
 

Comments Welcome 
 
 
 
 
 
 
 
 

PQ-Nash Duopoly: 
 

A Computational Characterization 
 
 
 

J. Huston McCulloch 
 

March 7, 2011 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The author is grateful to participants in the OSU Theory/Experimental brownbag seminar 
for helpful comments and suggestions.   
 
mcculloch.2@osu.edu 
 
PDF with color figures at <www.econ.ohio-state.edu/jhm/papers/PQNash.pdf> 



 ii 
 

 
ABSTRACT 

 

In a duopoly market in which a single good is produced with rising marginal costs 

and in which each firm must choose both price and quantity produced simultaneously, 

there is no single-stage Nash equilibrium in pure strategies.  In particular, the Cournot, 

Bertrand, and Stackelberg outcomes are not Nash equilibria of a single-stage game.   

However, computational solutions with a finite approximation to the continuous 

price-quantity (PQ) strategy space find mixed strategy equilibria in which each firm 

typically has a dominant “regular high price” strategy, accompanied by a string of low-

probability “sale-price” strategies.  The PQ-Nash duopoly model thus provides a rational 

model of equilibrium sale prices and price dispersion. 

These computational results confirm the unpublished findings of Gertner (1986),  

that with continuous strategies, a unique mixed equilibrium exists, in which each firm 

plays a mass point representing the high-price strategy, combined with a continuous 

distribution over lower prices, with quantity a unique function of price.  The 

computational simulations suggest that this PQ-Nash equilibrium results in prices that are 

entirely lower than in the Cournot outcome, but entirely higher than in the quasi-

competitive Bertrand outcome.        

An alternative one-stage game is also considered, in which the good is produced 

to order after each firm sets both its price and a limit quantity on the number of orders it 

will accept at its price.  Computational results are less well conditioned numerically in 

this Produce-To-Order case, but some interesting limited results are reported.   

 



  

1.  Introduction 
 

Consider a duopoly market in which two firms produce quantities Q1 and Q2 of an 

identical good with increasing marginal cost schedules MC1(Q1) and MC2(Q2), and face a 

decreasing demand function D(P).  Consumers are atomistic price-takers with no market 

power, and price discrimination is not feasible.  The two firms offer their output for sale 

at prices P1 and P2.  If the two prices are different, the low-price seller sells out first to 

the highest-demand consumers.  Output is perishable, but any unsold output may be 

disposed of at no cost.  

The optimal cooperative strategy for the two firms is either to merge or to collude, 

and to charge the monopoly price at which combined marginal cost equals marginal 

revenue.  They will then allocate output to the two firms as a “two-plant monopolist” by 

equating marginal cost in the two “plants.”  However, it may be that merging or 

otherwise cooperating is prohibited by antitrust laws, so that they are forced to act as a 

non-cooperative duopoly.  And even if cooperation is permitted, the firms must know 

what the non-cooperative duopoly outcome would be in order to negotiate a division of 

the gains from cooperating.       

Section 2 below shows that the traditional Cournot, Bertrand, and Stackelberg 

duopoly models are not Nash equilibria for a single-stage game in which prices and 

quantities produced are both determined simultaneously.   Section 3 shows that there can 

be no pure Nash equilibria for this game, computes illustrative mixed Nash equilibria, 

and compares the results to the theoretical findings of Gertner (1986).  Section 4 explores 

an alternative one-stage “production-to-order” game, in which firms set prices and limit 

quantities simultaneously, and finds mixed equilibria but no pure equilibria unless firms 
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are equal in size.    Section 5 briefly discusses Stackelberg models, while section 6 

concludes and enumerates unresolved issues.    

 

2.  Traditional models of duopoly  

In order to provide simple illustrations while still permitting variation in both the 

relative sizes of the two firms and the elasticity of demand, the present note considers 

examples in which the marginal cost schedules are linear:  

MC1(Q1) = Q1/a,  

MC2(Q2) = Q2/(1-a), 

where a ∈ (0, .5] is the share of the first, smaller firm in horizontally summed marginal 

cost.  Also in the illustrations, demand is affine in price:  

 D(P) = 1 + e – eP, 

where e > 0 is the absolute value of the price elasticity at the point Q = 1, P = 1.  The 

marginal cost and demand schedules are scaled so that Q = 1, P = 1 is the quasi-

competitive equilibrium outcome, at which price equals marginal cost for both firms.  In 

this outcome, Q1 = a and Q2 = (1-a), as shown by the asterisks in Figure 1, which is 

drawn for a = 1/3, e = 1.  The two-plant monopoly outcome is represented by the + 

symbols.             

