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ABSTRACT 
 

 It is shown that the Newey-West (1987) Heteroskedasticity and Autocorrelation 
Consistent (HAC) covariance matrix estimator can greatly understate the standard errors 
of OLS regression coefficient estimates in finite samples, and therefore comparably 
overstate t-statistics.  Although the bias vanishes in infinite samples and is tolerable in 
samples as small as 106, it can lead to t-statistics that are too high by a factor of 1.7-2.2 
with a sample size in the range 65-1200 and first order autoregressive serial correlation 
with AR coefficient 0.9.    
 
 The Exactly Median Unbiased estimator of Andrews (1993) for a directly 
observed AR(1) process is extended to the case of an AR(p) process that is only 
indirectly observed via OLS regression residuals.  By allowing the maximum permitted 
order to increase without limit with the sample size, the estimator consistently estimates a 
stationary process with any autocovariance function.  It also provides a unit root test (and 
therefore a test for cointegration of the regressors) that is exact up to median unbiased 
estimates of the higher order persistences.    
 
 These Median Unbiased Autoregressive (MUAR) estimates of the autocovariance 
function are then used to construct an Autocorrelation Consistent (MUAR-AC) 
covariance matrix for the OLS coefficient estimates.  Applied to a simple model of US 
demand for narrow money M1-S (official M1 + estimated Retail Sweep Accounts), it is 
found that a unit root in the errors and therefore absence of cointegration can be at least 
weakly rejected (at the 10% test size).  The MUAR-AC standard errors are 128-153% 
higher than HAC standard errors, or equivalently, HAC t-statistics for any hypothesis 
concerning the coefficients are 128-153% too large.   
 
 Despite the greatly increased MUAR-AC standard errors, the income elasticity 
and interest semielasticity of demand for M1-S remain highly significant, suggesting that 
narrow money (currency plus all checking accounts) may still be a useful indicator of 
monetary policy, and that the Fed should resume collecting direct data on it.    
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1.  Introduction 
 
 Serial Correlation is a pervasive problem in time series models in econometrics, 
as well as in statistics in general.  When, as is ordinarily the case, the serial correlation is 
positive, Ordinary Least Squares (OLS) standard errors are generally too small, and the 
derived t-statistics are too large. 
 
 The truncated-kernel Heteroskedasticity and Autocorrelation Consistent (HAC) 
covariance matrix, introduced by Newey and West (1987), is now widely used by 
economists to “correct” the standard errors of OLS time series coefficients for serial 
correlation.  Greene (2003: 201) reports that its use is now “standard in the econometrics 
literature.”  Hayashi (2000: 409-12)  mentions only it, the similar Quadratic Spectral 
HAC of Andrews and Monahan (1992), and the Vector Autoregression HAC (VAR-
HAC) method of den Haan and Levin (1996) as appropriate methods for correcting OLS 
standard errors for serial correlation.  Stock and Watson (2007) present HAC as the only 
method worthy of consideration.   
 
 This study shows that despite their consistency, HAC standard errors can greatly 
overstate the precision of OLS coefficient estimates with sample sizes and serial 
correlation commonly found in economic studies when, as has become standard, 
“automatic bandwidth selection” is employed.  Practitioners are always in search of big t-
statistics and therefore small standard errors, so it is entirely understandable that the HAC 
under-correction for serial correlation has become so popular.  However, it is bad 
econometric practice to systematically overstate the significance of one’s results by 
deliberately choosing a deficient estimator.    
 
 The vintage Cochrane-Orcutt estimator (Greene 2003: 273) uses OLS estimates of 
an AR(1) model of the residuals to transform the regression equation in an attempt to 
remove the serial correlation.  Higher order AR disturbances may also be accommodated 
in a similar manner (Beach and MacKinnon 1973; Greene 2003: 274).  However, it is 
well known (e.g. Greene 2003: 636) that OLS and even Maximum Likelihood (ML) 
estimates of AR models are biased so as to understate their persistence.  The bias does go 
away in large samples, so that consistency can be claimed as long as the order of the 
autoregression is allowed to increase without bound with sample size as in den Haan and 
Levin (1996).  With typical econometric sample sizes, however, the bias can be 
substantial.  The standard errors from the transformed regression will therefore also have 
a downward bias.   
 
 Andrews (1993) shows how exactly median-unbiased estimates of the 
autoregressive coefficient in a Gaussian AR(1) model can be obtained by means of a 
simple simulation procedure.  Andrews and Chen (1994) extend this to obtain only 
approximately median-unbiased estimates of the coefficients of an AR(p) model.  The 
present paper shows how to extend the method of Andrews (1993) so as to obtain exactly 
median unbiased estimates of the coefficients of an AR(p) model with Gaussian errors. 
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This paper also goes beyond both Andrews (1993) and Andrews and Chen (1994), 
which consider only the residuals of a univariate model with a constant and/or time trend, 
by applying the method to the residuals of a general OLS model with unobserved AR(p) 
errors.  It obtains exact confidence intervals for each of the AR(p) coefficients 
(conditional on the median-unbiased estimates of each of the other coefficients), and 
shows how to conduct an exact unit root test on the residuals, which in the case of OLS 
residuals, amounts to an exact, finite sample test for cointegration, conditional again on 
the median-unbiased estimates of each of the other coefficients.     
 
 The paper devises an algorithm to obtain the exactly Median Unbiased AR(p) 
(MUAR) coefficients from the residuals of a general OLS regression with Gaussian 
errors.  These MUAR coefficients are then used to obtain Autoregressive Consistent 
(MUAR-AC) estimates of the standard errors of OLS regression coefficients. 
 

The MUAR-AC algorithm is then illustrated by using it to consistently adjust the 
standard errors of an updated OLS money demand equation for serial correlation, and to 
test it for cointegration.  The results are compared to HAC and uncorrected AR(p)-based 
standard errors.   
 

Regressor-Conditional Heteroskedasticity (RCH), discussed at greater length in 
the final section, can also distort OLS standard errors, if and when it is present.  The 
paper discusses an autocorrelation-corrected test for RCH and possible ways to modify 
the MUAR-AC estimator to deal with this problem when it has been detected.  At present 
this aspect of the paper is still “under construction.”   
 
