the history of bond prices and interest rates, as well

as any state variables that may be relevant. Dividing (5) by (T' — T) and
taking the limit 7’| T, the Log EH (5) implies

p(t,T) = Er(T), (6)

= E,log P(T,T"), (5)

whence (3) implies
1
R(t,T) = 77— [ Eer(£) de. (7)

Equations (5), (6), and (7) are equivalent statements of the Log EH.

To avoid potential confusion, in the present paper we introduce the partial
differential operator 4., by analogy to the partial differentiation operator D,
to indicate the increment to a function with respect to the argument repre-
sented in the function’s definition by the dummy argument indicated in the
subscript. Thus,

d9,p(t,T) = p(¢t +dt,T) — p(¢,T), (8)

ete. This operator is distinct from the total differential operator d.?

II. Equilibrium Term Premia in a Continuous Time Rational
Expectations Economy

Consider-an economy with an infinite number of identical agents and a
single, homogeneous consumption good. Markets are competitive, and there
are no transactions costs. Let X(¢) and C(¢) be the representative agent’s
real endowment and consumption of the good, respectively. Output X(¢) is in

2 Thus, dr(t) = dp(t, £) = 4, p(t, t) + dpp(t, £) = 3, p(t, £) + D, p(¢, t)dt, etc. In this paper
dt is always taken to be pesitive. By g, p(¢, t), we mean limy , d, p(¢, T), and similarly for
d,w(t, t), introduced below.
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fixed, but stochastic supply, so there are no production decisions.? Output is
perishable, so that storage is infeasible. Each agent is assumed to maximize

expected utility
EU(C() = [ Ba(C(T)e "0 dr, ®
t

where the utility density function u(-) has the Constant Relative Risk Aver-
sion (CRRA) form

1
C' ", 0<ny<landl <7 <o,
W) ={1-n mstandlens® (10)

logC,7m =1,
whence u'(C) = C~". The parameters § and 7n are the pure rate of time

preference and the relative rate of risk aversion, respectively.
Define

x(t) = log X(t), (1)
w(t,T) =E,x(T). (12)
By the Law of Iterated Expectations, w(¢, T') is a separate martingale with
respect to ¢ for each T, terminating in w(T, T') = x(T).
The stochastic partial differential
w(t+de, T) —w(t,T)
=E,,4,%(T) -~ E,x(T) (13)

It

g,w(t,T)

gives the revision to the expectation of x(7') that is generated by information
that arrives between times ¢ and ¢ + dt. Since w(¢, T') is a martingale for
each T, these revisions are serially uncorrelated innovations. In this paper
we make the further assumption that they are in fact normally distributed
with instantaneous variance g(m) that depends on maturity m =T ~ ¢, but
not directly on time ¢ itself. Thus,

var i
= — -+ =} - .
g(m) T (é’tz‘u(t, t +m)) c%}rﬁ) o var(w(t + dt, t + m)[£,). (14)

Future values of x(T") may be built up from the current w(¢, T') and
subsequent innovations to w(:, T') by integration:*

x(T) =w(t,T) + [ atw(T,T).y (15)
T=1

% Day (1986) compares alternative production scenarios.
* The subscript ¢ on d in (15) is, it will be recalled, by definition a reference to the “z” of (12),

and not to that of (15).
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It follows that

h(m) = var(x(T)IQ,) = j;Tg(T —r)dr= fomg( wydp.  (16)

So long as g(m) is positive, the output variance i(m) will be an increasing
function of m. Output will therefore be more unpredictable the farther we
look into the future, no matter whether the innovation volatility implied by
g(m) is an increasing, decreasing, or constant function of m.