  



 3 
 

 

 

Figure 1 

 

Figure 2 below shows the traditional Cournot, Bertrand, Q-Stackelberg and P-

Stackelberg duopoly outcomes in such a market, for the case e = 1 and a = 1/3.   
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Figure 2 

  

In the traditional exposition of the Cournot (1838) model of duopoly, each firm i 

assumes the strategy of its rival firm j to be completely determined by its choice of Qj, 

and that the rival will sell this output at any price, no matter how low.  Firm i then faces a 

residual demand curve equal to Di(Pi) – Qj, as shown in Figure 3 below.  It selects its own 

Pi and Qi so as to maximize its profit with this residual demand curve, by setting 

marginal cost equal to marginal revenue as computed from this residual demand curve.  

Firm j does likewise.  In equilibrium, the two prices must be equal and quantities must 

sum to total demand at the common price.  If each firm knows the other’s marginal cost 

schedule, both can compute the Cournot equilibrium and move there directly, but even if 
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they did not know the other’s marginal cost schedule, they could find this equilibrium by 

iterative learning over time, so long as each can observe the other’s output and they both 

know the demand curve.  The Cournot outcome is represented in the Figures by × 

symbols.  

 

 

Figure 3 

 

The Cournot model appears to be the equilibrium of what might be called a “Q-

Nash” single-stage game, in which each firm’s strategy is defined solely in terms of its 

choice of quantity produced with no regard for price.1  In fact, however, it is the two 

                                                 
1  See, for example, Singh and Vives (1984).   
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duopolists who set price in this economy.  If a consumer were to offer either firm $0.05 

for a unit of output, it would refuse, since it will not settle for anything less than the 

Cournot price ($1.21 in Figure 2).   

Since each firm in fact has a reservation price equal to its offering price as part of 

its strategy, the Cournot model does not adequately describe the strategy space and 

therefore is not a true single-stage Nash equilibrium.  In fact, firm i’s residual demand 

curve equals D(Pi) – Qj only down to Pj, at which point it becomes horizontal at price just 

slightly under Pj, until it reaches the market demand curve, as shown in Figure 4 below, 

for i = 1 and j = 2.   Because of this kink in firm i’s residual demand curve, its marginal 

revenue schedule has a discontinuity at Qi = D(Pj) – Qj at which it jumps from well under 

Pj up to Pj - ε .2  Since marginal revenue now exceeds marginal cost for Qi just above i’s 

Cournot output, firm i will charge Pj - ε and increase its output above the Cournot level.  

Cournot is therefore not a true Nash equilibrium in a world in which the duopolists in fact 

set both price and quantity in a single stage game.  This analysis suggests that the actual 

duopoly price will be below the Cournot price.    

 

 

 
2  This kinked duopoly demand curve differs from that proposed by Sweezy (1939), in that it is less elastic 
above the kink than below.   Sweezy supposed that duopolists would be reluctant to match one another’s 
price increases, but would be quick to match price cuts.   
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Figure 4 

 

 Kreps and Scheinkman (1983) demonstrate that Cournot is the equilibrium of a 

two-stage game in which both firms set their quantity produced in the first stage, and 

then, knowing each other’s production, set their prices in the second stage.  However, if 

the firms choose quantity produced and price simultaneously, or even if they produce first 

but don’t know the other’s production until after prices have been chosen, we are back to 

a one-stage game in which Cournot is not a true Nash equilibrium.  The present paper is 

concerned with the more difficult single-stage duopoly game.     

In the rival Bertrand (1883) model of duopoly, each firm is instead assumed to 

take its rival’s price as its strategy, and to assume that the rival is willing to sell any 
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quantity at this price.  It then sets its own quantity as Qi = MCi

-1(Pj), slightly undercutting 

Pj if necessary in order to sell this output.  However, at any price above the quasi-

competitive price P = 1, one or both firms will need to cut price until P = 1 is reached.  