2.  Finite Sample Bias of Truncated-Kernel HAC  
 
 Consider a time-series linear regression of the form  
   εXβy +=
where X = (xtj) is a T × k matrix of exogenous regressors whose first column is a vector 
of units.  The OLS estimator of β,  
   εXXXβyXXXβ ')'(')'(ˆ 11 −− +==
then has covariance matrix  
  .    (1) ))'('')'E(()ˆ( 11 −−== XXXεεXXXβCovC
If the T × 1 error vector ε is independent of X and has a time-invariant or Toeplitz 
autocovariation structure,  
  ( )'||)'E( tt−== γεεΓ ,  
this becomes  

11 )'(')'( −−= XXΓXXXXC .      (2) 
Under the classic OLS assumption Γ = γ0I, (2) becomes  
  .       (3) 1

0 )'( −= XXC γOLS

The OLS residuals  
        (4) MεεXXXXIe =−= − )')'(( 1

may be used to compute the (strong) estimates of the autovariances:   
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 The Newey-West truncated-kernel HAC estimator is 
  ,  11 )'(')'(ˆ −−= XXFXXXXCHAC

where  
  ( )|)'(|' ttktt −= εεF  
and  
        (6) )0,/)max(()k( mjmj −=
is the truncated Bartlett Kernel function for some bandwidth m.  Most econometric 
packages provide “automatic bandwidth selection” for HAC, using a formula similar to 
the following “benchmark rule” recommended by Stock and Watson (2007: 607):   
  ).75.0round( 3/1Tm = 3      (7) 
Since this formula forces m to rise without bound as T rises to infinity, it ensures that all 
autocorrelations will eventually be used by .  At the same time, T/m rises without 
bound, so that the m-1 included autocorrelations will be estimated with increasingly high 
precision.  Furthermore, for any j the Bartlett factor (m-j)/m will eventually become 
arbitrarily close to 1.  As a result, the HAC covariance matrix consistently estimates the 
true covariance matrix, provided a finite eighth moment condition for the errors is met.   

HACĈ

 
 Stock and Watson do suggest that a higher or lower value of m be tried as well, 
depending on the degree of serial correlation, but provide no procedure to implement this 
suggestion.  The vast majority of practitioners who use HAC simply use whatever 
automatic rule is provided by their software and assume that this provides a state-of-the-
art cure for any serial correlation problem.   
 
 In the benchmark case of homoskedasticity, the expectation of the HAC estimator 
is  
  ,     (8) 11 )'(')'(ˆE −−= XXXΓXXXC HACHAC

where  
   ( )|)'(|'|| ttktt

HAC −= −γΓ
HAC thus effectively employs only the first m-1 autocovariances, and replaces the others 
with zeros.  At the same time it down-weights or damps the autocovariances it does use 
by the Bartlett Kernel factor (m-j)/m.  For both these reasons, it tends to underestimate 
the coefficient variances.  However, the amount by which it does this depends on both the 
γj and the degree of serial correlation of the regressors themselves.   

                                                 
2  Many authors, including Hayashi (2000: 408), divide by T rather than T-j in (5), giving what may be 
called the weak estimates of the autocovariances.  This effectively applies the untruncated Bartlett filter 
weights of Kiefer and Vogelsang (2002) etc. to the strong autocovariance estimates.  (See below.)  
Applying an additional factor of T/(T-k) will debias the estimate of γ0 in the absence of serial correlation, 
but this adjustment is small in even moderate samples.   
3  EViews, following a suggestion of Newey and West, uses , which has very 
similar effect for T in the range 50 – 2000, and generally identical effect in the range 400 – 1000.   

1))100/(4floor( 9/2 += Tm
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 To illustrate this effect, we may, with no loss of generality, choose an orthogonal 
basis for the regressors, retaining a vector of units as the first regressor, so that  and 
its inverse are diagonal, and each regressor after the first has zero mean.  Let  
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be a measure of the serial correlation of the j-th orthogonalized regressor at lag i.  It can 
then be shown that the true variance of  given by (2) exceeds its OLS variance as 
given by (3) by a factor of  

jβ̂
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whereas the expected NW variance estimator (8) exceeds the OLS variance by a factor of 
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 The serial correlation in econometric regressions is often to a first approximation 
AR(1) in structure, 
  ,1 ttt u+= −ϕεε        (10) 
where 0 <<  < 1 and the innovations ut are iid.  Under (10), the autocovariances are  
  .        (11) i

i ϕγγ 0=
In a simple money demand regression, for example, with log real money balances as the 
dependent variable and a constant, log real income, and an interest rate variable as the 
explanatory variables, it is not unusual for the estimated first order serial correlation to be 
on the order of 0.9 using quarterly data.4   
 
 The unitary first regressor is perfectly correlated with itself at all lags, so that  
  .        (12)  TiTri /)(1 −=
The other rij are necessarily less than this in absolute value.  If regressor j has a 
pronounced upward trend, as does real income, for example, rij will be near this upper 
bound for the smaller values of i for which  is still perceptible.  For i > T/2, riϕ ij will 
actually tend to be negative, but by then  will be essentially zero.  Even if the regressor 
is stationary without drift, such as the unemployment rate, interest rates, or inflation, it 
may still have a value very near this upper bound for the values of i for which  still 
matters.  In many cases, therefore, the f

iϕ

iϕ
j will be near the maximal value as determined by 

(12). 
 
 Table 1 shows illustrative values of , , and their ratio , the 
factor by which HAC underestimates the variance, for various sample sizes T, using 

OLS
jf HAC

jf HAC
jj ff /

                                                 
4  For example, the median-unbiased estimate of the first order persistence of the residuals of the money 
demand equation reported in Table 3 below is 0.920.  
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bandwidths m determined by the Stock and Watson “benchmark” formula (7).5  It is 
assumed for this illustration that the errors are AR(1) with ϕ = 0.9, and that the rij take on 
their “worst case” value (12).   
 

Table 1 
Factor by which HAC can underestimate coefficient variance. 

AR(1) errors with ϕ = 0.9, maximal rij as in (12). 
 

  T  m OLS
jf  HAC

jf  HAC
j

OLS
j ff /  

    65   3 14.27   2.67 5.34 
  150   4 16.75   3.47 4.83 
  300   5 17.84   4.22 4.23 
  500   6 18.29   4.91 3.73 
  800   7 18.56   5.56 3.34 
1200   8 18.70   6.12 3.04 
   104 16 18.96   9.83 1.93 
   105 35 19.00 13.98 1.36 
   106 75 19.00 16.60 1.14 
  ∞  ∞ 19.00 19.00 1.00 

Note:  = True variance/OLS variance OLS
jf
HAC
jf  = HAC variance/OLS variance 

HAC
j

OLS
j ff /  = True variance/HAC variance 

 
 It may be seen from the last column of Table 1 that with as few as 106  
observations, the potential bias in the HAC covariance matrix is down to the tolerable 
level of 14%.  A million is admittedly far short of infinity.  However, with more typical 
macroeconometric sample sizes, on the order of a few hundred if that, HAC can easily 
underestimate the covariance matrix by an unacceptable factor of 3 – 5, and therefore 
overstate t-statistics by an equally unacceptable factor of approximately 1.7 – 2.2.  Since 
econometric practitioners are always in search of “good” (i.e. big) t-statistics, it is small 
wonder that the HAC “correction” for serial correlation has become so popular.6   
 
