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The parameters of interest rate uncertainty are estimated by maximum likelihood for the period
1952-1982, and used to evaluate bank or thrift deposit insurance as a function of duration
mismatching, capltdl/asset ratio, and the recent history of interest rate forecasting errors.
Homoskedasticity is overwhelmmgly rejected in favor of adaptlve conditional heteroskedasticity
(ACH). Even after removing this heteroskedasticity, normality gives much lower likelihood than
Paretian stable distributions with characteristic exponent in the range 1.614 to 1.714. The
conditional deposit insurance values fluctuate by factors in excess of 300 for some duration gaps
over the past three decades.

1. Introduction

The Garn-St Germain Depository Institutions Act of 1982 required the
Federal Deposit Insurance Corporation (FDIC) and the Federal Savings and
Loan Insurance Corporation (FSLIC) to study ‘the feasibility of basing
deposit insurance premiums on the risk posed by ... the insured institution

. rather than the present flat rate system’. The Federal Home Loan Bank
Board’s report on behalf of the FSLIC recommends risk-sensitive deposit
insurance premia but does not provide any hard numbers for setting these
premia [FHLBB (1983, pp. 10, 171-210)]. The FDIC (1983, ch. 2) despairs
altogether at the prospect of premia which accurately reflect exposure to
risks, even interest rate risk which they grant should be relatively easy to
measure. Such a system would, it is claimed, entail ‘more advanced risk
quantification techniques than are currently imaginable’.

It is well established that contingent claims such as deposit insurance can
be viewed as put options that entitle the banking firm (or thrift institution)
to ‘sell’ the firm’s assets to the insuring agency for a pre-arranged price,
determined by the face value of the insured liabilities. The value of the
insurance is equal to the value of the corresponding put option [Black and

Scholes (1973), Merton (1977), McCulloch (1981a) Pennacchi (1983), Marcus
and Shaked (1984)].

*The author is indebted to Steve Garasky for computational and graphical assistance and to
two anonymous referees of this journal for helpful suggestions.
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In this paper we exploit this equivalence to estimate the value of insurance
that protects deposits against interest rate risk. We evaluate this as a
function of the degree of maturity mismatching and of the institution’s ratio
of capital to assets.

We find that the volatility of interest rates, which greatly affects the value
of the insurance, has varied a great deal over the past three decades.
Furthermore, large movements in interest rates in either direction are more
likely to occur when there have been similarly large movements in recent
months, than following periods of interest rate quietude. An efficient insur-
ance pricing scheme must take this predictability of volatility into account.

We show how this volatility has varied over time, and provide tables
giving the value of insurance for the most recent available month, as well for
months with unusually high, unusually low, and typical volatility. We
compare these to ‘unconditional’~ values that do not take into account the
variation in the volatility.

As in our earlier paper [McCulloch (1981a)], we use an option pricing
model based on the symmetric Paretian stable probability distributions.
However, in the present paper we introduce the following major improve-
ments: (1) Stable distribution parameters are estimated using new maximum
likelihood software [McCulloch (1979)] rather than the early Fama-Roll
quantile method (1971). (2) This maximum likelihood method provides us
with estimates of the precision of the estimated parameter values, which in
turn enable us to construct confidence intervals for our insurance value
estimates, rather than just point estimates as formerly. (3) Variable volatility
is captured by introducing an adaptive conditional heteroskedastic (ACH)
procedure akin to the autoregressive conditional heteroskedastic (ARCH)
procedure recently developed by Engle (1982,1983). (4) The data set is
updated to December 1982 and furthermore, the ACH procedure enables us
to utilize interest rate experience clear back to the Accord, rather than
having to use an arbitrarily selected recent period to obtain a relatively
constant volatility. This increases our sample size from 120 to 369.

Section 2 describes the data set we employ, and how we use it to infer net
worth variability. Section 3 reviews the Paretian stable option pricing
formula and its relation to deposit insurance. Section 4 shows that uncon-
ditional parameter values for unexpected returns are misspecified. Section 5
introduces the ACH procedure, and demonstrates that even after adjusting
for heteroskedasticity, the disturbances are still substantially non-Gaussian.
Fair insurance values for illustrative months are calculated, and weights from
which. the insurance values can. be updated.into the future are provided.
Section 6 calculates asymptotic standard errors for the logarithms of these
estimates, from which confidence intervals may be constructed. Section 7
discusses the practical application of these estimates.
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2. Data

As in our earlier paper, we consider the value of insurance for a
‘traditional’ bank or thrift institution that has very short-term liabilities and
longer-term assets. The volatility of such a firm’s net worth (based on market
value of assets) will depend on the average Macaulay duration of those
assets.