The Bertrand equilibrium is therefore the quasi-competitive equilibrium in which price 

equals marginal cost for both producers, as shown in Figure 5.  The Bertrand outcome is 

represented in the Figures by the asterisk symbols.  

 

Figure 5 

 

The Bertrand model appears to be what might be called a “P-Nash” equilibrium, 

in which each firm’s strategy is defined entirely in terms of its price.3  In fact, however, 

                                                 
3  See, e.g., Singh and Vives (1984). 
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each firm carefully selects both quantity and price, and would not meet unlimited demand 

at the equilibrium price, as falsely assumed by its rival, so long as its marginal cost rises 

without limit.  Once again each firm has a kinked demand curve, as shown in Figure 6 

below for firm 1, but now since marginal revenue is below marginal cost for quantities 

below the Bertrand outputs at the Bertrand price, firm 1 tries to cut its output, forcing P1 

up above the Bertrand price.  At this price, the market clears, but firm 2 now wishes it 

had charged a higher price as well.  Therefore Bertrand is not a true Nash equilibrium 

either.  This analysis suggests that the true duopoly price will be above the Bertrand 

price.   

    

 

Figure 6 
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3.  PQ-Nash Duopoly 

   The obvious solution is to model both firms as having a strategy defined in terms 

of both price and quantity produced, in what might be called a PQ-Nash Duopoly 

equilibrium.    

A problem immediately arises, however, in that there can be no Nash equilibrium 

in terms of pure strategies in such a market:  As discussed above, if firm j sets Pj and Qj, 

firm i will face a decreasing residual demand curve D(Pi) – Qj down to Pi = Pj, and then a 

flat demand curve at Pj - ε out to D(Pj).  Its marginal revenue schedule will lie under the 

decreasing leg of the demand curve, and then discontinuously rise to Pj - ε at the kink in 

the demand curve.  If its marginal cost schedule just intersects this marginal revenue 

schedule on its decreasing leg at the bottom of the discontinuity, as at the Cournot price 

and quantities in Figure 4, there will be a second, higher profit intersection at some Qi > 

D(Pj) – Qj that it will prefer to move to, so that quantity supplied will exceed quantity 

demanded and this could not be an equilibrium.  The situation is even worse if firm i’s 

marginal cost schedule only intersects marginal revenue once, to the right of the 

discontinuity.    

Or, if i’s marginal cost schedule just intersects marginal revenue at price Pj and 

quantity D(Pj) – Qj, as at the Bertrand price and quantities in Figure 6, there must be a 

second, higher profit intersection to the left of this point that it will prefer to move to.  

But at such a point, quantity supplied will fall short of quantity demanded, and so this 

cannot be an equilibrium either.  Again, the situation is even worse if marginal cost does 
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not intersect the horizontal portion of the marginal revenue schedule at all, but lies 

entirely to the left of it.   

The only other possibility (assuming, for simplicity, that the decreasing leg of the 

residual demand curve implies a monotonic decreasing marginal revenue schedule as in 

our linear example) is that there are three intersections with marginal revenue, one to the 

left of the discontinuity, one at the discontinuity itself, and one to the right of the 

discontinuity on the horizontal portion of the residual demand curve, as shown in Figure 

7 below.4  In this case, the central intersection clears the market, but unfortunately, this is 

a profit minimum rather than a profit maximum.  The two other intersections are local 

profit maxima, but neither of them clears the market.  If both of them happen to give 

equal profits, firm 1 will be indifferent between them, and would also be willing to select 

between them randomly with any probabilities p and 1-p, so that there would not be 

unambiguously excess demand or supply.   At this point, however, we are out of the 

realm of pure strategies and into the realm of mixed strategies.  There is therefore no 

single-stage Nash equilibrium in pure strategies when both firms choose their prices and 

quantities produced simultaneously.   