 The situation is even worse in a regression whose dependent variable consists of 
overlapping multi-period averages.  Multi-period averaging does greatly reduce the 
                                                 
5  The selected values of T up to 1200 are round numbers that generate the indicated integer values of m, 
with only minimal rounding.   
6  The findings of Table I are corroborated already by the simulations of Andrews and Monahan (1992).  
They develop a Quadratic-Spectral HAC (QS-HAC) estimator that has better asymptotics than truncated-
kernel HAC, but which has similar effect with moderate sample sizes.  Their simulations comparing the 
coverage of parametric AR(1) confidence intervals to that of their QS-HAC estimator find that the 
parametric estimator always does better in the absence of Regressor Conditional Heteroskedasticity (RCH), 
even without the AR(1) debiasing of Andrews (1993), and even when the true model is MA(m) rather than 
AR(1).  See their Table IV top and Table V bottom.  The AR(p) correction proposed here would fit MA(m) 
even better than AR(1).  Their other tables do demonstrate that in the presence of acute RCH, it can be 
quite beneficial to take this into account as well. 
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residual variance and therefore OLS estimates of standard errors.  However, the 
averaging also generates serial correlation even if none was present to begin with, and 
therefore makes these standard errors invalid. Using non-overlapping observations would 
eliminate the induced serial correlation, but would then reduce the sample size and push 
the OLS standard errors back up, perhaps even higher than with a non-averaged 
dependent variable.  The HAC undercorrection for serial correlation has understandably 
become virtually de rigueur in such studies. 
 
 Stock and Watson (2007: 647) do recognize this overlapping average problem, 
and suggest increasing m in this circumstance, but again provide no rule for how to do 
this.  A value of m equal to a large multiple of the averaging horizon would be required to 
overcome the Bartlett factors employed by the standard HAC estimators.  And simply 
replacing the Bartlett factors with unity would not address the problem that any 
autocorrelations of order m and higher are completely ignored by HAC.   
 
3.  Median-Unbiased Estimation of Higher Order Autoregressive/Unit Root Models 
 
 Andrews (1993) corrects the OLS estimate of an AR(1) regression such as (10) by 
simulating the process with Monte Carlo simulations and then finding the function m(ϕ) 
that gives the median of the OLS estimate of the AR(1) coefficient as a function of the 
true coefficient.  He then inverts this function at the actual OLS estimate  to find the 
median-unbiased (MU) estimate :   

OLSϕ̂
MUϕ̂

)ˆ(mˆ 1 OLSMU ϕϕ −= .   
This method is exact, to within Monte Carlo simulation error.7   
 

Since the median-unbiased estimate of ϕ will lead to median-unbiased estimates 
of the higher order autocorrelations  (for ϕ ≥ 0) and of the Cumulative Impulse 
Response, CIR = 1/(1-ϕ), whereas a mean-unbiased estimate of ϕ would lead to mean-
biased estimates of these and other important nonlinear functions of ϕ because of 
Jensen’s Inequality, he argues that the median-unbiased criterion is more useful for the 
AR(1) coefficient than the mean-unbiased criterion.   

iϕ

 
Although Andrews (1993) dealt only with a univariate process that incorporates a 

constant and/or time-trend, the method can easily be applied to the residuals of an OLS 
regression, as follows:  Zero-mean, trendless AR(1) errors ε may be simulated directly 
from (10) for any value of ϕ.  The errors may then be converted into simulated residuals e 
using the X matrix in question, by means of (4).  Equation (10) may then be estimated by 
OLS using these residuals, and the median function computed from these OLS estimates.  
Fortunately, this procedure does not depend on the true regression coefficients, or on the 
unknown variance of the innovations.   
                                                 
7  The method of Roy and Fuller (2001) is similar in spirit to that of Andrews (1993).  However, Roy and 
Fuller estimate the AR coefficients indirectly from the t-statistic for the hypothesis of a unit root, rather 
than directly from the estimated AR(1) coefficient or sum of AR coefficients as in Andrews and Chen 
(1994).  Since the expected AR(p) standard errors are themselves functions of the AR coefficients, little if 
anything is gained by taking them into account in addition to the estimated coefficients.  
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Andrews (1993) notes that an exact confidence interval for ϕ can easily be found 

y also computing quantile functions for quantiles other than the median.  Since the 
distribu

r 
n 
e 

 does not mention it, if the method is applied as 
escribed above to the residuals of an OLS regression, his unit root test becomes an 

erties 

b
tion of the OLS estimator is monotonic in the true parameter, the .025 quantile 

function, for example, can be inverted at the sample OLS estimate to obtain the uppe
bound of a one-sided .975 confidence interval.8  Similarly, the .975 quantile function ca
be inverted to obtain the (necessarily lower) lower bound of a one-sided .975 confidenc
interval.  The intersection of the two one-sided intervals is then a two-sided 95% 
confidence interval.  If the inverted p-quantile function of OLSϕ̂  is less than unity, a unit 
root may be rejected at level p.    
 
 Although Andrews (1993)
d
exact, finite sample test for cointegration that does not rely on any asymptotic prop
of the estimator.  It is, however, contingent on an AR(1) error structure.   
 

 
Figure 1 

 
 Figure 1 illustrates these extensio rews’ method, using the residuals of 

e OLS money demand regression discussed in Section 5 below.  For each value of the 
                                                

ns of And
th

 
8  When applied to regression residuals, this upper bound is essentially equivalent to the exact critical value 
of the Durbin-Watson (1950) one-sided test for zero first order serial correlation.    
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true AR(1) coefficient ϕ, 999 simulated sets of errors obeying (10) are generated.9  Thes
are converted to simulated OLS residuals using (4).  These residuals are then fit to (10) 
by OLS (with no constant, since the column of units in X forces the residuals to sum to 0) 
to obtain 999 simulated values of OLSϕ̂ .  These are sorted and used to compute the 
median and any other desired quantiles of the distribution.  Since there is no 
unconditional distribution from wh to initialize a simulated AR(1) process with 

e 

ich 1>ϕ , 
it is assumed that 1≤ϕ . 
 