We have available the continuous term structure of interest rates for the
end of every month from December 1946 to December 1982. These are
computed from bid/asked mean quotations on U.S. Government securities by
means of a modification of the tax-adjusted cubic spline method described in
McCulloch (1975a).

This data enables us to model the bank’s short-term liabilities as one-
month discount obligations, and its longer-term assets as ‘zero-coupon’
securities of any desired maturity. The duration of a zero-coupon security
exactly equals its maturity, so it serves as a proxy for more complicated
assets structures of equal average duration. The duration gap of the banks
we are modelling is thus one month less than the asset duration.

Let &(t,m) be the market value at time ¢ of a zero-coupon security paying
one dollar in m years, i.e., at time ¢ +m, and let 4t=1/12 year (one month). One
dollar invested safely for one month in one-month securities will be worth
1/8(t, At) dollars at the end of the month. One dollar invested for one month
at risk in securities of maturity m will be worth &(¢t + At, m— A4t)/6(t,m) at the
end of the month. Let R; be the excess return during month i (i.e., during the
month which begins at time t; _, and which ends at time ¢;) on the portfolio
of a bank with assets of (initial) duration m, and with liabilities of (initial)
duration A4t. This may be calculated as

B ot m—4r) !
Ri_logl: St _m) /5(ti_1,At):|~ )

Were it not for the existence of a term premium, this excess return would
have mean zero. However, it appears that there is, for reasons which do not
concern us here, a systematically positive term premium, ie., a ‘liquidity’
premium [see McCulloch (1975b)]. Let p be the liquidity premium (for
maturity m) in R;. Then

R, =p+s, 2

where ¢; is a random forecasting error with mean zero.

!For details concerning estate bonds etc., see McCulloch (1981a), 229-230.
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3. Paretian stable distributions

In order to evaluate a put option, we must have a parametric represen-
tation of the probability distribution involved. Fortunately, the generalized
central limit theorem gives us a criterion for singling out one manageable
family of distributions from the set of all conceivable distributions.

Each month’s forecasting error is the sum of a vast number of contri-
butions that accumulate day by day, hour by hour, and even minute by
minute. These forecasting errors must be serially uncorrelated. Furthermore,
the interest rate surprise that occurs in each moment is the outcome of the
more or less independent decisions of millions of borrowers and lenders, each
acting on thousands of bits of information. According to the generalized law
of large numbers, if the sum of a large number of independently and
identically distributed random variables has a limiting shaped distribution,
the limiting distribution must be a member of the stable class. These are
therefore the natural choice for our purpose. Roll (1970) finds that they
adequately model interest rate uncertainty. '

The shape of a stable distribution is completely determined by its
characteristic exponent, o, and skewness parameter, B. The characteristic
exponent must lie in the interval (0,2], and determines the rate at which the
tails of the distribution taper off. The normal or Gaussian distribution is a
special case which occurs when « is at its maximum value of 2.0. When « is
less than 2.0, the distribution has ‘Paretian’ tails that behave asymptotically
like a Pareto distribution and which are longer than the tails of a normal
distribution. The probability of an event well out in one tail of the
distribution — such as a bank failure — depends crucially on the value of .
The Black-Scholes option pricing formula used by Merton and others to
evaluate deposit insurance arbitrarily assumes a normal distribution and
therefore greatly understates the value of deposit insurance if in fact the
distribution is non-Gaussian (i.e., Paretian) stable. Whether or not this is the
case is a purely empirical issue.

The skewness parameter f§ determines the relative size of the two tails of
the distribution. As in. our earlier study, we assume here that the distribution
is symmetrical, which corresponds to the special case f=0.

In addition to the two shape parameters, stable distributions have a scale
parameter, ¢, and a location parameter, which in our case is the term
premium p.2 The location parameter is the mean of the distribution
(provided « is greater than 1.0), and simply shifts the distribution to the left
or right. The scale parameter expands or contracts the distribution in
proportion to ¢ about the location parameter.> The scale parameter, like the

The location parameter is ordinarily represented by §, not to be confused with the discount

function defined in the previous section.
3The standard deviation cannot in general be used as an index of scale, because if « is less

than 2.0, the second moment of the distribution is infinite. If o does equal 2.0, ¢? is one-half the -

variance.
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characteristic exponent, is critical for the value of bank insurance, since
higher values of ¢ increase the probability of failure (though not, as it turns
out, the expected loss in the event of a failure).