 
4  Figure 7 is in fact drawn with firm 2’s price and quantity equaling the average of its Cournot and 
Bertrand prices and quantities.   
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Figure 7 

 

 Although there is no PQ-Nash duopoly equilibrium in pure strategies, the famous 

theorem of Nash (1950) fortunately states that in a finite bimatrix game there must 

always be at least one mixed strategy Nash equilibrium.  Although with continuously 

variable prices and quantities the strategy space of each firm is infinite, it can be 

arbitrarily well approximated by a discrete approximation that is guaranteed at least one 

mixed Nash equilibrium. 

 With mixed strategies, there is some chance that combined output will exceed or 

fall short of demand at the higher price.  Let qi be the amount actually sold by firm i, as 
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contrasted with Qi, which continues to represent the amount produced.  Then if Pi < Pj, it 

is assumed that the low priced firm sells out first to the highest demand customers:   

  qi = min(Qi, D(Pi)),  

  qj = min(Qj, max(0, D(Pj) – qi)).   

In the rare event that both firms charge exactly the same price P = Pi = Pj and there is 

excess supply, we adopt the reasonable “tie-breaker” rule that sales are allocated in 

proportion to production:   

  qi = min(Qi, D(P) Qi / (Qi + Qj)).  

Any unsold output is assumed to be perishable and hence discarded, with zero disposal 

cost.  The profit of firm i is then  

  Πi = Pi qi – Ci(Qi) = Pi qi – Qi
2 / (2ai), 

where a1 = a and a2 = 1-a.     

 It is not clear a priori what the nature of the mixed Nash equilibrium should be:  

Will each firm choose between just two strategies, a high “regular” price with low output 

and a low “sale” price with high output?  In this case, each mixed strategy would be a 

probability mass function with only two mass points.  The two prices could either be the 

same for both firms, in which case the tie-breaker rule will be relevant, or, as is more 

likely, one firm (presumably the smaller) will slightly undercut the other by setting its 

prices just slightly lower than the other’s, in order to guarantee itself a sell-out when both 

firms choose a similar price.    

Or will each firm’s mixed strategy have a continuous bivariate distribution whose 

support is a subset of the region under the demand curve?  In this case, the probability of 

a tie would be zero and hence have no effect on expected profits.      
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  Or will each firm’s strategy have a continuous distribution on a one-dimensional 

manifold of prices and quantities?  If so, is the manifold described by a monotonic 

function of either price or quantity, or can it bend back on itself in either dimension?   

 Or are the strategies mixtures of one or more mass points and a continuous 

distribution?   

 In order to shed some light on these questions in a variety of cases, Figures 8 – 12  

show computational approximations to mixed PQ-Nash equilibria for e = 1, 2 and 1/2 

with a = 1/3, and also for e = 1 with a = 1/10 and 1/2.  A fairly fine 15×15 rectangular 

grid of price and quantity combinations for each firm was used to approximate the 

continuous strategy space, giving each firm 152 = 225 potential strategies.  On the 

assumption that the continuous-space equilibrium is a 1- or 2-dimensional continuous 

distribution with zero probability of ties, the two firms’ potential price values were offset 

by 1/2 step in order to preclude ties altogether.  A 152×152 = 225×225 payoff matrix was 

then generated for each firm, and one mixed Nash equilibrium was computed using an 

algorithm based on Mangasarian and Stone (1964).  The areas of the red squares are 

proportional to the probability of each (P, Q) strategy combination for firm 1, and the 

areas of the blue diamonds are proportional to these probabilities for firm 2. The squares 

and diamonds in the legend boxes are scaled to represent probability 1/4.   For 

comparison, the Cournot and Bertrand equilibria are also plotted.  Further computational 

details are in the Appendix.   
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Figure 8 
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Figure 9 
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Figure 10 
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Figure 11 
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Figure 12 

 

 In every case, each firm has a dominant strategy with probability in the range 0.44 

to 0.93 that involves a “regular high price” and low quantity, accompanied by a string of 

small probability strategies with lower “sale prices.”  For the smaller firm 1, the 

associated sale quantities are nearly constant, while for the larger firm, they increase 

briskly as price falls.  Each pair of payoff matrices was searched for pure Nash equilibria, 

and as expected, none were present.     

In each case, the PQ-Nash equilibrium is “more competitive,” i.e. has 

unambiguously lower price with generally higher output, than Cournot.  Also in each 
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case, the PQ-Nash equilibrium is “less competitive,” i.e. has unambiguously higher price 

with generally lower output, than Bertrand.   