Agents have the opportunity to exchange C(¢) for C(T) at price P(¢, T),
where P(t, T') is now interpreted as the time ¢ price of a price level-indexed
bond that pays 1 unit of output at future date T'. Since agents are identical,
in market equilibrium trading in bonds will be zero and hence C(¢) = X(¢). In
equilibrium, the first order condition for expected utility maximization there-
fore implies

E[u'(X(T))e """ "]
u'(X(2))

As of time ¢, x(T") = log X(T') is distributed N(w(t,T), A(T —t)). With
our CRRA utility assumption, log u'(X(T)) is therefore N(—nuw(¢,T),
12h(T - t)). By the familiar formula for the expectation of a log-normal vari-
able, (17) implies

log P(t,T) = n 2(t) — w(t,T)] — (T — )0+ Y, n?h(T —t). (18)

P, T) = (17)

Differentiating (18) with respect to 7' and employing (2) and (16), we obtain
p(t,T) = nDrw(¢,T) + 6 — 'y n°g(T — t). (19)

Thus, the forward interest rate p(¢, T') is directly related to the expected rate
of growth of output (and therefore of consumption) for future date T

Assuming (as will be the case throughout this paper) that any deviation
from the Log EH is invariant over time and is a function only of maturity
m =T — t, we define the instantaneous (logarithmic) term premium as in
McCulloch (1975) by

m(m) = p(¢,t + m) — E,;r(t + m). (20)
The Log EH is thus equivalent to 7(m) = 0. Letting T | ¢ in (19), we have
r(¢) = nDrw(t,t) + 6 — '/, n"g(0), 2y
and hence
E,r(T) = aDrw(t,T) + 6 — '/, n°g(0). (22)

Subtracting (22) from (19), we obtain the equilibrium value of the term
premium 7(m) as defined in (20):

m(m) =" n*[£(0) —g(m)]. (23)
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A sufficient condition for the Log EH to hold for all pairs of maturities,
infinitesimal or otherwise, in a world with frictionless markets, is therefore
simply that the instantaneous variance g(m) of the revision dw(t, t + m) to
the market’s expectation of log X(¢ + m) be a constant

g(m) = gg (24)

for all horizons m. Although the revisions have equal volatility at all horizons
under this log EH condition, output variance is still an increasing function,
h(m) = mg,, of m.

Risk-averse investors are concerned about both present and future con-
sumption uncertainty, and are willing to pay a premium to avoid either. If
the instantaneous variance of current consumption is greater (g(0) > g(m)),
they will pay a greater premium to avoid it, and this will show up in the term
structure as a lower expected return on short term bonds than long-term
bonds (w(m) > 0). If the instantaneous variance of distant consumption is
greater (g(0) < g(m)), they will instead pay a greater premium to avoid
distant future uncertainty, and this will show up as a higher expected return
on short-term bonds than on long-term bonds (w(m) < 0). And if these
instantaneous variances are equal, there will be no observed term premium
one way or the other. The (logarithmic) term premium is thus best conceived
of as a risk gradient rather than a risk premium. Note, however, that the
uncertainty gradient that is relevant is that of the revisions to expected
consumption, g(m), not that of consumption itself, A(m).?

Because of our assumption that output volatility depends only on m and
not on ¢, either directly or indirectly, through any state variables observed at
time ¢, our term premium is also time invariant, as assumed in (20) above.

Although (24) is a sufficient condition for the Log EH, it is not necessary,
since if investors are risk neutral (y = 0), by (23) the term premium will
vanish and the Log EH will hold, regardless of g(m). However, this case is
trivial, since by (19) interest rates will be nonstochastic, and will all simply
equal the pure rate of time preference 9. This is true because if n =0,
indifference curves are flat, so that intertemporal prices and interest rates
will be entirely demand determined, barring corner solutions (which we have
precluded with our assumption that output is log normal).

Equation (19) implies that forward rate increments may be represented as

3:p(t,T) ="/ n°g"(T - t)dt + n9,Dyw(t,T), (25)

so that the forward rate p(¢, T) is stochastic if and only if the expected rate of
growth of future output D,w(¢, T) is stochastic and n# 0.