According to Bierwag and Kaufman (1983, p. 4), ‘government deposit
insurance agencies do not confront a potential loss beyond their control’
because they could simply close failing institutions as their net worth reaches
zero. This would be true if net worth were a continuous function of time, as
it is under the Gaussian diffusion process assumed by the Black-Scholes
option pricing model. If, however, net worth undergoes discontinuities such
as those which occur under a Paretian stable process in continuous time, the
institution’s net worth could pass from positive to negative in one instant,
giving the insuring agency no time to act. If a is less than 2.0, therefore, the
FDIC and FSLIC do confront potential losses, even if they continuously
examine institutions and immediately close them as they become insolvent.

We assume that the unforeseen monthly return g; is symmetric stable with
exponent «, scale ¢, and mean 0. Let g be the firm’s ratio of capital to assets
(both based on market values). Then it can be shown [see McCulloch (1978a,
1978b,1981a)] that the annual rate of occurrence of discontinuities in the
value of the bank’s assets large enough to cause insolvency is given by

12 . [na ¢c \* '
A=? () sin (—5—)(—log r> , 3

where r=1—q is the bank or thrift'’s ratio of liabilities to assets. When «
equals 2.0, sin(no/2) and therefore 1 both equal zero and there are no

discontinuities in net worth.
Furthermore, the value per year of insurance with continuous surveillance,
computed, as is conventional, as a fraction of liabilities, is given by

I=AH(r,a)/r, @

where

@

H(r,oc)=r—oz(log-:—>al [ e™*x7* " ldx. )

—logr

This function H(r,a) represents the expected cost of failure should a failure
occur, and has been tabulated in McCulloch (1978b). It increases with g=1—r,
- roughly in proportion to ¢ for small values of g, and declines with a.

With periodic rather than continuous surveillance, the value of deposit
insurance would be somewhat larger because of the possible accumulation of
several disturbances, none of which is by itself sufficient to wipe out the last
observed net worth. However, this is not an important consideration with
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Paretian stable distributions unless we are concerned with the moderately
high probability events represented by the shoulders of the distribution. As
long as surveillance is sufficiently frequent that the probability of default is
very low, we will be concerned only with the Paretian tail of the distribution,
which represents the occurrence of single impulses [cf. McCulloch (1978a,
p. 604 n.3)], and the continuous monitoring model will be a close approxi-
mation to the actual value of insurance. Furthermore, the limiting value of
insurance as surveillance becomes continuous is far more tractable analyti-
cally than is the discrete surveillance case.

In the present paper we therefore assume continuous monitoring of the
institution’s net worth, as well as continuous adjustment of the ‘pay-as-you-
go’ insurance premium to reflect non-fatal changes in net worth and changes
in measured interest rate volatility. The derived values will closely approxi-
mate those with frequent but discrete monitoring for a bank that pays out
continuous dividends equal to the expected return on its position along with
a continuous insurance premium based on its most recently evaluated risk.
Note that in the case of interest rate risk it is not necessary to actually
examine the individual institution in order to evaluate its deposit insurance,
so long as its duration gap does not change without warning. The current
position of such a bank or thrift can be inferred simply by monitoring the
national interest rate market, which can be done virtually continuously.

4. Unconditional estimates

Eq. (2) was estimated for six selected asset durations, using 381 monthly
observations from April 1951 to December 1982,* under the assumption that
the standard scale had a constant, unconditional value ¢. The estimates of «
were all quite low, lying in the range 1.218 to 1.314.

Fig. 1 shows the unanticipated monthly returns for one-year maturity
assets, with no weighting. The forecasting errors that are largest in absolute
value clearly come in clusters occurring in 1958-1959, 1966-1975, and in
particular from 1979 to the present. Similar patterns (not illustrated) appear
for the other maturities, which range from three months to ten years. At any
point in time, the recent history of surprises obviously has considerable value
for predicting the absolute value (though not necessarily the algebraic value)
of future surprises. The forecasting errors are therefore not really independent
as is tacitly assumed when we apply the stable maximum likelihood program
directly to the g;’s. An unconditional model is therefore misspecified.

Furthermore, insurance values derived from such parameter estimates
would not be efficient for risk-sensitive deposit insurance pricing. Most of the

“4Prior to the Accord of March 4, 1951, the Federal Reserve System rigidly pegged interest
rates. The pre-Accord period is therefore not representative of the interest rate volatility of the
post-Accord period, so we use only that portion of our data set from the end of March 1951 on.
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time a much lower value will be warranted if we take into account the recent
history of interest rate volatility, and find that we are not in an exceptionally
noisy period, but occasionally a much higher value will be required. Efficient
deposit insurance pricing must take this heteroskedasticity into account, by
making the scale of each month’s forecasting error conditional on the recent
history of the ¢;’s.