 Since the above simulations were performed, I have learned that Robert H. 

Gernter (1986) has solved the first order conditions for the PQ-Nash duopoly problem, in 

which price and quantity are determined simultaneously.  He considers the case of 

increasing marginal cost, as well as constant and decreasing marginal cost, for the case of 

two independent firms with identical marginal cost schedules.   

  With increasing marginal costs, Gertner finds that each firm has a distribution 

over prices bounded strictly below by the competitive price and strictly above by the 

monopoly price.  Quantity is a nonrandom function of price, so that the joint distribution 

is on a one-dimensional manifold.  Each firm plays its highest price with positive 

probability mass, and the market clears when both firms play this strategy.  The 

remainder of the distribution is continuous, and generally leads to unsold output.   

Gertner’s characterization thus generally confirms the computational results above.   

    Gertner finds an explicit solution for the case of constant marginal cost, but 

unfortunately is unable to find an explicit solution with increasing marginal cost, even in 

the case of straight line demand and marginal cost curves.   Also, he considers only the 

symmetrical case in which the two firms share the same marginal cost schedule.    

 Unfortunately his essay, which was the second of three essays in his MIT 

dissertation, has never been published.  Nevertheless, a copy may be obtained through 

MIT’s D-Space service.5   

 

 
5  Tirole (1990: p. 233) does mention this essay, but without providing any details or discussion of the 
crucial case of increasing marginal cost.   Tirole was one of Gertner’s dissertation advisors.   
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In a repeated pure Nash equilibrium, the players often can learn the equilibrium 

through a process of iterative learning, even if they do not know the other’s payoff 

matrix:  One firm adopts a strategy, the other reacts optimally, and then the first revises 

optimally, etc. until a steady state is reached.   

However, there is no such process by which the players could learn a mixed 

equilibrium, even with repeated play, without knowing the other’s payoff matrix and 

actually computing the equilibrium.  This occurs because in a mixed equilibrium, each 

player is indifferent over all the strategies to which it assigns non-zero probabilities, and 

therefore does not care what its own probabilities are.  All that determines player i’s 

probabilities is the mathematical restriction that they must make player j just indifferent 

over its non-zero strategies.     

In the duopoly context, however, both firms are in the same industry, and 

therefore could reasonably know the other’s cost function and therefore payoff function.  

In the examples provided in this paper, in fact, their cost schedules are identical up to a 

scale factor.     

Levitan and Shubik (1978) anticipate Gertner by finding an analytical solution to 

a mixed strategy PQ-Nash duopoly equilibrium, but only for an economy in which 

marginal cost is zero or constant, but disposal (or storage to the next period) is costly.  
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Likewise, Kreps and Scheinkman (1983) anticipate the Gerter analysis in the special case 

of a vertical marginal cost schedule.6     

 

4.  A Produce-to-Order Duopoly 

 A further economically relevant duopoly structure is one in which each firm i sets 

its price Pi, and then passively takes orders up to some limit quantity Qi
max that it sets at 

the same time as its price.  Afterwards, it faithfully produces the quantity ordered, but 

since no second-stage decision is involved, this is still a single-stage game.  As in Section 

3 above, the firm makes a simultaneous price and quantity decision, but in this case the 

quantitative choice variable is Qi
max, rather than actual production Qi.  

 In this Production-to-Order (PTO) duopoly, actual production Qi always equals 

sales qi, so that there never is overproduction, though there could occasionally be 

underproduction in a mixed equilibrium.  If Pi < Pj, we have  

  qi = min(Qi
max, D(Pi)), 

  qj = min(Qj
max, max(D(Pj) – qi, 0)).   

In the rare event that Pi = Pj = P and the sum of the limit quantities exceed total demand, 

we need a tiebreaker assumption.  However since the limit quantities, unlike quantities 

already produced, are not observable by consumers until they become binding, there is no 

reason for consumers to purchase in proportion to them.   Since the firms appear identical 

to consumers, we therefore assume that unless one or both limit quantity is binding, each 

firm will get an equal share of total demand:  

 
6  Singh and Vives (1984) consider an economy in which firms are artificially constrained to choose 
between setting their prices and then being required to supply whatever quantity is demanded at that price, 
or setting their quantities and then having to sell at whatever price clears the market.  The present paper 
instead allows them to set both price and quantity. 
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  qi = min(Qi

max, max(D(P)/2, D(P) – Qj
max)). 

