MEASURING THE TERM STRUCTURE OF INTEREST RATES

J. HUSTON MC CULLOCH*

INTRODUCTION

This paper develops a technique of fit-
ting a smooth curve, called the ‘“discount
function,” to observations on prices of
securities with varying maturities and
coupon rates. The yield curve, instan-
taneous forward interest rates, mean
forward interest rates, and consistent
values for securities are derived from this
discount function. Formulas for estimat-
ing the variances of these derived statis-
tics are given. All formulas are worked
out for a broad family of discount func-
tions amenable to linear regression. A pre-
ferred form for the generalized discount
function is described which focuses resolu-
tion in the vicinity of concentrations of
observations. It is used to compare re-
gression yield curves with those obtained
by Durand! and those shown in the
Treasury Bulletin.®

THE DISCOUNT FUNCTION

The most fundamental curve describ-
ing the term structure of interest rates,
the one from which all others must be
derived, is the discount function §(m). It
describes the present value of $1.00 re-
payable in m years. It is natural to sup-
pose that the discount function is con-
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tinuously differentiable. We may expect
it to be monotonically decreasing.

Except for a few short-term securities
called “bills,” none of the zero coupon
“bonds” whose prices are determined di-
rectly from the discount function exists.
However, given the maturity m, and the
coupon rate ¢ of a security, its value p
can be computed as the sum of the values
of the payments that comprise it:

p = 1006(m;) + cof’""am)dm. 0

For simplicity, we have assumed that the
coupons arrive in a continuous stream
instead of semiannually. This enables us
to use ‘‘and interest” prices as quoted.?

In order to fit a curve to the discount
function by linear regression, we must
postulate 2 continuously differentiable
functions f;(m), and then express it as a
constant term plus a linear combination
of these functions:

o(m) = ay + ]Z;aif:'(m) .

Since the present value of present money
is unity, we must have §(0) = 1. The
only way to force the curve through this
point is to set o = 1 and

fi(0) = 0. 2

Therefore the discount function takes
the form

o(m) =1+ j_Zlaff,'(m) . €))

3 A prorated share of the next coupon is added to
the quoted ‘“and interest” price to arrive at the
“flat” price at which the security actually changes
hands. Today, only bonds in default are quoted
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The form of the functions f;(m) and
the value of % are very important to the
quality of our fit of the discount func-
tion. However, opinions may differ on
their specification and there is no in-
disputably best method. Therefore we
will develop all formulas at the present
level of generality. Possible forms of
these functions and rules for selecting %
will be considered at the end of this
paper.

Combining (1) and (3) we obtain

p=100[1+ gaifj(mo)]
+ cj'“ [1+ ga,fj(m)] dm
=100 [1+ jz:,%fi(mo)]

k m,
+ ¢ [mo + Za,'ffj(m)dm]
J=1 0
= 100 + cmy

+ X [ 100m) + ¢ Timam]. @

Setting

y=p — 100 — cmp (5a)

and _
2 = 1005,(me) + ¢ J Fy(m)dm,  (5b)
equation (4) becomes

k
y = D a%;. (5¢)
=1
Because ¢, mg, and the postulated func-
tions f;(m) are given, the right-hand side
of (5¢) is a linear combination, in un-
known constants @; of known con-
stants x;.

flat. However, a few prewar bonds have to be con-
verted to the “and interest’” basis before equation (1)
can be used.

We chose to start with the discount
function, expressing it as a linear combi-
nation in unknowns as in (3), because we
knew that the linearity of the integra-
tion operator in (1) would then also
make p a linear combination in these un-
knowns, permitting estimation of the a;
by linear regression. Previous workers,
notably Cohen, Kramer, and Waugh,*
have instead started with the yield curve
n(m), a nonlinear transform of &(m):
n(m) = —(1/m) In 8(m). If one were to
begin with this yield curve instead, so
that

1(m) = ao + ;ajfi(m) ,

when the value of the coupons was added
to that of the principal using (1), he
would obtain

$ = 100 exp g — mo[ao + jzz;a,f,-(mo)] }

+ c,fo exp g —m[ao + :Z;a,fj(m)] ;dm .

This expression is not linear in the ¢; and
therefore the a cannot be estimated by
linear regression without the use of crude
approximations. Consequently, we will
use the approach of equation (3) and
will not develop the yield curve until
later.