5. ACH estimates

We now assume that the standard scale of ;, rather than being a constant
¢ as in the previous section, is instead of the form

C; =CoW;, (6)

where the weight w; is a function of the magnitude of the forecasting errors
up to, but not including, ¢;. If we had an infinite history of forecasting errors,
we would like the contribution of each error to decline monotonically
toward, but never quite reaching, zero as it fades into the past. This suggests
the following formula:

wi=03 (1—0) e},  0<O<L. (7
=1

This formula is‘eqqivalent to the adaptive adjustment scheme
Wi=0|8i’1|+(1—0)wi—17 (8)

which may, after a suitable initialization, be used with a finite data set.’

The above adaptive conditional heteroskedastic (ACH) system may be
estimated with the existing symmetric stable maximum likelihood linear
regression software, simply by dividing each equation

R;=p+s; )]

SWe base (7) on the magnitudes of the preceding errors rather than on their squares to avoid
exaggerating the effect of outliers. In practice,~Engle (1982, p: 1002; 1983, section 4) uses a
linearly declining weight structure (for the squared errors) rather than a general autoregressive
structure, so our adaptive model is not any more restrictive. Eq. (8) could be generalized to
allow a reassuringly stationary process with an ergodic long-run distribution. However,
examination of fig. 2 suggests that the point estimates of the parameters would indicate an
explosive process.instead. So (1982) is the first application of conditional heteroskedasticity in a
stable context. On the spelling of ‘heteroskedasticity’, see McCulloch (1985).
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through by w; to obtain

&=p(i>+ui, (10)

w;

i

where u; =¢;/w; is homoskedastic with scale c,. The adjustment parameter 9
may be estimated by scanning over values of 6. For this purpose, the log
likelihood of the u;’s must be adjusted by subtracting ) logw; in order to
obtain the log likelihood of the ¢;’s. Furthermore, since the estimate of p (and
therefore the ¢’s from which the w;’s are calculated) varies slightly with 6,
(10) must be iteratively estimated for each 6 value until the estimate of p
stabilizes. However, two iterations are usually sufficient for this to occur,
since the location parameter estimate is asymptotically orthogonal to « and ¢
when the stable distribution is symmetric [DuMouchel (1975)]. Note that
estimation of «, ¢,, p and 0 with the entire data set tacitly assumes that these
parameters are known to market participants but not to econometricians.
Given these four parameters, however, ¢; is entirely backward-looking and
does not depend on future data. The rough adjustment for heteroskedasticity
in the author’s earlier study of the liquidity premium (1975b) is flawed by the
partially forward-looking nature of the choice of the four homoskedastic sub-
periods.

Table 1 shows parameter estimates using the ACH procedure. In order to
(initialize the adjustment process (8), we computed

Wis=13 |ei|, (11)

and otherwise discarded the first twelve observations in the maximum
adjusted likelihood search for 6. This left 369 observations, from April 1952
to December 1982.

Fig. 2 shows how the weights w; behave over time for one-year asset
durations, and selected values are shown in table 1. For each maturity, the
post-Accord low occurs either in 1953 or in 1964-1965. The post-Accord
highs almost all occur immediately after the sharp fall in interest rates in late
spring of 1980. The ‘recent low’ values in table 1 are the lowest value since
the noisy year 1974. These uniformly occur in 1978. The post-Accord highs
are from over 18- to almost 40-fold higher than the post-Accord lows, and
range from 7- to 12-fold higher than the recent lows. The most recent values
are not far below the post-Accord highs.

Fig. 3 shows the weighted forecasting errors u;. It is apparent that they are
far more homoskedastic than the unweighted errors from the unconditional
model. Furthermore, the fact that there are no obvious unusual residual
clusters occurring, for instance, at the time of the Franklin National Bank