® This point was first made clear, in a three-period model, by Woodward (1983).
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I11. A Continuous Time Log EH Economy

Processes w(t, T) that satisfy the Log EH condition (24) and lead to
nontrivial, stochastic interest rates can easily be generated from two uncorre-
lated Wiener processes z,(¢) and z,(¢) with zero means and unit volatilities
by specifying

daw(t, T) = ¢y(m) dz,(t) + $3(m) dzy(2), (26)

where ¢,(-) and ¢,(-) are nonnegative differentiable functions of m =T — ¢,
¢, is monotonically increasing, ¢, is monotonically decreasing, and

d1(m)® + ¢y(m)® = g4, (27)

so that g(m) indeed is a constant, g,, for all m.® A specific example of such
functions is

bi(m) = g2 (1 —e ™), (28a)
$o(m) = gl/?(2e ™ — e ™)' (28b)

Combining (24), (25), and (26) implies that under (27),
3,p(t,T) =l $i(m) dzy(t) +@3(m) dzy(1)]. (29)

Thus under specification (28a—b), forward rates are stochastic at all maturi-
ties, but with an instantaneous variance 7% ¢;*(m) + #32(m)] that declines
toward 0 as m — o, despite the constant volatility of output innovations.
R(¢, T) and r(¢) are likewise all stochastic.

We have therefore shown by counterexample that the conclusion of Cox et
al. that the Log EH is “incompatible...with any continuous-time rational
expectations equilibrium whatsoever” is erroneous.

IV. The Cox, Ingersoll, and Ross Analysis

In this section, we relate the model of Sections II and III to the apparatus
of Cox et al. (1981). We show that our counter-example does not violate their
no-arbitrage condition (their (25)), and show why the “proof” they present of
the impossibility of the Log EH is invalid.

The instantaneous logarithmic return 4, log P(¢, T')" on a bond maturing
at date 7 may be found by taking the partial differential of our general

€ The even simpler stochastic process dx(¢) = g3/? dz(t) would formally yield the log EH, but
only in a trivial sense, since interest rates themselves would then be nonstochastic with our
homothetic utility function.

" By 4. log P(t, T), etc., we mean a,d>(t:_r), where ¢(¢t, T) = log P(¢, T), etc.
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bond-pricing formula (18) with respect to ¢f, while keeping in mind that
dx(t) = d,w(e, t) + Dyw(e, t) dt:

9, log P(¢,T) = [aDyuw(t, t) + 6~ Uy n2g(T - t)] ds
+nlow(t, t) — sw(e, T)]. (30)
Substituting (21) into the above yields

9, log P(t,T) = [r(t) + Y, n*{g(0) ~ g(m)}] dt

+ nlow(t, t) — qw(t, T)]. (81)
Applying It6’s Lemma,
9,P(t,T) 1 var
BT (r(t) +3 7’ {g(O) —g(m) + = [oaw(s, 8) - 6’tw(t,T)]} )dt
+nldw(t, t) — sw(t, T)]. (32)
Under our unrestricted two-process model (26), (32) becomes
3,P(t,T) \ \ \
BTy O+ 1 [810)7 + 6:000° = 6,0 bu(m) — 4y(0)go(m)] )
+ [ 6,(0) - ¢y(m)] dz; + 0] $3(0) — ¢y(m)] dz,
=[re) + A'3(m)] dt + & dz, (33)
where
B (m) =n($4(0) = ¢u(m)), &, = ny,(0). (34)

Equation (33) is (2) and (8) of Cox et al., in the special case of our unre-
stricted two-process model.

As Cox et al. (p. 788) correctly note (and as can be seen directly from (31)
using (23)), (7) implies that under the Log EH, the expected continuously
compounded instantaneous return on a bond with any maturity date T is
given by

E,3,log P(¢,T) = r(t) dt. (35)

Cox et al. then correctly demonstrate that implication (35) of the Log EH,
together with It6’s Lemma, implies that in (33),

A'8(m) =1, 8'(m)8(m). (36)

This is equation (25) of Cox ef al. in the Log EH case, which corresponds to
their a = /,. They then go on to argue that if (36) were true for all states of
the world at all points in time ¢, there would have to be a functional
relationship among the driving processes z #(¢), an impossibility. They there-
fore conclude that (36) cannot be universally true, and hence that disequilib-
rium arbitrage opportunities must exist under the Log EH.
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In fact, under the Log EH condition @7,

1 1, 2 2
2 Y(mB(m) = = [ 61(0)° + ¢y(m)* ~ 26,(0) b,(m)

+62(0)° + $2(m)” — 26,(0) $y(m)|
= 1°[80 ~ 6:(0)$,(m) — $,(0)dy(m)]
= A'8(m). (37)

Equation (86) is therefore automatically valid for all m under the Log EH
condition (27). Thus, the Log EH does not lead to arbitrage opportunities in
any counterexamples of the type (26), (27).