 The monot ncone i reasing blue line representing the median is consistently below 

e black 45 degree line representing the true AR(1) coefficient.  The gap between the 

ed 

th
two grows as  ϕ increases, reflecting the increasing bias in the OLS estimator as the unit 
root is approached.  The actual residuals gave 904.0ˆ =OLSϕ .  This matches the simulat
median for the (AR(1)) Median Unbiased estimate of 950.0ˆ =MUϕ .  That is to say, for 
any 950.0≤ϕ , the probability of obtaining an  of 0.904 or higher is no 
more than 0.50, while for  any  950.0≥

OLS estimate
ϕ  the probabil ng 0.904 or lower is 

at lea
 
 A 95% 

ity of obtaini
st 0.50.   

confidence interval for ϕ can similarly be obtained by matching the .975 
nd .025 quantiles of the simulated distribution (in magenta) to the actual OLS point 
stimat

a
e e.   904.0ˆ =OLSϕ  is the .975 simulated quantile for  873.0=ϕ .  It follows from 
the monotonicity of each of the quantile functions that for any 873.0≤ϕ , the probabi
of obtaining .904 or higher is 0.025 or less. Furthermore, 0.873 is the smallest value for 
which this is true, so that 0.873 is the appropriate lower bound for a 95% confidence 
interval.    
 
 In th

lity 

e present illustration, matching the .025 quantile of the simulated distribution 
 the OLS estimate only occurs for to 1=ϕ .  The 95% confidence interval therefore is 

simulated probability of with 

(.873, 1).   
 
 The 904.0ˆ ≤OLSϕ 1=ϕ  is .207, so that a unit root in 

e errors cannot be rejected at even the .20 level, assuming for the moment an AR(1) 
test f

Although an AR(1) model is often a good first approximation to the 
utocovariation function, there is frequently evidence of higher order serial correlation.  
his m ny stationary 

                                                

th
structure.  Note that this is in fact an exact finite sample or cointegration, conditional 
on an AR(1) structure.  Since a unit-root test is appropriately single-sided, a (positive) 
unit root can be rejected at say the 5% level if and only if unity lies outside the 90% CI 
for ϕ.  
 
 
a
T ay not be truly autoregressive, but an AR(p) model can approximate a
Γ to any desired precision, given a high enough value of p.   

 
9   Throughout this paper, GAUSS proc rndKMu was used to generate iid normal pseudo-random variables, 
together with the hexadecimal seed E41E9415, obtained by radioactive decay courtesy of Walker (2001).   
Using the same seed for each value of the parameter(s) ensures that each quantile is a smooth function of ϕ.    



 11

 
Andrews and Chen (1994) approximately median unb
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ias a univariate AR(p) 

odel similar to    

j
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1
3) 

g it in the Augmen
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p

t uεϕε ,       (1
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by first rewritin ted Dickey-Fuller (ADF) form  

( ) tjtjtjtt u+−+= ∑
p

j=

1

  (14) 

where  

.   

They argue persuasively that the sum of the AR coefficients α is a more natural measure 
of persistence than the largest inverted root of the AR polynomial, since it determines the 

 

ws and Chen argue that the ADF-form AR(p) model (14) cannot be exactly 
edian unbiased by generalizing the method of Andrews (1993), because the distribution 

iasing all p parameters of this 
odel.  For this purpose we first further rearrange (13) into what might be called 

−−−−
1

11 εεψαεε ,   

∑∑
+==

−==
p

jh
hj

p

j
j

11
, ϕψϕα

Cumulative Impulse Response of the model, CIR = 1/(1-α).  Furthermore, although α < 1
is not the only necessary condition for stationarity, it is the one that is most likely to be an 
issue in econometric data.  Since linear combinations of median unbiased estimators are 
not necessarily median unbiased, it does make some difference whether (13) or (14) is 
considered.   
 
 Andre
m
of the OLS estimator of each parameter depends not only on the parameter itself, but also 
on the true (and therefore unknown) values of the other p-1 parameters as well, and a 
single equation cannot be solved for p unknowns.  Consequently, they only univariately 
median-unbias their estimate of α, conditional on OLS estimates of the ψj.  Since the 
OLS estimates of the ψj are biased as well (though ordinarily not to the same degree), 
their estimates are only approximately median unbiased.   
 
 However, there is in fact no obstacle to median-unb
m
Recursive ADF, or Persistence form, as follows:       

 ∑
=

(15) 

here  

                                                

−
− +Δ=

p

j
tt

j
jt u

1
1

1εαε ,        

w

 
10  Andrews and Chen in fact include a constant and time trend term in a univariate model.  The present 
proposal is concerned with the less restrictive case of a general OLS regression.  If the regression includes 
nothing but a constant and time trend, the results of the present two-step procedure will be very similar, if 
not quite identical, to those of their one-step procedure.   



 12

            (16) 

,)1(
1
1

,)'(

,)',(
,

1

1

1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−

=

=

=
=

−i

p

p

i
j

A

φ

α
Aφα

ϕϕ

αα

K

K

and  indicates the j-th difference operator (1-L)jΔ j.  Note that 1−= AA , so that  
as well.  We will refer to α

Aαφ =

j as the j-th order persistence.   
 
 The first order persistence α1 of (15) is identically equal to the Andrews-Chen 
persistence α of (14).  When this equals unity, (14) becomes a p-1 order autoregression in 
first differences.  The persistence of this new autoregression (and therefore its greatest 
potential source of bias) is then the sum of the ψj’s, which is simply our second order 
persistence α2, and so forth.  The p-th order persistence αp identically equals the p-th 
order autoregressive coefficient ϕp times (-1)p+1, so that ϕp = 0 if and only if αp = 0. 
 
 Let mi(α) be the Monte-Carlo median of the OLS estimate of αi obtained from 
regression residuals generated by (4), with errors simulated using α.  Equating these p 
functions to the p actual OLS estimates of αj, we in fact have p equations in p unknowns 
that can readily be solved for , using a simple iterative procedure.  Since , 
we then have  as “median-unbiased” estimates of ϕ, in the sense that they 
correspond to truly median-unbiased estimates of α.      

MUα̂ 1−= AA
MUMU αAφ ˆˆ =

 
 An exact 100(1-p)% confidence interval for each parameter (conditional on 
median-unbiased estimates of the other parameters) can be found by solving its p/2 and 1-
p/2 quantile functions simultaneously with the median functions of the other p-1 
parameters.11  Likewise, an exact size p test for cointegration (again conditional on 
median-unbiased estimates of α2, … αp) can be obtained by solving the 1-p quantile 
function for α1 together with the median functions of the other parameters.   
 
 The autocovariation function may be estimated consistently by considering values 
of the autoregressive order p up to and including a value such as  
  ,       (17) )75round(. 3/1

max Tp =
the “benchmark” formula (7) recommended by Stock and Watson (2007) for HAC.12  
Parsimony may be enforced with a general-to-specific model selection procedure that 
starts with p = pmax and tests the hypothesis αp = ϕp (-1)p+1 = 0 as described above at 

                                                 
11  The median-unbiased values taken on by the other parameters will ordinarily be different at the upper 
and lower confidence bounds.  
12  As noted in Footnote 3 above, the formula  has very similar effect for T in 
the range 50 – 2000.  