JBF.— H




146 J.H. McCulloch, Interest-risk sensitive deposit insurance premia

Table 1
ACH parameter values.*

Asset duration

3mo. 6mo. lyr. 2yr. Syr. 10yr.
o 1.689 1.625 1.625 1.632 1.614 1.714 i
(0.081) (0.087) (0.078) (0.084) (0.083) (0.086)
Co 0.896 0.869 0.859 0.850 0.843 0.891
(5:4%) (5.8%) (54%) (5.5%) (5:5%) (5:5%)
100p 0.0212 0.0281 0.0155 —0.0061 —0.0708 —0.1327
(0.0019) (0.0047) (0.0100) (0.0205) (0.0337) (0.0600)
0 0.17 0.14 0.13 0.12 0.20 0.17
min. 0.13 0.10 0.08 0.08 0.14 0.11
max. 0.25 0.20 0.19 0.20 0.29 0.23
24logL
a=2 22.09 37.41 39.07 60.76 67.15 3243
0=0 128.61 120.38 141.41 121.60 138.35 126.76
selected w; (x 100):
low 0.00767 0.0232 0.0526 0.119 0.134 0.264
11/64 11/64 11/64 4/53 10/63 8/65
high 0.290 0.644 1.31 2.17 491 6.94
6/80 6/80 6/80 6/80 5/80 12/81
recent 0.0242 0.0600 0.146 0.308 0.528 0.976
low 7/78 6/78 9/78 9/78 10/78 5/78
12/82 0.200 0.488 0.992 1.65 3.18 5.10

2Asymptotic standard errors are in parentheses.

failure in 1974 or the Fed’s change in operating procedure in 1979, indicates
that the ACH procedure has effectively captured the heteroskedasticity in
spite of its great parsimony of parameters. The other maturities (not
illustrated) exhibit similar behavior.

The ACH estimates of the characteristic exponent in table 1 are much
higher than the unconditional estimates mentioned in the previous section,
and therefore warrant much lower deposit insurance premia except for the
highest values of w;,. However, they are still substantially less than the
Gaussian value of 2.0. Their asymptotic standard errors enable us to reject «
. .values in (1.883,.2.000) at the 0.95 level for all maturities. The actual decline
in double the log likelihood that occurs when the constraint «=2.0 is
imposed is even larger than the asymptotic standard errors would suggest.
Unfortunately, since the hypothesis a=2.0 is not in the interior of the
parameter space, the regularity conditions for the asymptotically y* distri-
bution of this statistic are not met. We therefore do not at present have any
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way of using this statistic to formally reject normality itself. Note, however,
that the decline in double the log likelihood is much greater than 6.63, the
0.99 percentage point of x> with one degree of freedom. Since the log
likelihood is a continuous function of &, we are formally able to reject values
of a just under 2.0 at the 0.99 level and above.b

Point estimates of the adjustment coefficient 8 are shown in table 1, along
with the lower and upper bounds of a 959 confidence interval based on the
likelihood ratio. The highest lower bound is 0.14, and the lowest upper
bound is 0.19, so values of 6 within this range may not be rejected for any
maturity. A common value of 1/6=0.1666... would thus be very represen-
tative. This corresponds to an average lag in (7) of six months. An efficient
risk-sensitive deposit insurance scheme would therefore have to adjust very
quickly to new developments.

The importance of the conditional heteroskedastic model is indicated by
the fall in twice the log likelihood under the hypothesis §=0. This decline is
in the range 120.38 to 141.41 for all maturities. Since § must lie in the range
[0,1], we are once again up against the boundary of our parameter space
and may not appeal to the standard likelihood ratio test. In this case, how-
ever, the standard ‘non-standard’ conditions [Moran (1971)] are met, and we
may apply the usual y? test with one degree of freedom. Homoskedasticity is
thus overwhelmingly rejected.

The term premia p in table 1 have been multiplied by 100, so that they
show the percent expected excess return per month. A bank with three-
month assets and one-month liabilities can expect to make 2.12 basis points
per month, or 25.4 basis points (i.e., 0.254%) per annum, more on its assets
than it has to pay on its liabilities. This excess, though not very large, is
highly significant (t=11.2), so there clearly is a payoff to maturity transform-
ation, as long as the duration gap is kept small. With six-month assets, the
premium is a little larger (2.81 basis points per month), and is still highly
significant. After six months, however, the point estimate falls off and
actually becomes negative after two years. There is therefore no significant
payoff in terms of increased expected return to increasing the bank’s duration
gap beyond approximately six months.’

61t is anticipated that a forthcoming Monte Carlo study will formally confirm the significance
of these statistics at a high confidence level. The author is indebted to Jerry Thursby and Randy
Olsen for pointing out this problem. Note that Marcus and, Shaked (1984), even though they
base their insurance value estimates on the Gaussian-based Black—Scholes formula, do find
significant evidence of non-Gaussian leptokurtosis in bank stock (and therefore presumably in
bank portfolio) behavior, using the Studentized range test.