ESTIMATION OF THE UNKNOWN
PARAMETERS @;

At any moment in time there will not
be simultaneous actual sale prices for
every security. This is especially true of
slow-moving corporate issues. However,
there often are enough securities with
simultaneously standing bid and asked
offers to make inferences about the term

4Kalman J. Cohen, Robert L. Kramer, and
W. Howard Waugh, “Regression Yield Curves for

U.S. Government Securities,” Management Science
13, no. 14 (December 1966): B168-75.
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structure. If we have such observations
p? and p? on » securities, define mean
prices $;as p; = (p? + p%)/2. Let ¢; and
m; be the coupon rate and term to final
maturity of the ith security.

Instead of (1) holding exactly for the
bid-asked mean price, we will find that

Bs = 1005(m) + Cij” S(m)dm + e, (6)
0

where ¢; is an error term with positive
variance. These errors can be caused by
transactions costs, tax exemption, the
capital gains tax treatment of deep dis-
count bonds, callability, convertibility,
ineligibility for commercial bank pur-
chase, ability to be surrendered at par in
payment of estate taxes (true of so-
called flower bonds), risk of default, im-
perfect arbitrage, and the rigidity which
will be introduced by postulating any
specific form for f;(m). Thanks to trans-
actions costs alone, the absolute value
of €; could be as high as v, = (p2 — %)/
2 4 b, where b is the brokerage fee of
0.5 parts per 100 for the broker-traded
corporate issues and zero for dealer-
quoted U.S. Governments. The differ-
ence between the maximum price to a
buyer and the minimum price to the sell-
er is 2v,. Because of the other sources of
error, the error term will often be larger
than v;. Nevertheless, it will have a vari-
ance that is related to v;. Since the other
sources of error are more difficult to
quantify, it is convenient to assume that
the standard error of e; is simply propor-
tional to v;: S.E. (e;) = ov;. The value of
o, which is to be measured, gives us an
indicator of how well arbitrage is work-
ing and of the size of the factors other
than coupon and maturity which enter
into the value of the securities. If it is as
low as 1.0, the bid-asked mean price of
most of the securities observed will be
within the transactions costs tolerance v;

of a value consistent with the observa-
tions on the other securities used. We
probably cannot expect the fit to be any
better than 1.0.5

Adapting (5) to the error term as-
sumption of (6), the regression equation
is:

k

y,~=zajx,~,--l—e,~, ’i=1,2,...%, (73.)
j=1

and

(7b)

var (&) = o7,
where

y; = pi — 100 — c;m; , (7¢)

vy = 1007(m) + i Fi(mdm, (74)
and
=01 —p/2+b. (e

We run a weighted least-squares regres-
sion on (7) to obtain estimates &, ds,
..., 8, and ¢ of the parameters a1, as,

., a; and ¢. The discount function is

then estimated by
k

bim) = 1+ 2afim) . (8)
We are not justified in extrapolating
d(m) or any of its derived functions be-
yond the longest maturity of the secu-
rities observed. Notice that we are able
to fit the discount function with a
smooth curve, even though we do not
have direct observations on it. We could
never have done this by hand, or even by
ordinary curve-fitting techniques.

I have actually fit (7) to observations
on railroad bonds for fifteen selected
dates from 1920 to 1938 and on U.S.
Government securities for the close of
every month from December 1946 to

§In the context of this application of linear re-
gression, R? is a bad indicator of goodness of fit. It
has no obvious intuitive interpretation and almost

always is over .999. On the other hand, & is mean-
ingful and sensitive.
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March 1966. The discount functions for
two of these dates are shown in figures 1
and 2. They are displayed plus and minus
their estimated standard errors of mea-
surement. The estimated curve itself is
not shown in order to avoid clutter. It
lies halfway between the upper and low-
er edges of the band shown. Notice that
the error, relative to the value of the
curve, increases with time to maturity
because the market is less concerned
with the distant future than with the
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Fic. 1.—Discount function for the close of Feb-
ruary 1922 based on bid-asked mean grices of high-
grade (Moody’s Aa and Aaa) railroad bonds. Con-
vertibles and securities with any chance of being
called before maturity were excluded. The band
shows the best estimate plus and minus its standard
ert;r. In this regression, #» = 26, k= 5, and ¢ =

.67.

near future, and therefore does not de-
fine the curve for the distant future with
as great a precision. The calculation of
these errors is discussed in a later section.