1))100/(4floor( 9/2 += Tm
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some appropriate test size, say .05, sequentially reducing p by 1 if the hypothesis cannot 
be rejected.13   
 
4.  MUAR-AC Covariance Matrix Estimation 
 
 Once the autoregressive order has been determined and  is found, the sum of 
squared residuals of (15) may be used to estimate var(u

MUα̂
t), and the Yule-Walker equations 

solved for .  The Median-Unbiased Autoregressive, Autocorrelation Consistent 
(MUAR-AC) covariance matrix is then  

MUΓ̂

  .   11 )'(ˆ')'(ˆ −−− = XXXΓXXXC MUACMUAR

 
The MUAR-AC estimates could in principle be used to iteratively re-estimate the 

regression by Feasible Generalized Least Squares (FGLS).  However, Hayashi (2000: 59) 
warns that “Very little is known about the finite-sample properties of the FGLS 
estimator.”  It therefore may be safer, when the correlation structure must be estimated, to 
stick with the OLS regression coefficients, and to only use the estimated correlation 
structure to adjust the standard errors, as in the Newey-West procedure.   
 
5.  Money Demand 
 

The demand for money has long been of concern to macroeconomists, but the 
search for it has been plagued by the problems of serial correlation and near-unit-root 
dynamics in the residuals.  Meltzer (1963), for example, early-on estimated a plausible 
U.S. money demand equation by OLS, but Courchene and Shapiro (1964) quickly 
demonstrated that Meltzer’s equation suffered from severe positive serial correlation and 
hence that his standard errors were greatly understated and his t-statistics comparably 
overstated.  Goldfeld (1973) and Hallman, Porter and Small (1991) add one or more lags 
of their respective dependent variables in an effort to reduce or eliminate serial 
correlation, but these lag coefficients also suffer from AR bias.  Point estimates of the 
sum of the lag coefficients that appear to be different from unity by the standard OLS t-
test may in fact be masking a spurious regression.   
 

The present paper illustrates the use of the MUAR-AC covariance matrix by 
applying it to OLS estimates of the postwar US money demand function.  For this 
purpose, money is measured as “M1-S”, the sum of official M1 plus estimated retail 
sweep accounts.14   
 

Prior to 1995, official M1 consisted of currency in circulation plus all checking 
accounts (plus a negligible quantity of non-bank travelers’ checks), and thus represented 
                                                 
13  This procedure does not consistently estimate the autoregressive order of a pure AR(p) process, since 
there is always a 5% chance that it will be too high.  Nevertheless, MUAR will consistently estimate each 
coefficient, even if the order is unnecessarily high.   
14   Dutkowsky and Cynamon (2003) apply the term “M1-S” to a similar aggregate, which is a non-additive 
combination of official M1 and estimated sweep accounts.  However, as Anderson (2003) points out, sweep 
accounts and M1 checking accounts are equivalent from the depositors’ point of view, and therefore should 
be aggregated one-for-one.   
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“narrow money.”  Since 1995, however, official M1 has omitted the rapidly growing 
portion of checking accounts known as “Retail Sweep Accounts” (Anderson 2002).  
Official M1 is therefore a meaningful measure of narrow money only up to 1995.  Since 
1995, data is available from the Federal Reserve Bank of St. Louis for estimated 
cumulative conversions to sweeps.  This gives at least a rough idea of the magnitude of 
total sweep accounts.15  Figure 2 shows, on a dollar scale, monthly official M1 (SA), 
estimated sweep accounts S, and their sum, M1-S.  This series was used to compute m = 
Real M1-S, averaged quarterly and deflated by the GDP deflator (SA).16   

 
Figure 2 

Estimated Sweep Accounts (red), Official M1 (SA, blue),  
and their sum, M1S (magenta), monthly. 

 
 

Figure 3 depicts M1-S velocity, V = y/m, in units of yr-1, computed from m = 
Real M1-S and y = real GDP (SA, quarterly, not shown).  It may be seen that velocity 

                                                 
15  Estimated sweeps data was acquired from St. Louis Fed Research Dept.,  
<http://research.stlouisfed.org/aggreg/swdata.html>.  It is unfortunately to be expected that the quality of 
the measure may deteriorate toward the end of the period, since the sweep account proxy neglects any 
growth that has occurred in sweep accounts since their conversion.    
16  Data other than estimated Sweeps were obtained from FRED (<http://research.stlouisfed.org/fred2/>): 
series GDPDEF (GDP Implicit price deflator, SA), GDPC96 (real GDP in billions of chained 2000 dollars, 
SA annual rate), M1SL (BOG monthly M1, SA), and TB3MS (3-month Treasury Bill Rate, secondary 
market, NSA, monthly, averaged here to quarterly). 



 15

rose fairly steadily to 1981.  Since then it has generally declined but at an uneven rate, 
with local peaks around 1984, 1990, 2000, and 2007.  Despite the general decline, it has 
never fallen below its pre-1975 levels.     
 

 
Figure 5 

M1S Velocity, V = y/m (yr-1), quarterly 
 

The 3-month Treasury Bill rate R (not shown) has an uptrend to 1981 and 
subsequent downtrend with numerous vacillations, including local peaks near 1984, 
1990, 2000, and 2007.  Its behavior may help account for the fluctuations in M1-S 
velocity, though there are apparently economies of scale in money holding that account 
for the residual uptrend in this velocity measure.     
 
 It is assumed that observed real M1-S money balances mt equal desired real 
money balances plus (in logs) an error εt that is normal but may be serially correlated.  
Desired real money balances are assumed to have a constant real income elasticity a, and 
a constant interest semielasticity b:   
  log mt = c + a log yt + b Rt + εt.       (18) 
The regressors are assumed for the purposes of the present study to be exogenous and 
thus independent of the errors, though it may be appropriate to revisit this assumption in 
future work.   
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The regressors are first normalized by subtracting their terminal (2007 Q4) values, 
so that the intercept c represents estimated log real money demand for this terminal 
quarter.  With this normalization, the t-statistic on the intercept is not interesting, but its 
standard error then directly indicates the precision with which equilibrium 2007Q4 M1-S 
demand is determined.   
 
 Equation (18) was fit by OLS with data for 1959Q1 – 2007Q4 (n = 196 
observations).  Columns 2-4 of Table 2 shows the OLS estimates, standard errors, and t-
statistics.  The OLS t-statistics for the regressors are offscale for significance, while the 
intercept results appear to indicate that equilibrium 2007Q4 M1-S demand is known to 
within a s.e. of only 1%.   
 