"Qur earlier ‘free-form’ estimate of the.term.premium in a forward rate for a two-month
security to be delivered in one month was 0.12% [McCulloch (1975b, table 6)]. This translates
into an excess return over one month on three-month securities of 0.12 x (2/12) =0.020% or 2.0
basis points, virtually the value obtained here. The estimate of the mean of a symmetric stable
distribution, unlike the valuation that is placed on a long-odds option, is not highly sensitive to
a false assumption of normality.
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Table 2
Conditional deposit insurance values as a percentage of liabilities (100 /).

Capital/asset Asset duration

ratio

(q) 3mo. 6 mo. lyr. 2yr. Syr. 10yr.
Typical volatility

0.01 0.0058 0.0339 0.125 0.347 1.11 1.87
0.02 0.0034 0.0206 0.0762 0211 0.679 1.08
0.04 0.0020 0.0122 0.0452 0.124 0.405 0.611
0.07 0.0012 0.0078 0.0288 0.0790 0.260 0.372
0.10 0.0009 0.0057 0.0212 0.0579 0.191 0.267
Post-Accord low volatility

0.01 0.0005 0.0048 0.0177 0.0630 0.0834 0.162
0.02 0.0003 0.0029 0.0108 0.0382 0.0511 0.0937
0.04 0.0002 0.0017 0.0064 0.0226 0.0305 0.0528
0.07 0.0001 0.0011 0.0041 0.0143 0.0196 0.0322
0.10 0.0001 0.0008 0.0030 0.0105 0.0144 0.0230
Recent low volatility

0.01 0.0033 0.0224 0.0928 0.298 0.766 1.53
0.02 0.0019 0.0136 0.0565 0.181 0.469 0.883
0.04 0.0011 0.0081 0.0335 0.107 0.280 0.498
0.07 0.0007 0.0052 0.0214 0.0678 0.180 0.303
0.10 0.0005 0.0038 0.0157 0.0498 0.132 0.217
Post-Accord high volatility

0.01 0.220 1.06 3.30 7.19 279 440
0.02 0.129 0.645 2.01 4.36 17.1 25.5
0.04 0.0740 0.383 1.19 2.58 10.2 144
0.07 0.0456 0.244 0.760 1.64 6.55 8.75
0.10 0.0329 0.179 0.559 1.20 483 6.26
Most recent volatility (12/82)

0.01 0.117 0.674 2.10 4.61 139 26.0
0.02 0.0689 0411 1.28 2.80 8.52 15.0
0.04 0.0394 0.244 0.758 1.65 5.09 8.47
0.07 0.0243 0.155 0.482 1.05 326 . 5.16
0.10 0.0175 0.114 0.355 0.770 2.40 3.70

Finally, the estimates of ¢, in table 1 are all close to unity, since the
average value of w; approximately equals the average value of Isi].

Table 2 shows the conditional value of deposit insurance for the post-
Accord low, post-Accord high, recent low, ‘typical’, and most recent values of
interest rate volatility. The ‘typical’ values are found by setting ‘c’ equal to
c,Co, Where ¢, is the unconditional scale estimate (not tabulated here) that
was found in section 4. The latter is representative of the |¢|’s and therefore
of the w;’s.

The ‘typical’ deposit insurance values shown in table 2 are far less than
unconditional insurance values (not tabulated here) that were derived from
the parameter estimates found in section 4. A bank with 49 capital and one-
year assets, for example, imposes an annualized burden of only 4.52 basis
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points on the FDIC in a typical month, far less than the corresponding
unconditional estimate of 58.6 basis points or even our former (1981a)
estimate of 21.4 basis points. The post-Accord low volatility estimates are
even lower, an almost imperceptible 0.64 basis points with 4% capital and
one-year duration assets. This is the conditional estimate for November 1984.

Unfortunately, a period of high volatility such as has prevailed since
approximately October 6, 1979 can easily produce even higher conditional
than unconditional insurance values. In June 1980, for example, the con-
ditional value of insurance on a bank with 4% capital and one-year duration
assets was 119 basis points, almost twice the unconditional value. In
December 1982, it was still 75.8 basis points. Only the safest bank parameter
values (high capital/asset ratios and short duration assets) have yielded lower
conditional than unconditional insurance values during this noisy period.

The reason for this extreme variability in insurance value is that the
frequency of failure given in eq. (3) is proportional to ¢* and therefore to wf.
The greater-than-unity power of o exaggerates the already substantial
variation in the w;’s.

6. Accuracy of insurance value estimates

Let C be the asymptotic covariance matrix of the estimates of z and log ¢
that is returned by the symmetric stable maximum likelihood program. Then

var (log )= z'Cz, (12)
where
dlogl b'(®) c H,
=——=——+] —= 13
Ty b(a) +log —logr * H’ (13)
and
dlogl
= =a. 4
2% Floge (14

In (13), b(o) = I'(e) sin (mer/2).