In our linear example, profit is then  

  Πi = Pi qi – Ci(qi) = Pi qi – qi
2 / (2ai).   

By setting Qj
max

 sufficiently high, firm j can push the kink in firm i’s residual demand 

curve so far to the left that it becomes irrelevant, and thereby induce firm i to act like a P-

Stackelberg follower. 

 Figure 13 below provides a computational discrete approximation to this PTO 

duopoly for our benchmark case e = 1, a = 1/3.  No offset was incorporated into the two 

price grids, so that ties occasionally do arise.  Note that the horizontal axis now 

represents the strategic limit quantities, rather than quantities actually produced and sold.  

No pure strategy Nash equilibria were present with these parameters.   
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Figure 13 

The primary strategy (with probability 0.72) of the larger firm 2 has the highest 

price charged by either firm, and appears to be a mass point.  Firm 2 also has what 

appears to be a continuum of lower sale prices, but now with the highest density at or 

near its lowest price, rather than at the high end as in the PQ duopoly.  Firm 2’s sale 

prices are all on (or very close to) its marginal cost schedule, while its regular high price 

is well to the left of its MC schedule.        

The primary strategy of the smaller firm 1 (with probability 0.49 in this discrete 

approximation) is now near the bottom of its price distribution, and may merely represent 

a mode in a continuous density rather than a mass point.  There is no evidence of a mass 
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point at the highest price in the support.  Since firm 1 is almost always the low-price 

vendor, all of its quantities lie on (or very close to) its marginal cost schedule.     

Note again that in a mixed strategy, each player is indifferent over all strategies to 

which it assigns positive probabilities or densities.   

When both firms are the same size (a = 1/2) with production-to-order and e = 1, 

multiple pure-strategy Nash equilibria do appear when both firms are symmetrically 

given the same price grid with no offset.  These vary in price from P1 = P2 = 1.000 with 

multiple non-binding limit quantities, up to P1 = P2 = 1.040 with multiple non-binding 

limit quantities, so that each firm gets half of demand.  The high price equilibria turn out 

to be what might be called “superlative pure Nash Equilibria”, in that any one of them is 

the optimal Nash equilibrium in pure strategies for both firms, and therefore the one that 

they could be expected to select when each knows the other’s payoff matrix.     

The production-to-order duopoly often encountered computational difficulties 

with other values of the parameters, perhaps due to the relatively indeterminate value of 

the limit quantity in some cases.   Accordingly, it has not been explored as thoroughly as 

the PQ case, discussed in Section 3, in which quantity actually produced is the strategic 

variable. 

However, it is conjectured that when one firm is smaller than the other and the 

strategy space is continuous, there will be no pure Nash equilibrium, yet there will be a 

unique mixed equilibrium in which the larger firm primarily charges a high price with 

restricted limit quantity, plus a string of lower prices, with limit quantities on or near its 

marginal cost schedule, while the smaller firm charges a continuum of low prices, with 

limit quantities that are at or near its marginal cost schedule.   When both firms are equal 
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in size, it is conjectured that there will be a superlative Nash equilibrium in pure 

strategies in which both firms charge a moderately high price, with relatively high limit 

quantities that are non-binding.   

 

5.  Stackelberg outcomes 

In Stackelberg models, one firm, presumably the larger firm 2 in our example, is 

assumed to be the “market leader,” and the other, presumably smaller firm, to be the 

“follower.”  Two variants of the Stackelberg model are illustrated in Fig. 2.  In what 

might be called the “Q-Stackelberg” variant, the follower takes the leader’s quantity as 

given, and then chooses price and quantity so as to maximize its own profits under the 

assumption that the leader will sell this quantity at any price as in Cournot.  The leader 

then subtracts the follower’s supply from the total demand curve at each price, and 

maximizes its own profits by choosing a price and quantity on this residual demand 

curve.  This gives a well-defined outcome, indicated in Figure 2 by the pentagram 

symbols.  However, this is not a Nash equilibrium, since the moves are not simultaneous.  