Mean values of & for selected sub-
periods are given in table 1. These fig-
ures would seem to indicate that prior to
the Treasury-Federal Reserve Accord
of March 4, 1951, and again after the
beginning of “Operation Twist” in mid-
1961, some sort of ‘“disarbitrageur” was
active in the market for U.S. Govern-
ment securities. The fall in ¢ from 13.9

at the close of February 1951 to 5.6 at
the close of March 1951 was especially
dramatic. Since most of the same securi-
ties were still present in the market, this
fall could not have been entirely due to

A

8 (m)
19

L

: 4
g 0.6 \

X N\

g 04 \

i N

F16. 2.—Discount function for the close of
February 1966 based on bid-asked mean prices for
taxable U.S. Government bills, notes, and bonds.
Redemption of callable issues is assumed to be at
earliest call date if price is above par and at ma-
turity date when price is below par. In this regres-
sion, n = 78, k = 9, and & = 7.81. In spite of the
higher value of &, this curve is better defined than
that of fig. 1 because bid-asked spreads were smaller
and because of the absence of brokerage fees.

TABLE 1
MEAN VALUES OF ERROR COEFFICIENT

Mean

Period Type of Security Value

of ¢

1920-1938....... High-grade railroad 2.6

bonds

1/1/47-3/1/51..] Taxable U.S. govern- | 15.9
ment securities

4/1/51-1/1/62 . .| Taxzable U.S. govern- 4.6
ment securities

2/1/62-4/1/66 . .| Taxable U.S. govern- 9.0
ment securities

a change in the special features of the
securities.

Having estimated the parameters a;
we can estimate the true values p; of
the # securities:
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ﬁ.‘ = 100 + ¢;m;
©

k m,
+ 2.0 1007m) + . S Ti(m)im]

This formula can even be used to esti-
mate the value of securities that did not
enter into the regression. It is of use to
dealers, banks, insurance companies, and
large borrowers who need to compare the
values of securities differing in coupon
rate and maturity. Sophisticated users
may even want to adjust (1) for taxes
and for the value of special provisions.
Examination of the weighted residuals,
(s — pi)/vs, shows that the ineligibility
for commercial bank purchase of many
bonds prior to the Accord (and to a
lesser degree until 1954) tended to cause
negative residuals and that the special
tax status of deep discount bonds tended
to cause positive residuals. These prop-
erties account in large measure for the
disappointingly high values of ¢ for post-
war Treasury securities. Compensating
for such factors should give better fits
and reduce the unaccounted-for error.

FORWARD INTEREST RATES

The discount function §(m) is an ex-
ponential decay curve whose rate of de-
cay need not be constant. Its rate of
decay is the instantaneous forward interest
rate p(m):

&' (m)

= S(m) (10)

p(m) =

Equivalently,
o(m) = exp [ — ofp<x>dx] , (1)

and
By differentiating (3) we have
§'(m) = ;laaf:"(m)- (13)

Consequently we can estimate (10) with

—Z4f}(m)

p(m) = TF Safm)" (19)

Forward curves corresponding to the
discount functions shown in figures 1 and
2 are depicted in figures 3 and 4, plus

A(m)
AN

A /
y - /
AEENNE
] M

20 \

Vv

] 10 0 ]
Years to Maturity

Fic. 3.—Instantaneous forward interest rate
curve corresponding to the discount curve of fig. 1
for the close of February 1922.
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Fi1e. 4.—Instantaneous forward interest rate
curve corresponding to the discount curve shown
in fig. 2 for the close of February 1966. The high
resolution at the short end is made possible by the
concentration of bill observations.

and minus their standard errors of mea-
surement. The calculation of these errors
will be discussed in a later section. The
“knuckles” in the bands are to be ex-
pected, unless we are willing to specify
that §(m) must be twice continuously
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differentiable instead of just once. As m
goes to infinity, p(m) does not necessari-
ly approach an asymptote. Rather, its
standard error of measurement will be
found to grow without limit, so that its
value simply fades away. This effect is
more apparent in figure 4 than in figure 3,
which goes off scale.

The instantaneous forward rate curve
is a very important theoretical construct.
However, its value for a single maturity
m is of little practical concern, because
it is prohibitively expensive in terms of
transactions costs to make a forward
contract between two points in the dis-
tant future if these points are only a
small distance apart, as are m and m 4 %
in definition (12) of the instantaneous
forward rate.