The corresponding standard errors are shown in table 3. The positive
correlation between the estimates of a and logc® works in favor of a lower
standard error for logl, since « and ¢ have opposite effects on I. However,
the asymptotic variance of log! contains a term that is approximately equal
to [log(c/q)]? var (). When c is very small in comparison to ¢, which is often
the case, this term dominates and can make the asymptotic standard error of

8Asymptotically about 0.34 at a=1.7 and 0.29 at a=1.3 according to DuMouchel (1975,
p. 388).
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basis points, or as high as 150.0 basis points, but has only a 0.05 chance of
lying outside this range.

The reason for such broad confidence intervals is that we are attempting
to project the probability of events that lie far outside our experience. This
extrapolation compounds the measurement error that is present in the
parameter estimates. The uncertainty in our projections is unavoidable
without a larger sample, however, since our maximum likelihood parameter
estimates are already asymptotically efficient.’

Risk-sensitive deposit insurance premia should be at least as high as the
lower bound of a 0.95 confidence interval as constructed above. In order to
be reasonably certain that government deposit insurance is not inadvertently
subsidizing both the banks and a socially undesirable level of misintermedi-
ation, however [see McCulloch (1981b)], FDIC and FSLIC premia should
actually be set at the upper bound of such a confidence interval. In all
probability private insurers (or depositors themselves in exchange for higher
rates on their deposits) would be willing to accept this risk for a premium
somewhere inside this interval, but exactly where would be difficult to
predict.

7. Application

In this paper we have found the value of insurance for a bank or financial
intermediary with zero-coupon assets of one maturity (3mo., 6mo., 1yr,
2yr., Syr, and 10yr) and zero-coupon liabilities of as second, shorter
maturity, namely 1 month. The institution therefore has a duration gap
exactly one month less than the asset maturity, i€, 2mo., 5mo., 11 mo., etc.
Individual bank or thrift assets and liabilities may represent compound
payment streams, and furthermore have widely differing final maturities.
However, as long as the asset and liability payment streams do not overlap,
the Macaulay duration gap between assets as a whole and liabilities as a
whole will be a valid index of interest rate exposure. And as long as forward
interest rate volatility is independent of maturity (which appears to be at
least approximately the case), the value of insuring this exposure will be
purely a function of the duration gap and correspond exactly to the values
we have given above (adjusting, of course, for the one-month liability maturity
we have used). For this purpose, the duration gap could be computed along
the lines proposed by the FHLBB (1983, 363-376). It should be kept in
mind for this calculation that the effective maturity of short-term liabilities

9In table 3, we used var(logc,) as a proxy for var(logc) when applying (12). Strictly speaking,
we should have taken into account the fact that the uncertainty of # makes w; uncertain and
therefore contributes to the uncertainty of ¢;. However, this is unlikely to cause problems in the
long run unless banks shop for insurance on a monthly basis. Note that as in Engle’s Theorem 4
(1982), the estimator of # is asymptotically uncorrelated with those of « and log c,.
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Table 3
Asymptotic standard errors of log .

Capital/asset  Asset duration
ratio

(9) 3 mo. 6 mo. lyr. 2yr. Syr. 10yr.
Typical conditional estimates

0.01 0.580 0.494 0.392 0.368 0.301 0.324
0.02 0.626 0.545 0.437 0.416 0.348 0.374
0.04 0.672 0.595 0.482 0.464 0.396 0.427
0.07 0.712 0.638 0.521 0.505 0.437 0.467
0.10 0.735 0.664 0.544 0.530 0.461 0.495
Post-Accord low conditional estimates

0.01 0.700 0.598 0.485 0.454 0.431 0.444
0.02 0.746 0.649 0.530 0.503 0.479 0.495
0.04 0.792 0.699 0.575 0.551 0.527 0.549
0.07 0.832 0.742 0.614 0.592 0.568 0.589
0.10 0.855 0.768 0.637 0.617 0.593 0.617
Recent low conditional estimates

0.01 0.607 0.516 0.406 0.375 0319 0.334
0.02 0.653 0.567 0452 0.424 0.367 0.384
0.04 0.699 0.617 0.497 0.472 0415 0.437
0.07 0.738 0.660 0.535 0.513 0.456 0478
0.10 0.762 0.686 0.558 0.538 0.480 0.505
Post-Accord high conditional estimates