Table 2 
OLS coefficient estimates of (18), 

with OLS and Newey-West standard errors and t-statistics. 
(196 observations, 1959Q1 – 2007Q4) 

 
 OLS Newey-West 

coef. est. s.e. t-stat s.e. t-stat 
c 7.4426 0.0104 ------- 0.0185 ------- 
a  0.6621 0.0114  58.24 0.0195   33.95 
b -0.0403 0.0019 -21.25 0.0032 -12.52 

DW 0.1835     
 
 Unfortunately, the Durbin Watson statistic DW is also offscale for significance, 
resoundingly indicating at least first order serial correlation.  Figure 4 depicts the OLS 
residuals.  These obviously indicate serially correlated errors.  The residuals do appear to 
be mean-reverting, but this may simply be an artifact of the circumstance that the errors 
themselves have been demeaned by the constant term in the regression, virtually 
detrended by the inclusion of log(y), and then further manipulated by the inclusion of R 
in the regression, as governed by (4).  The appearance of stationarity may therefore be 
illusory, and the regression therefore spurious.   
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Figure 4 

OLS residuals of equation (18). 
 
 The last two columns of Table 2 give the Newey-West HAC standard errors and t-
statistics for the three coefficients, using a bandwidth of m = 4 as computed from the 
Stock and Watson “benchmark” formula (7).  The standard errors are 68-78% larger than 
the OLS standard errors, yielding t-statistics that are proportionately smaller, but still in 
the double digits.    
 

The blue line in Figure 5 shows the autocorrelations of the residuals in Figure 4, 
for lags up to 16 quarters.  These die virtually to zero by lag 12.  However, these may be 
biased downwards, for much the same reason autoregressive coefficients are biased in 
small samples.   
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Figure 8 

Autocorrelations of the residuals of equation (18) (blue),  
with Newey-West attenuated autocorrelations (red). 

 
The red line in Figure 5 indicates the estimated autocorrelations, after attenuation 

by the Bartlett kernel factor (6) employed in the Newey-West estimator.  With bandwidth 
m = 4, the autocorrelations of order 4 and higher are all assigned weight 0 and therefore 
ignored altogether, while the lower order autocorrelations are greatly attenuated.  With an 
infinite sample, the bandwidth would become infinite and the attenuation factors would 
all be unity, so that the HAC standard errors do consistently estimate the true standard 
errors.  However, with this or almost any other finite sample, they will greatly understate 
the true uncertainty of the parameters.     

 
Our MUAR-AC estimator requires that we first compute pmax = 4 using (17), and 

then consider AR(p) models beginning with this order and working downwards.  Column 
2 of Table 3 below gives the OLS estimates of the standard-form AR(4) coefficients 

OLS
jϕ̂  computed from the OLS residuals of (18).  Column 3 shows the correspon

persistence- or recursive ADF-form coefficients .   

ding 
OLS
jα̂
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Table 3 
OLS and Median-Unbiased estimates of AR(4) coefficients. 

95% CI lag j OLS
jϕ̂  OLS

jα̂  MU
jα̂  

lower upper 
MU
jϕ̂  

(1) (2) (3) (4) (5) (6) (7) 
1  1.140  0.884  0.920  0.848  1.000  1.152 
2 -0.503  0.292  0.242 -0.085  0.467 -0.499 
3  0.528 -0.317 -0.288 -0.622 -0.008  0.545 
4 -0.282  0.282  0.278  0.130  0.414 -0.278 

 
 Column 4 of Table 3 gives the median-unbiased persistence-form estimates , 
found by simultaneously matching the median functions for each coefficient to the OLS 
estimates in column 3, using 1000 Monte Carlo replications for each trial value.

MU
jα̂

17  
Although the MU estimate of α1 is only 0.036 above the OLS estimate, this reflects a 
45% increase in persistence, as the Cumulative Impulse Response increases from 1/(1-
0.884) = 8.62 to 1/(1-0.920) = 12.5.   
 
 Column 7 of Table 4 gives the median-unbiased standard-form estimates  

derived from the  using (16).  Although their sum has increased by the same 
substantial 0.036, this increase is spread almost unnoticeably over the four coefficients.   

MU
jϕ̂

MU
jα̂

 
 Columns 5 and 6 of Table 4 provide the lower and upper bounds of a 95% 
confidence interval for each αj.  The lower bound of 0.130 for α4, for example, was found 
by simultaneously matching the simulated median functions for α1, α2 and α3 together 
with the .975 quantile function for α4 to the OLS estimates in column 3.  Assuming that 
each quantile for  is monotone increasing in the true value of αOLS

jα̂ j, holding the other 
coefficients constant at their true value as proxied by their median values, the probability 
is thus .025 or less that  could be as high as 0.282 for any αOLS

4α̂ 4 ≤ 0.130.  Likewise the 
upper bound of 0.414 for α4 means that the probability is .025 or less that  could be 
as low as 0.282 for any α

OLS
4α̂

4 ≥ 0.414.   
 

Note that the lower and upper bounds of the 95% CI are based on two separate 
one-tailed tests at the .025 level, using estimates of the first 3 parameters that are 
potentially different from one another as well as from the MU estimates in column 4.  
Thus for the lower bound, the four estimates are (0.920, 0.243, -0.276, -.130), while for 
the upper bound they are (0.920, 0.243, -0.290, 0.414).18

 
                                                 
17  The entire estimation, with 1000 replications for each trial set of parameters, a tolerance of .0001, and 
including confidence intervals for 4 different confidence levels (not all tabulated) takes about 90 seconds in 
GAUSS on a recent PC.  It is important that the same seed be used for each trial value, so that the simulated 
median function will be a smooth function of the trial parameters.   
18  Since the first two coefficients are essentially unchanged and the third varies only slightly in this 
example, it may in general be adequate simply to use the MU point estimates of the nuisance parameters 
when calculating the confidence intervals.   
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 Since the 95% CI for α4 well excludes 0, an AR(3) model may easily be rejected 

 

As it happens, in an AR(2) model (not tabulated), α2 is insignificantly different 
om 0 e 

Since unity is included in the 95% CI for α1 in Table 3, a unit root cannot be 
, 

ns, 

 at 

So long as a unit root can be rejected at even the 50% level (i.e. so long as 
ard 

errors for the m  coeffici

able 4 gives standard errors for the three money demand coefficients, using both 
the OL

 

Table 4 
OLS coefficient estimate ith OLS, Newey-West,  

AR s. 