Furthermore, the follower firm wrongly assumes the leader’s strategy consists only of a 

quantity decision, when in fact the leader is choosing both price and quantity.     

 Nevertheless, Q-Stackelberg can be justified as a 3-step game, in which the leader 

first chooses its quantity, then the follower chooses its quantity, and then prices are 

determined in a third, Nash step as in Kreps and Scheinkman (1983).    

 In what might be called the “P-Stackelberg” variant, the follower instead takes the 

leader’s price as given and then chooses price and quantity so as to maximize its own 

profits under the assumption that the leader will sell any amount at this price.  The leader 
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then subtracts the follower’s supply (which now just equals MC1

-1(P2) ) from total 

demand and again maximizes its own profits by choosing a price and quantity on the 

residual demand curve, as indicated by the triangle symbols in Figure 2.  Again this is not 

a true Nash equilibrium, however, since the follower firm now wrongly assumes the 

leader’s strategy consists only of a price decision.   

 P-Stackelberg is perhaps a good approximation to duopoly equilibrium when a is 

near zero, so that the follower firm 1 is in fact facing a nearly infinitely elastic residual 

demand curve to the left of Q = D(P2)-Q2.  However, as a increases above zero, this 

elasticity becomes perceptibly finite, so that firm 1 wants to cut its quantity and raise its 

price above these values.   Even if firm 1 persists in believing that firm 2 would sell any 

quantity at P2, a further problem arises as a becomes larger, in that eventually, even short 

of a = 1/2, neither firm wants to the leader, since the leader must bear the entire burden of 

cutting output so as to hold price up for the benefit of both firms.  If it is arbitrarily 

assumed that the larger firm is the leader, the outcome will change discontinuously as a 

passes 1/2, a problem that arises in McCulloch (1993).   

 The inconsistency in a 2-step Q- or P-Stackelberg game could be resolved by 

assuming the follower takes both the leader’s price and quantity into account, in what 

might be called a PQ-Stackelberg game (not illustrated).   Since by adjusting its quantity, 

the leader can induce the follower to be either a price-taker as in Figure 4 or a quantity-

taker as in Figure 6, the follower is always acting as either a Q-Stackelberg or P-

Stackelberg follower.  At the boundary between the two zones, there are three 

intersections of MC and MR as in Figure 7 with equal profit in the left and right 

intersection,  so that the boundary is easy to locate.  It is therefore not inconceivable that 
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the outcome will always be either Q- or P-Stackelberg, and perhaps even always one or 

the other, unless induced zone changes affect the leader’s optimal strategy.   

 In any Stackelberg model, a big unsolved issue is which firm goes first.  

However, the decision to go first or wait is in fact itself a Nash game:  Perhaps the NE is 

that one firm (the larger?) decides to go first while the other agrees to wait, or perhaps it 

is that both try to go first and therefore move together.   Or perhaps this game will itself 

require a mixed strategy solution.  

 

6.  Conclusions and unsolved issues 

 The Gertner PQ-Nash model solves the 127-year-old debate over whether 

Cournot or Bertrand had the better model of duopoly:  Although Cournot can be justified 

as a two-stage process in which first quantities are simultaneously chosen and revealed 

and then prices are simultaneously chosen, neither is correct as a single-stage 

determination of both prices and quantities.  As Bertrand rightly noted, Cournot does not 

adequately take price competition into account.  However, Bertrand was also wrong, not 

to take quantity restriction into account.   

 When both price competition and quantity restriction are modeled as a one-stage 

game, the Gertner mixed strategy game arises with a price support intermediate between 

Cournot and Bertrand.  The resulting mixed strategy game provides a rational model of 

sales and price dispersion.   

 It remains to find an explicit or at least easily computable solution for Gertner’s 

differential equations for simple parametric cases.  In particular, linear marginal cost and 

affine demand should make quantities an affine function of price, and yield a closed form 
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solution.  Constant elasticity demand with Cobb-Douglas or CES marginal variable cost 

schedules (arising from diminishing marginal product against a fixed second factor) are 

of even greater interest.  These probably do not lead to an explicit solution, but there 

should be a quick and accurate algorithm to approximate the solution arbitrarily closely.     