0.01 0.407 0.314 0.240 0.218 0.148 0.174
0.02 0.453 0.364 0.284 0.265 0.191 0.221
0.04 0.498 0413 0.328 0.312 0.236 0.272
0.07 0.538 0.456 0.366 0.352 0275 0.312
0.10 0.561 0.481 0.389 0.377 0.299 0.339
Most recent conditional estimates :

0.01 0.437 0.337 0.261 0.240 0.179 0.198
0.02 0.483 0.387 0.305 0.287 0.224 0.246
0.04 0.528 0.437 0.349 0.334 0.270 0.298
0.07 0.568 0.480 0.387 0.375 0.310 0.338
0.10 0.591 0.505 0.410 0.399 0.334 0.364

logI quite large. Furthermore, b'/b in (13) tends toward minus infinity as «
approaches 2.0, which reinforces the large standard error, particularly for our
conditional estimates.

Recall from table 2 that the most recent conditional point estimate of the
value of deposit insurance for a bank with 4% capital and one-year assets was
75.8 basis points per year. According to table 3, the logarithm of this estimate
has an asymptotic standard error of 0.349, or 34.9%. A 95% confidence
interval extends 1.96 standard errors above and below the log of the point
estimate. A 95% confidence interval for the estimate itself therefore extends
above and below the point estimate by a factor of exp(1.96 x 0.349)=1.98.
The value of deposit insurance on this date could therefore be as low as 38.2
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may be somewhat longer than their stated maturities [Flannery and James
(1984)].

If asset and liability payment streams do have some overlap, however, the
duration gap does not completely summarize the situation. Consider, for
example, a bank with two-year zero coupon liabilities and assets which are
50%, each (in terms of present values) one-year and three-year zero coupon
bonds. This bank’s assets and liabilities have equal durations so there is no
duration gap, yet it is still not immunized against interest rate risk. Suppose,
for instance, that at the beginning of the year the one-, two-, and three-year
interest rates were all 109, and that at the end of the year the one-year rate
was 9% and the two-year rate 10%. In spite of its zero duration gap, this
bank would have taken a 1% loss on both the short-funded and long-funded
portions of its balance sheet.

In a case like this, the value of deposit insurance depends on the exact
payment structure and on the covariability of forward interest rates at
different maturities, a problem that would go far beyond the scope of the
present paper. Nevertheless, the duration gap still indicates a valid lower
bound to the value of deposit insurance, and asset duration by itself (or
liability duration if that is greater) still gives a valid upper bound.

In order to update the ACH interest rate volatility estimates we have
presented, it is not necessary to redo the entire maximum likelihood
estimation, since the next several years’ experience will have very little effect
on the estimators of a, ¢o, and 0. During this time it will be sufficient merely
to update the w; for 12/82 as given in the last line of table 1 using routine
term structure estimates, eq. (8), and the adjustment parameter () values
given in table 1. Updated deposit insurance values may then be obtained
simply by multiplying the conditional estimates for 12/82 from the end of
table 2 by (w;/wy)%, where w; is the updated w value, wr is the weight for
12/82 from table 1, and « is the maturity-specific characteristic exponent
from table 1.°

In a system of joint private and public insurance in which the private
insurer covers the first x percent of the losses and the government insuring
agency covers only the remainder [as suggested by the FHLBB (1983, pp.
40-43 and 211-262)], or of partial self-insurance in which depositors
themselves take the first x percent of the losses as a ‘deductible’, the total
capital buffer protecting the government insurer from losses is, to a close
approximation, essentially increased by x percent, and the risk-sensitive
- premium may be reduced accordingly. For example, the point estimate of the
value of insurance for a bank with one-year assets and 4%, capital is, from
table 2, 4.52 basis points under conditions of ‘typical’ volatility. If private

9For example, by April 1984, w; for one-year asset durations had fallen to 0.345, reducing the
insurance value with 4% capital from 75.8 basis points to 13.5 basis points. By January 1985
these were back up to 0.508 and 25.3, respectively.
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insurers or the depositors shouldered the first 3% of the losses, capital
protecting the FDIC would effectively be increased to 7%, so that the
FDIC’s premium could be reduced to 2.88 basis points. Presumably the
private insurer (or the depositors) would demand the difference (1.64 basis
points) to compensate themselves for their share of the risk. In the case of
joint private/public insurance, however, the public insurer would have to
ascertain that the private insurer actually had the resources to cover 100%, of
its share of the losses in order to warrant such a reduction in the
governmental deposit insurance premium.

For other application issues such as dividend payments, variable rate
loans, price level indexed loans, and the ‘going business’ value of the bank or
thrift, the reader is referred to McCulloch (1981a).
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