Only the average of p(m) over a con-
siderable interval in the future is of prac-
tical concern. Given any two values of
m, say my and me, the mean forward in-
terest rate r(m1, ms) is the average of p(m)
over the interval [my, m)]:

1 s
r(my, mg) = Pr—— S p(m)dm . (15)
my

Equivalently,
—m 8(mg)

r(m1, my) = (16)

My

Computationally, (16) is more useful and
can be estimated by

1 g 80m) gy
e = 1 o)
Notice that we have derived and esti-

mated forward interest rates without use
of the yield curve.

;(mly %) =

THE YIELD CURVE

The instantaneous forward interest
rate curve p(m) gives the rate of decay
of the discount function §(m) at each
point m. The yield curve n(m) is the aver-

age of that rate of decay over the inter-
val from 0 to m. Thus,

2 =L fowae.  a9)
Equivalent formulations are

§(m) = exp [-mn(m)],  (19)

am) = — Ino(m),  (20)
and

n(m) = r(0, m) .

Equation (18) states that » stands in
the relation of an average curve to the
marginal curve p. Although 5 and p are
not cost curves, they still bear the same
mathematical interrelationships as do
average and marginal cost curves:

1) mn'(m) + n(m) = p(m) . (21)
ii) 5(0) = p(0) .
) Tt g is ;;;j‘lfngg} at m,
. (above
then p is g below%n at m .

w) If9'(m) = 0, thenyn(m) = p(m) .

The yield curve, as defined in equa-
tion (20), can be estimated by
n(m) = — —l—ln 5(m) . (22)
m

Yield curves corresponding to figures 1
and 2 are given in figures SA and 6A.
The figures show the estimators plus and
minus their standard errors of measure-
ment. Notice how the standard error is
large for both large and small m on the
railroad curve for 1922 and is smaller for
intermediate m. The computation of
these errors will be discussed in a later

section.
Other investigators have measured the
term structure of interest rates by fitting
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F16. 5B.—A Durand yield curve for comparison with fig. SA based on high-grade corporate bond trans-
action prices from the first quarter of 1922.
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a smooth curve to the average yields to
maturity of the securities observed. Du-
rand and the Treasury Bulletin® hand
fitted the points with a French curve,
while Cohen, Kramer, and Waugh’ fit
them with a linear regression. A Durand
curve and a Treasury Bulletin curve are
shown in figures 5B and 6B for compari-
son with figures 5A and 6A.

Both the hand and the regression ap-
proaches to directly fitting the yield
curve are open to two serious objections.
First, unless the yield curve 5(m) is flat,
there is no reason to expect the average
yield of a bond with a positive coupon
rate to lie on it. The pure yield curve is
defined for hypothetical bonds with zero
coupon rates, so that the yield of an or-
dinary bond with maturity , is a com-
plicated average of y(m) over the whole
interval [0, m,], with only one of many
weights at m,, corresponding to the prin-
cipal. For instance, if a bond has more
than fifteen or twenty years to go before
maturity, less than half of its value is
due to the principal. The rest is embodied
in the coupons. This averaging process
washes out any shape the yield curve
might have at the long end. The upward
slope at the right end of the curve in
figure SA may be a pertinent example of
the shape the yield curve may still have
at the long end. Unfortunately, however,
its measurement error becomes so large
that this upward slope may or may not
be statistically significant.

Second, any minor error incurred
while directly fitting the yield curve will
be magnified, especially for large m, if
one tries to use formula (21) to calculate
forward rates from the yield curve. Du-
rand himself has insisted that his curves
should not be used to derive forward

¢ See nn. 1 and 2.

7Seen. 4,

rates.® For example, Durand’s 1922
curve, shown in figure 5B, could not be
used to infer the interestingly low for-
ward rates shown in figure 3 which
spanned the interval from 1937 to 1950
in the future (maturities fifteen to twen-
ty-eight years). These remarkable rates
foreshadowed the low rates for that pe-
riod which were again to prevail during
the later part of the Depression. When
the data for 1922 were first fit, the author
used a polynomial form for &(m), and
similar low forward rates resulted. In an
effort to get rid of them, he devised the
piecewise quadratic formulation which
will be discussed in a later section,
screened the data more carefully for
bonds which were callable, convertible,
or were not entirely risk free, and added
more observations. In spite of these
efforts the low forward rates persisted.
The tendency for the standard error
of measurement of n(m) to be large for
small 7 means that Durand’s “basic”
yield curves are open to another objec-
tion: They are biased so that they tend
to have an upward slope. In order to ob-
tain rates for absolutely risk-free loans,
he drew his yield curves to pass under
the bulk of the plotted points. This
would be a valid procedure if the width
of the observed band of points were
caused only by differences in the premi-
ums for the risk of default. However, the
observed bid-asked mean price of a virtu-
ally default-free security often differs
from its predicted value by several times
the transactions cost involved. In terms
of yield, this difference is more impor-
tant for short maturities than for long,
causing Durand’s plotted points to di-
verge for short maturities. By fitting his
8 David Durand, “A Quarterly Series of Corpo-