 Gertner (1986) only treats the symmetric case of equal marginal cost schedules.  It 

should be straightforward to generalize this to the case of different marginal cost 

schedules and then to solve the resulting differential equations for the linear/affine case, 

and to find an algorithm to approximate more general cases.   

  The Production-to-Order dupoly of Section 4 and the PQ-Stackelberg duopoly 

model of Section 5 also remain to be solved.  It could be that the PQ-Stackelberg model 

provides a good approximation to the PQ-Nash model, at least in the case of unequal firm 

sizes, yet may be easier to compute.    

 And finally, it should be straightforward (so to speak) to extend the Gertner and 

other models of duopoly discussed here to the case of an n-firm oligopoly.   Presumably 

the maximum price will converge on the competitive price at approximately the same rate 

as in the original Cournot model.  
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Appendix: 

Computational Considerations 

 

Numerical mixed equilibria were found using a modification of the very helpful 

function bimat.m, written in Matlab by Bapi Chatterjee (2008), and contributed by him to 

Matlab Central File Exchange.   This program is based on the Mangasarian and Stone 

(1964) quadratic programming algorithm, and relies on the intrinsic Matlab function 

quadprog.m.   

There is, however, an important bug in Chatterjee’s function, in that he neglected 

to check solutions for the Mangasarian and Stone requirement that the value of the 

quadratic program be zero (or at least be within computational error of zero).  

Accordingly, a similar function bimatrix.m was written by the author, which tries 

different initializations until a solution is found that meets this condition.  Two other 

minor bugs were also corrected. 

Each player is given an h×h rectangular grid of prices and quantities, giving it h2 

strategies, and making the payoff matrices h2×h2.  The matrix passed to quadprog.m  is 

then 2h2×2h2  Since with an n×n matrix, quadprog.m typically requires about 2 or 3 times 

n iterations to find even an approximate solution, and since each iteration requires on the 

order of n2 floating point operations, the theoretical total computation time is roughly 

proportional to h6.  In practice, it was found that h = 11 (with 10 equal steps) takes 

several seconds on a laptop, h = 15 takes several minutes, and h = 21 takes several hours.  

Accordingly h was restricted to 15.  The maximum iterations for quadprog.m were 

conservatively set to 10h2 or 2250, but this was never binding.     
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In order to provide a fairly fine grid in the relevant region without excessive 

computational time, a two-step procedure was adopted:  In the first step, if no price offset 

was used, each firm’s minimum price was set to the Bertrand price, and each firm’s 

maximum price was set to the Cournot price.  When a price offset was used, the range 

was widened slightly so that neither firm’s minimum or maximum price was inside this 

range.  Each firm’s first step minimum quantity was ordinarily set to 0.8 times its 

Cournot quantity, and its maximum quantity was ordinarily set to 1.4 times its Cournot 

quantity, though occasionally these limits had to be widened by hand in order not to be 

binding.  

In the second step, narrower ranges were set, so as to include all the non-zero-

probability strategies found in the first step plus a margin equal to one first-stage grid 

step, in order to ensure that no non-zero probability would be overlooked.  The second 

step solution was then checked to make sure that its limits were not binding, i.e. that the 

margin of the new 15×15 grid was all zeroes.  Since quadprog.m only provides an 

approximate solution to the quadratic program, probabilities less than 10-6 were treated as 

zeroes for this purpose and in the graphs.  The upper left and lower right corners of the 

second stage grids are plotted in the graphs as minute magenta or cyan dots.   

Since occasionally solutions to the quadratic program were found that did not 

meet the additional zero-value restriction, quadprog.m was first initialized with the first 

strategies of both players.  If the value of this program exceeded 10-4 in absolute value, 

the second strategies of both players were then tried, and so forth.  Three different 

initializations were generally adequate.   
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Frequently quadprog.m returned error messages indicating that the problem was 

ill-conditioned, and occasionally it returned “solutions” which did not even come close to 

meeting the restrictions that were imposed.  Often just changing the grid slightly gave 

much better results.  Other algorithms exist for computing mixed Nash equilibria, and 

may give better conditioned computational results, but no Matlab programs for 

computing these turned up in a web search.    

 