 
OLS MUAR-AC 

at the .05 level.  A 2-tailed test is appropriate here, since if α4 is not 0, it could equally 
well be on either side of 0.  Our general-to-specific model selection procedure therefore
retains the AR(4) model.   
 
 
fr at the 5% level.  A specific-to-general model selection procedure starting with th
AR(1) model of Figure 1 would therefore stop with AR(1).  However, since AR(2) is a 
special case of the rejected and therefore presumably false AR(3) model, this test is 
invalid.   
 
 
rejected at the .025 test size.  In the case of a unit root, a one-tailed test is appropriate
since we are not considering values of the persistence greater than unity.19  As it happe
a unitary value for α1 cannot be rejected at the more conventional .05 test size (1-tail), 
either.  However, it can be rejected at the .10 test size, so that we may say that we have
least weakly rejected a unit root.20   
 

1), MUΓ̂  and thence ACMUAR−Ĉ  may be computed and used to calculate stand
oney demand ents themselves.   

 

ˆ1 <MUα

T
S AR(4) coefficients of column 2 of Table 3, and the MUAR-AC coefficients of 

column 7 of Table 3, along with t-statistics computed from the MUAR-AC standard 
errors.  For comparison, the OLS and Newey-West HAC standard errors are repeated
from Table 1.   

s of (18), w
(4) and MUAR-AC standard errors, and MUAR-AC t-statistic

(196 observations on M1-S, 1959Q1 – 2007Q4) 

 
coef. est. s.e. 

NW AR(4) 
s.e. t-stat. s.e. s.e. 

c 7.4426 0.0104 0.0185 0.0334 0  .0468 ------ 
a  0.6621 0.0114 0.0195 0.0364 0.0509 13.00 
b -0.0403 0.0019 0.0032 0.0055 0.0073 -5.52 

 
It may be seen that untruncated and unattenuated AR(4) standard errors are 

already 72-87% higher than the HAC standard errors.  However, these are based on 

                                                

 

 
19  In fact, there is no way to initialize the simulation of such a process, since it must start infinitely far from 
its fixed point.  An exactly unit root process, on the other hand, has no fixed point, and so one starting point 
is as good as another when a constant is included in the regression.   
20  In fact, α1 = 1 is only one of several ways a unit root could occur in an AR(4) model.  Nevertheless, α1 < 
1 is the necessary condition for stationarity most likely to be violated in econometric data.    
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m -biased AR coefficients.  The median-unbiased MUAR(4) standard errors ar
another 33-40% higher than the AR(4) standard errors, and thus 128-153% higher th
HAC, not to mention 284-350% higher than OLS.  Equivalently, the HAC t-statistics 
Table 1 are 128-153% too high, while the OLS t-statistics are 284-350% too high.   
 
 Figure 6 shows the unrestricted autocorrelations of Figure 5, alongside the 

edian e 
an 
of 

utocorrelations implied by the OLS AR(4) and MUAR(4) coefficients of Table 3.  Since 
d 

ly 
e 

f 

a
the OLS AR(4) coefficients simply match the first four autocorrelations as compute
from almost the same set of points as the unrestricted autocorrelations, these match 
almost exactly out to lag 4.  Although higher order than pmax = 4 was not considered, 
AR(4) does happen to match the other unrestricted autocorrelations out to lag 16 fair
well.  Beyond lag 16, the AR(4) autocorrelations continue to decay to zero, whereas th
unrestricted autocorrelations (not plotted) flop persistently but aimlessly on either side o
zero.21  The MUAR(4) autocorrelations are naturally much more persistent than the 
AR(4) autocorrelations, because OLSMU

11 ˆˆ αα > .    
 

 
Figure 9 

Unrestricted, AR(4) and MUAR(4) autocorrelations. 
 
                                                 
21  Since the lower order autocorrelations are non-zero and large, it is to be expected that the estimated 
higher order autocorrelations will be persistent, and frequently lie outside the bounds for autocorrelations 
based on the null that all the autocorrelations are zero.   
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 The greate ted in Figure 6 is 
nly one of two reasons why the MUAR standard errors in Table 4 are higher than the 

d 
irectly from 

r persistence of the MUAR(4) autocorrelations illustra
o
AR(4) standard errors.  The second reason is illustrated in Figure 7, which shows the 
actual unrestricted, AR(4) and MUAR(4) autocovariance estimates, i.e. the 
autocorrelations of Figure 9 times their respective estimates of γ0.  The unrestricted an
AR(4) estimates of γ0 are somewhat different, because the one is computed d
the sum of squared residuals tε̂ , while the other is reconstructed from the sum of squared
OLS residuals of the autoregression OLS

tû , together with the autoregressive coefficients.  
The MUAR(4) estimate of γ

 

0 is much higher than either of these, both because it is based 
on the MUAR autoregressive residua MU

t , whose sum of squares is necessarily greater 
than that of the Least Squares (LS) AR(4) residuals, and because the MUAR 
autocorrelations are more persistent than the LS AR residuals.   

ls û

 
Figure 10 

Unrestricted, AR(4), and MUAR-AC autocovariances. 
 
 Even thou  in comparison 

 OLS or even HAC, they are still offscale for significance.  The M1-S money demand 
come

gh the MUAR t-statistics of Table 4 are greatly reduced
to
in  elasticity and interest semi-elasticity are therefore very well defined by the data, 
with the appropriate signs.  The intercept, and therefore the equilibrium level of 2007Q4 
M1-S demand, is accurate to approximately 4.7%.  This suggests that M1-S may be a 
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useful, if inexact, indicator of monetary policy, and that the Fed should make every eff
to collect true data on sweep accounts.

ort 

.  Possible Extension to Regressor-Conditional Heteroskedasticity 

Heteroskedasticity (see McCulloch 1985b) is a distinct problem from 
e present 

Heteroskedasticity may be of (at least) four types:  A Priori, External, Sequential, 
and Re

 
s 

In External Heteroskedasticity, the variances are some unknown function of 
variabl ate 

In the very common problem of Sequential Heteroskedasticity, the absolute 
values l 

 
 

In Regressor Conditional Heteroskedasticity (RCH), the variances are some 

by the 

White (1980) provides a test for RCH in the absence of autocorrelation based on 
e R2 

                                                

22   
 
6
 
 
autocorrelation, but one that also frequently arises in econometric models.  Th
section discusses possible extensions of the MUAR-AC to incorporate Regressor-
Conditional Heteroskedasticity.   
 

gressor-Conditional.  A Priori Heteroskedasticity arises when the variance is 
known or may be computed from observable variables, up to an unknown constant of
proportionality.  Weighted Least Squares (WLS) provides efficient coefficient estimate
with correct standard errors.   
 

es not necessarily included in the regression.  Packages such as E-Views estim
this function from a user-provided list of variables, and then estimate the regression by 
WLS.23   
 

of sequential errors are correlated, without regard to the regressors or externa
variables.  Models that incorporate such “volatility clustering” include Autoregressive
Conditional Heteroskedasticity or ARCH (Engle 1982), Generalized ARCH or GARCH
(McCulloch 1985a; Bollerslev 1986), and the Local Scale Model (Shephard 1994; 
McCulloch 2006). 
 
 
unknown function of the regressors themselves.  This is not necessarily the most 
important or most prevalent form of heteroskedasticity, but is the form addressed 
famous White (1980) Heteroskedasticity Consistent Covariance (HCC) matrix that has 
become intimately intertwined with the Autocorrelation Consistent covariance matrix 
literature.24   
 
 
th of a regression of the squared errors on a generalized quadratic function of the 
regressors that provides a second order approximation to the unknown true function.  