rate Basic Yields, 1952-57, and Some Attendant
Reservations,” Journal of Finance 13 (1958) : 348-56.
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curves under the bulk of the points in-
stead of through them, his curves tend
to have an upward-sloping shape too
often. Figures 5A and 5B illustrate one
case when Durand appears to have ob-
tained an insufficiently downward-slop-
ing yield curve. The fact that Durand’s
curves are biased to slope upward could
provide an alternative to the “liquidity
preference” explanation of why the con-
glomerate yield curve derived by averag-
ing his annual curves is upward sloping.?

ESTIMATION OF THE ERROR
OF MEASUREMENT

The observed prices of securities are
seldom even close to their true values as
given by (1). In fact, the observed price
itself is indeterminate, since the maxi-
mum price to a buyer (the asked price
plus the brokerage fee, if any) is sub-
stantially higher than the minimum price
to a seller (the bid price minus any
brokerage fee). Consequently, the term
structure cannot be measured exactly,
and any estimator of a value derived
from it is subject to random measure-
ment errors. It is important to estimate
the variance of these errors and to ac-
company any display of statistics derived
from our regression with estimates of
their standard errors. This has been done
graphically in the diagrams accompany-
ing this paper by displaying a band
whose upper and lower edges are the
actual estimate plus and minus its stan-
dard error.

The weighted least-squares regression
on (7) produces a & X k matrix C which
is the estimator of the covariance matrix
of the estimators &; of the parameters a;.

9 See Reuben A. Kessel, Tke Cyclical Behavior of

the Term Structure of Interest Rates (New York: Na-
tional Bureau of Economic Research, 1965), p. 18.

If 2z is a k-vector of known values and
d is the vector (di,...,ds), the es-
timator of the variance of the linear
combination z74, for example, will be
the quadratic form 57Cz.

The estimator of the variance of §(m),
defined by (8), is therefore

var [§(m)] = #7Cz,

25 = fi(m) .

Similarly, the estimator of the variance
of p, as defined in (9), is

Var (p;) = 27Cz,

(23a)
where
(23b)

(24a)
where

2; = 100f,(m,) + ¢ B/m”f,(m)dm . (24b)

Just as (9) can help banks, dealers, and
financial intermediaries estimate the
proper bid-asked mean price to offer,
(24) can help estimate the proper bid-
asked spread with a little experience. For
instance, they might make their offers
differ from $; by 1-3 S.E., depending
upon how cautious they feel and the size
of the offer.

The variance of the quotient of two
random variables # and y with expected
values Ex and Ey can be approximated
by use of the formula

var (¢/y) _ var (x) 4 ver ¢))
(Ex/Ey): — (Ex}* ' (Ey)?

_ ooV (%,9)
ExEy °’

(25)

provided that var (x) < (Ex)? var (y) <
(Ey)?, and that the distribution of y is
positive.!® Using (25), it can be shown

10 Formula (25) in the case of independently dis-
tributed variables and formula (27) are commonly
used in experimental physics and chemistry. Both
the variance of a quotient and that of a logarithm
are related to the variance of a product, which is
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that the variance of p(m), as given in
(14), is approximated by

vat [p(m)] =~ p(m)*2*Cz, (26a)
where
5 = LFm)/18'(m)] (26b)

— [ f(m)]/16(m)] .