Although the Cox et al. proof of the impossibility of the Log EH is defective,
it may well nevertheless be true, in their model, that the Log EH is
impossible, because of a critical assumption in their model, in addition to
rational expectations, general equilibrium, and continuous time, which we
have not incorporated here. Whereas in our model, the state of the economy
at time £ is described by a potentially infinite dimensional state function
w(t, T), Cox et al make the seemingly innocuous assumption that it can
always be described by a finite set of N state variables (their Y, ().
Although Cox et al. do not mention it, there may well in fact be no way the
Log EH can hold nontrivially in continuous time for more than' N maturities
if all bond prices are a function of an N-dimensional state vector.? Although
our example required only two sources of uncertainty, dz, and dz,, under
(26) w(t, T) is a different compound of the infinite-dimensional history of
these two shocks for each value of T, and, because of the nonlinearity of (27),
these values cannot be summarized exactly by any finite subset.

In order to make the statement of Cox ef al. quoted above valid, therefore,
“whatsoever” must at a minimum be replaced with the phrase, “in which
bond prices of all maturities may be expressed as a function of a finite
number of state variables.” With this modification, their conclusion loses
much of its apparent generality. In fact, given that the infinite-dimensional
continuous time future is potentially infinitely complex, their assumption is
highly restrictive and unrealistic.

The technical error in their proof appears to lie in their tacit assumption
that the diffusion coefficients dy(m) (their ,(Y, ¢, T)) must be nontrivial
functions of all the state variables (their Y.(t), and time ¢, as well as
maturity. If they were, (36) (and (27)) could not be valid for all values of Y,
and the Log EH could not be generally valid. However, while the diffusion
coefficients might depend nontrivially on all the state variables, there is
- nothing in the nature of a continuous time rational expectations equilibrium

® This statement is true for N = 1, but the author has been unable to prove it in the general
case.
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that requires this to be 80, nor is this required for all interest rates to be
nontrivially stochastic.?

Note that the Log EH does not depend on risk neutrality (y = 0), or even on
logarithmic utility (5 = 1), but merely on the constancy across m of the
volatility of the innovations to expected future log output. The Log EH does
require at least two sources of uncertainty to be nontrivially valid.1?

V. Conclusion

Cox, Ingersoll, and Ross claim to have demonstrated that the logarithmic
version of the Expectations Hypothesis is “not sustainable in a continuous-
time rational expectations equilibrium.” (1981, p. 778) Since in the real world
time passes continuously, this statement has been widely accepted as a
mathematically inescapable fact, with unavoidable empirical implications for
real world financial markets,

We have demonstrated that in fact the Log EH is a mathematically

variables. The second, merely technical problem is that even under this
special assumption, their proof is defective.

We do not argue that the constant volatility condition required for the Log
EH is particularly compelling on theoretical grounds, nor that the Log EH is
empirically valid.!! We merely claim that it is an internally consistent and

§

® The #:(m) and therefore the //k (m) could be made to depend proportionately on any single
function of the state variables, such as Dyw(t, t), or equivalently r(¢), without disturbing (27) or
(36), except to the extent that g, would become a different constant for each point in time. It
would appear, however, that they could not be made to depend nontrivially on more than one
such funection of the state variables.

% Cox et al. (1981, p. 778) illustrate their defective proof of the internal inconsistency of the
Log EH using a model with only one source of uncertainty. Naturally, the Log EH fails to hold
unless the term structure is nonstochastic,

Ui fact, Roll (1970), McCulloch (1975), Fama (1984), and others have long since shown that it
is not empirically valid, particularly in the first six months of maturities,
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