 
22  Because a unit root can only weakly be rejected (at the 10% level), these results should be interpreted 
with caution, and a model with explicitly time-varying coefficients such as Adaptive Least Squares 
(McCulloch 2005) might be more appropriate.  This possibility goes beyond the scope of the present paper.   
23  It would be even easier to simply estimate the regression consistently by OLS, and then to adjust the 
standard errors of the OLS coefficient estimates for any external heteroskedasticity detected in the OLS 
residuals, in the spirit of NW-HAC and the present paper.  Unfortunately, EViews does not offer this 
option.   
24  Andrews and Monahan (1992) do find that neglecting RCH can lead to substantial distortion of 
coverage, but only in simulations in which the RCH is of an artificially extreme form.   
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This test could readily be generalized to account for the presence of autocorrelation, as
quantified by MUΓ̂ .  However, this could be done either by specifying that the variance 
the regression rs ε

 
of 

erro

The ingenious Heteroskedasticity Consistent Covariance (HCC) matrix of White 
(1980) 

corrects asymptotically for RCH in the absence of serial correlation.  Although RCH is a 

−−= XXGXXXX  

t is a quadratic function of the regressors, or by specifying that the 
variance of the innovations ut is a quadratic function of the regressors.  Future research 
should consider both approaches. 
 

  11 )'(')'(ˆ −−= XXDXXXXCHCC  
where  

( )2)(eD diag=  

completely different, and less common, issue than serial correlation, a similar correction 
for RCH is incorporated into the HAC estimator of Newey and West (1987), so that the 
two literatures have become closely intertwined.  MUAR-AC could be modified with a 
White-type adjustment to take RCH into account (MUAR-HAC), if and when it is 
detected, as follows:   
  ˆ −C HACMUAR 11 )'(')'(
where  
  ( )''||' ˆ/ˆ tt

MUAR
tttt ee −−= γγG  

This is not impl t emented in the presen paper, but is left for future research. 

The VAR-HAC estimator of den Haan and Levin (1997) incorporates a consistent 
autoreg

ias 

Yet another approach is the very interesting Heteroskedasticity and 
Autoco ng and 

where  

tion for bias.   The com tations of Abadir and Paruolo (1996, 2002) 

n that 

 

ressive adjustment for serial correlation in the spirit of the present proposal, along 
with a VAR-based adjustment for RCH, whether or not RCH is present.  However, they 
make no attempt to remove the bias in their AR coefficients, and their method can easily 
be parametrically extravagant.  By focusing on the autocorrelation problem first, the 
MUAR-AC estimator eliminates the AR bias while at the same time being far more 
parsimonious.  If RCH is found to be present, MUAR-HAC would remove the AR b
and still be far more parsimonious than VAR-HAC. 
 

rrelation Inconsistent (HAI) covariance estimator of Kiefer, Vogelsa
Bunzel (2000), as modified by Kiefer and Vogelsang (2002):   

11 )'(')'(ˆ −−= XXXXXXC BcHAI ,  

  ( )TttTeeB tt /|)'|(' −−=  
and c is a correc pu
demonstrate that in terms of the above 2002 version of the statistic (which differs by a 
factor of 2 from that in the 2000 paper), c = 5.588756592.  While HAI makes no 
parametric assumptions about the form of the serial correlation, it is inconsistent i
the limiting covariance estimate is merely an unbiased random variable, rather than a 
limit in probability.  When t statistics are computed using these unbiased variances, 
Abadir and Paruolo’s calculations imply that the 5% critical value for |t| is 2.02, 
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approximately as expected.  However, the 1% critical value is 3.05, which is much higher 
than the conventional 2.58.  The HAI standard errors for the three coefficients of Table 4 
are .0706, .0862, and .0041, respectively, which are sometimes higher and sometimes 
lower than the MUAR-AC estimates.    
 
7.  Conclusion 

It has been shown that the Newey-West (1987) Heteroskedasticity and 
erstate the 

 

The present paper extends the Exactly Median Unbiased estimator of Andrews 

a 

These Median Unbiased Autoregressive (MUAR) estimates of the autocovariance 

of US 

 
 

Despite the greatly increased MUAR-AC standard errors, the income elasticity 
at 

 
 
Autocorrelation Consistent (HAC) covariance matrix estimator can greatly und
standard errors of OLS regression coefficient estimates in finite samples, and therefore 
comparably overstate t-statistics.  Although the bias vanishes in infinite samples and is 
tolerable in samples as small as 106, it can lead to t-statistics that are too high by a factor
of 1.7-2.2 with a sample size of 65-1200 and first order autoregressive serial correlation 
with AR coefficient 0.9.    
 
 
(1993) for a directly observed AR(1) process to the case of an AR(p) process that is only 
indirectly observed via OLS regression residuals.  By allowing the maximum permitted 
order to increase without limit with the sample size, the estimator consistently estimates 
stationary process with any autocovariance function.  It also provides a unit root test (and 
therefore a test for cointegration of the regressors) that is exact up to median unbiased 
estimates of the higher order persistences.    
 
 
function are then used to construct an Autocorrelation Consistent (MUAR-AC) 
covariance matrix for the OLS coefficient estimates.  Applied to a simple model 
demand for narrow money M1-S (official M1 + estimated Sweep Accounts), it is found 
that a unit root in the errors and therefore absence of cointegration can be at least weakly
rejected (at the 10% test size).  The MUAR-AC standard errors are 128-153% higher than
HAC standard errors, or equivalently, HAC t-statistics for any hypothesis concerning the 
coefficients are 128-153% too large.   
 
 
and interest semielasticity of demand for M1-S remain highly significant, suggesting th
narrow money (including all checking accounts) may still be a useful indicator of 
monetary policy, despite the Fed’s reluctance to collect direct data on it.    
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