The variance of the natural logarithm
of a random variable x can be approxi-
mated by
var (x)

(Bx)? ’

var (In x) =~

@7

provided that var (x) < (Ex)? and that
the distribution of « is positive. Using
(27), it can be shown that the variance
of the mean forward rate 7(mi, ms), as
defined in (17), is approximated by

\7371‘ ['f(m;, M2)] =~ 2TCz 3 (283.)
where
gy = —1 []:J‘(ml) _ {j(ﬁiz)] . (28b)
M= M| §(mi)  6(ms)

Again using (27), we see at once that the
variance of the yield curve 4(m), as given
in (22), is approximated by

vat [5(m)]

var [7(m)] =~ P

(29)

THE FORM OF THE FUNCTIONS f;(m)

The choice of the functions f;(m) is
central to the quality of our fit of the
term structure. However, the selection
of a form will always be a matter of
judgment. Only a few hard and fast rules
hold. Two of these are that the f;(m)

rigorously derived by Leo A. Goodman, “On the
Exact Variance of Products,” Journal of the Ameri-
can Statistical Association (December 1960), pp.
708-13. An approximation for products analogous
to (25) can be derived from his exact formula when
the variances are relatively small.
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must be continuously differentiable and
that f£,(0) must be 0.

The maturities of the securities we
observe will not be uniformly distributed
over the interval from 0 to m,, the
longest maturity observed, except by ac-
cident. Where concentrations of observa-
tions occur, the shape of the discount
function is relatively well defined. Where
observations are sparse, we are not justi-
fied in distinguishing as much shape.
Therefore it will be desirable to make
fi(m) depend on the distribution of the
m; in such a way as to provide greater
resolution wherever maturities are clus-
tered. In the case of U.S. Treasury secu-
rities, following this rule will place the
greatest resolution at the short end,
where there are many bills outstanding.
This is as it should be, since participants
in the market are more concerned with
small differences in time in the near fu-
ture than in the far future. This greater
concern means that the discount func-
tion §(m) they define by the values they
place on the outstanding securities will
have the most detailed shape at the
short end.

A relatively naive approach is simply
to set

ff(m) = m,

This assumption makes &6(m) a kth-
degree polynomial with unity for its
constant term. A polynomial is straight-
forward, but it has no theoretical moti-
vation. Its formulation does not depend
on the distribution of the m; nor does
it have a greater capability for provid-
ing resolution for values of # where the
m; are more likely to occur. As a result
of its uniform resolving power, when it
is used to fit a discount function which
has a finely defined shape in the first 1 or
2 percent of its length and is relatively

7=1,2,...,k (30)
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smooth thereafter, it will either ignore
the short end and conform only to the
remaining 98 or 99 percent, or else, if
there are so many bill observations that
they take over the regression, it will con-
form only to the short end and ignore
the long end. It would take an extremely
high-order polynomial to fit both the
long and short ends of such a curve.
Even so, this high-order polynomial
would probably take on extreme values
between observations at the long end,
and would not be monotonically de-
creasing, as the discount function must
be. On the other hand, a functional form
which inherently permits greater resolu-
tion in the vicinity of data concentra-
tions would be consistent with such a
curve throughout its length, would re-
quire the estimation of only a few un-
known parameters, and would be mono-
tonic. The one portion would not have
to be sacrificed to suit the other.

A better functional form for §() than
a polynomial is a continuously differen-
tiable, piecewise quadratic function. To
define such a curve we must divide the
interval (0, m,) into £ — 1 subintervals
(dj, djy1). We will have d; equal to 0 and
dx equal to m,. Our 8(m) will follow a
different quadratic function of m over
each of the subintervals. In order for
8(m) to be continuously differentiable,
the quadratics defined over adjacent
subintervals (d;_1, d;) and (d;, d;41) must
have a common slope, as well as a com-
mon value, at d;. The greater the number
of subintervals covering any part of the
interval (0, m.,), the greater will be the
resolving power of the discount function
in that part of the interval. Therefore,

m
fi(m) = 2
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by defining the subintervals to contain
approximately equal numbers of the
terminal maturities 7, we will get great-
er potential resolution where the data
observations are most numerous. Each
of the quadratic segments will have an
approximately equal number of obser-
vations to conform to. We can define the
subintervals in this way by setting d; =
my + 0(myn — my), where [ = greatest
integer in [(j — 1)n]/(k — 1), and 6 =
[(j— Dn]l/(k —1) — 1. (We have as-
sumed the securities to have been ar-
ranged in order by increasing terminal
maturity, so that m; < mj.1.)

The set of functions of the form
k
é(m) =1+ ;a,fj(m)

will comprise the entire family of con-
tinuously differentiable functions which
satisfy (0) = 1 and which are piecewise
quadratic over the subintervals defined
above if we define the f;(m) as shown in
figure 7. The first one, f;(m), starts with
value zero and with a positive slope at
m = 0, flattens until it has a zero slope
at m = d», and remains constant there-
after, as in figure 74. Intermediate ones,
fi(m), where j=2,3,...,k—1, are
zero up until d;;. There the slope be-
gins to increase from zero up to some
positive value at d;. Then the slope falls
from its d; value to zero at d;;. Its value
is constant thereafter. Figure 7B shows
the particular case of fo(m). The last one,
f1(m), is defined the same as the interme-
diate ones, except that it is undefined
after m = m,, as shown in figure 7C.
Algebraically, the f;(m) are defined as
follows:

(31a)
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0, 0<m<djy )
(m ol dj_1)2
_——Z(d,- — 4’ dia < mZXdj
. = —d.)2 ) = b -
T =040y = )+ (= g — =B G =B k= L G
1 j)
di <m< dip
(31— di1),  dia < m < ma }
0, 0< m < dia
fi(m) = (m — di_y)? (31¢)
m , G < m< M.
’l(m)
4=0 d, A domm,
’z(m)
d=0 d, 4, B de=m,
fn('")
d=0 c dyy dy=m,

F16. 7.—The preferred form of the f;(m). These f;(m) make (m) piecewise quadratic and continuously

differentiable.

Since the vertical scales of the f;(m) are
immaterial, we have arbitrarily chosen
them so that

§'(d)) = aif(dy)

= @j.

(32)

Integration of f;(m) in order to evaluate
(7d) and (24b) and differentiation in or-
der to evaluate (14) and (26b) are mat-

ters of elementary calculus, and will be
omitted here.!!

The specification of the f;(m) given in
(31) was used for the regression fits of the

11 Other specifications of the f;j(m) will generate
exactly the same family of piecewise quadratic func-
tions. The one chosen was selected only because it
can have the property (32) if the scales are chosen
appropriately. The other specifications will give the
same 5(m) if used with the same data.
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discount function shownin figures 1 and 2.
Because a piecewise quadratic function
has a discontinuous second derivative, the
instantaneous forward interest rate curves
derived from these discount functions
have discontinuous first derivatives,
which explains the angular shape of the
bands shown in figures 3 and 4. However,
as mentioned earlier, the instantaneous
forward rate p(m) is interesting mainly
as a theoretical construct. Its level at
one isolated value of 7 has little practi-
cal significance. Consequently we are not
worried by the outlying values of 5(m)
and its standard error that are some-
times implied by our specification of the
fi(m). In fact, our specification is suffi-
cient to imply that mean forward rates
r(my, mg), which are of practical concern,
are continuously differentiable with re-
spect to both m;, and ms. The yield curve,
a special case of r(mi, my) with m; = 0,
is therefore also continuously differen-
tiable, as may be seen in figures SA
and 6A.

THE VALUE OF %

The number %2 of parameters to be
estimated is another area where judg-
ment must be used. If % is too low, we
will not be able to fit the discount func-
tion closely when it takes on difficult
shapes. If it is too high, the discount
function may conform too closely to
outliers instead of being smooth. If % is
as high as #», there will be no way to
estimate o2 In the spirit of least squares,
we might try all values of % inside a

range we regard as reasonable, and select
that value which minimizes the un-
biased estimator 2 of o2;

&2=nik.~:zl(i‘v—.-ﬁi)z'

As % increases, the residuals generally
decrease, but then so do the degrees of
freedom. The result is that & declines
sharply as k increases from 2 to 3 or 4,
but thereafter fluctuates irregularly with
a small amplitude, and often with more
than one local minimum. Sometimes it
shows no sign of permanently rising, even
after Z becomes so large that the discount
function adheres to outliers.

A second approach is simply to make %
a fixed function of #. We would like this
function to have the following properties:
First, in order to have resolution increase
as the number of observations increases,
our function %(») should increase with #.
Second, in order to make the number of
observations in the domain of each quad-
ratic segment increase with the total
number of observations, the ratio /(%)
should also increase with #. An elemen-
tary function with these properties is
k(n) = nearest integer to #'/2. In prac-
tice, this formula gives approximately
the same results as the first approach,
without the expensive search.!?

12 Since the final revision of this paper, a prece-
dent for the continuously differentiable, piecewise
quadratic functional form has come to my attention
(see Wayne A. Fuller, “Grafted Polynomials as
Approximating Functions,” Australian Journal of
Agricultural Economics 13, no. 1 [June 1969]: 35-46).





